Пищевая химия

Химический состав пищевых систем, его полноценность и безопасность. Фракционирование и модификация компонентов продуктов питания. Пищевые и биологически активные добавки. Основные медико-биологические требования к безопасности продуктов питания.

Рубрика Химия
Вид учебное пособие
Язык русский
Дата добавления 09.05.2012
Размер файла 7,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

- Стандартная единица фермента - это такое количество фермента, которое катализирует превращение одного микромоля данного субстрата за одну минуту при заданных условиях. Стандартная единица фермента обозначается буквой E (от русского слова "единица") или буквой U (от английского слова "unit").

- Уд ельная активность- это число единиц (E или U), отнесенное к одному миллиграмму белка в ферментном препарате. Количество белка в препарате фермента может быть определено любым известным методом определения белка (метод Кьельдаля, метод Лоури и др.).

- Молекулярная активность - число молекул данного субстрата или эквивалентов затронутых групп, превращаемых за одну минуту одной молекулой фермента при оптимальной концентрации субстрата. Это понятие соответствует числу оборотов, введенных Варбургом. Число оборотов по Варбургу - это число молей превращенного субстрата, приходящееся на моль фермента за минуту. Для определения молекулярной активности фермента нужно знать его молекулярную массу.

- Катал - каталитическая активность, способная осуществлять реакцию со скоростью равной 1 молю в секунду в заданной системе измерения активности. Каталитическая активность в 1 катал (кат) при практическом применении оказывается слишком большой величиной, по этому в большинстве случаев каталитические активности выражают в микрокаталах (мккат), нанокаталах (нкат) или пикокаталах (пкат). Стандартная единица фермента находится с каталом в следующем соотношении: 1 E (U) = 16,67 нкат.

Ферментативная кинетика

Ферментативный катализ существенно отличается от неферментативного, в связи с чем в кинетике ферментативных реакций разработаны совершенно особые закономерности. Они позволяют выделить ферментативную кинетику в самостоятельный раздел химической кинетики, в котором изучается зависимость скорости реакций, катализируемых ферментами, от концентрации реагирующих веществ (ферментов и субстратов) и от условий их взаимодействия (температуры, рН, концентрации коферментов и кофакторов, наличия различных эффекторов: активаторов и ингибиторов).

Изучение кинетики ферментативного действия имеет важное теоретическое значение, поскольку только с позиций кинетики можно подойти к решению вопроса о механизме ферментативного действия. Но оно также необходимо с практических позиций, так как только имея определенные сведения о кинетике действия того или иного фермента, можно подобрать оптимальные условия для его работы, а также влиять на его активность в заданном направлении на различных стадиях технологического процесса.

Вопросы, связанные с кинетикой ферментативных реакций, детально изложены в специальных разделах биохимии и энзимологии, поэтому основное внимание уделим тем положениям, которые необходимы для грамотного подхода к работе с ферментами: подбору условий для определения активности фермента, определению начальной скорости ферментативной реакции, выбору субстрата, определению его насыщающей концентрации, оптимуму действия температуры и рН, влиянию кофакторов, активаторов и ингибиторов.

Наличие фермента в растворе или экстракте можно определить исходя из скорости катализируемой им реакции, о которой можно судить либо по накоплению продуктов реакции, либо по убыли субстрата.

В большинстве своем ферментативные реакции являются реакциями смешанного порядка. Типичная кривая хода ферментативной реакции (рис. 8.1) имеет следующий вид:

Таким образом, ход ферментативной реакции во времени не может быть описан одним математическим уравнением, поскольку все ферментативные реакции в самом начале своего протекания (когда имеется избыток субстрата и образовалось мало продуктов реакции) являются реакциями нулевого порядка, и только потом они приобретают характер реакции первого или второго порядка. Скорость реакции нулевого порядка со временем не меняется, зависимость количества образовавшегося продукта от времени остается прямо пропорциональной (см. рис. 8.2). Для реакций первого порядка скорость реакции в каждый данный момент времени пропорциональна имеющейся в наличии концентрации субстрата, а следовательно, наблюдается постоянное падение скорости реакции с течением времени (см. рис. 8.3).

Для того чтобы правильно определить потенциальные возможности данного фермента как катализатора, нужно учитывать скорость ферментативной реакции в тот момент времени, когда факторы, замедляющие скорость ферментативной реакции (нехватка субстрата, специфическое ингибирование продуктами реакции, частичная тепловая денатурация фермента и др.), не успевают проявить свое действие и наблюдается прямая пропорциональная зависимость между продуктами реакции и временем.

Такая скорость называется начальной скоростью ферментативной реакции и обозначается V0.

На практике V0 определяют графическим методом, для чего строят кривую хода ферментативной реакции во времени. Начальная скорость определяется как тангенс угла наклона касательной, проведенной из начала координат к кривой хода ферментативной реакции (см. рис. 8.1).

V0 = tg a

При работе с конкретным ферментом длительность реакции следует выбирать исходя из экспериментальных данных, по начальной скорости реакции.

В зависимости от задачи, которая стоит перед исследователями или технологами, теми, кто работает с ферментами, выбирается тот или иной подход в этой работе. Имеется в виду следующее.

1. Если необходимо выделить и охарактеризовать фермент из какого-либо биологического объекта, пищевого сырья, следует применить либо известные схемы выделения и очистки, или разработать оптимальную схему для данного фермента, варьируя и испытывая различные сочетания основных этапов очистки и выделения ферментов (белков): экстракцию, различные режимы осаждения, гель-хроматографию и другие методы, основанные на различиях в физико-химических характеристиках отдельных ферментов (см. также гл. 2). При этом на каждом этапе выделения и очистки следует характеризовать ферментный препарат по ферментативной активности и содержанию белка. В этом случае определение ферментативной активности (определение F0) проводят с использованием стандартного субстрата; выявляют оптимальные значения рН и температуры. И все дальнейшие исследования проводят при насыщающей концентрации субстрата, оптимуме температуры и рН. Изучение влияния специфических активаторов и ингибиторов позволяет в этом случае получить ценные сведения о строении активного центра и возможном механизме каталитического действия. Здесь необходимо подчеркнуть важность тщательного методического подхода при работе с ферментами. Не следует жалеть времени и усилий на выбор режима экстракции (продолжительность, температура, экстрагент, тип экстракции - исчерпывающая или нет), выбор методики определения активности, ее отработку и возможную модификацию для данного конкретного объекта исследования; кроме того, работа с ферментами различной степени очистки также имеет свои особенности, свою специфику: они обладают разной рН- и термостабильностью и, помимо этого, могут по-разному реагировать на воздействие различных факторов.

2. Если задача заключается в определении того, каким образом будет вести себя данный фермент (ферментный препарат) в конкретном режиме рассматриваемой пищевой технологии, необходимо проводить исследование ферментативного действия при условиях данного технологического процесса (концентрация субстрата, длительность, рН, температура, влажность), изучить влияние различных компонентов пищевого сырья и используемых добавок на активность фермента с целью определить возможность и способы влияния на ферментативный процесс в желаемом направлении.

Перейдем к рассмотрению факторов, влияющих на скорость ферментативных реакций.

Влияние концентрации субстрата на скорость ферментативной реакции. Концентрация субстрата является важнейшим фактором, определяющим скорость ферментативной реакции. Еще в 1902г. В. Анри при изучении реакции ферментативного гидролиза сахарозы предположил, что фермент р-фруктофуранозидаза взаимодействует со своим субстратом, затем это соединение распадается, фермент остается в первоначальном виде, а субстрат сахароза оказывается расщепленной на глюкозу и фруктозу.

Это предложение было в дальнейшем развито Л. Михаэлисом и M. Ментен. В 1913 г. они постулировали следующие уравнения ферментативной реакции:

где k+1- константа скорости реакции образования комплекса ES, k-1 k+2 - константы скорости реакции распада комплекса ES в двух направлениях.

Тогда Ks- константа диссоциации комплекса ES равна отношению констант скоростей обратной и прямой реакции:

Ks=

k-1

k+1

Исходя из закона действующих масс, можно записать следующее уравнение:

[S] ·([E0] -[ES]) = Ks ·[ES],

где [E0] - концентрация фермента в начале ферментативной реакции, [S] - концентрация субстрата, (ES] - концентрация комплекса "фермент-субстрат", [E0]-[ES] - концентрация фермента, не связанного в комплексе с субстратом.

В ходе ферментативной реакции в любой момент времени фермент существует в двух формах: свободной и связанной, т. е. в форме комплекса ES.

Скорость ферментативной реакции будет максимальной при такой концентрации субстрата, когда весь фермент перейдет в комплекс ES, т.е. когда все активные центры насыщены субстратом и дальнейшее увеличение концентрации субстрата не приведет к увеличению скорости реакции.

Преобразуя представленное выше уравнение, получим выражение, которое будет иметь следующий вид:

V0=

Vmax[S]

K s+[S]

Это уравнение названо уравнением Михаэлиса-Ментен. Оно имеет огромное значение для выражения зависимости действия ферментов от концентрации субстрата. Однако оно содержит и ряд недостатков, в частности, при его выводе было сделано несколько допущений, например, не учитывалась вторая стадия ферментативной реакции - образование E и P.

В связи с этим был предложен рад усовершенствованных уравнений, с учетом влияния образовавшихся продуктов реакции. В настоящее время наиболее широко используют уравнение Холдейна-Бриггса. Оно имеет следующий вид:

V0=

Vmax[S]

K m+[S]

В этом уравнении вместо K s - константы диссоциации комплекса ES, который присутствует в уравнении Михаэлиса-Ментен, стоит Km-константа Михаэлиса (в числителе которой находятся константы скоростей реакций, ведущих к распаду комплекса ES в двух направлениях):

Km=

k-1+K+2

K +1

Поскольку K s =

k-1

k+1

,то Km = Ks+

k+2

k+1

, то есть Km всегда больше Ks.

Для того, чтобы графическая зависимость, выражающая влияние концентрации субстрата на начальную скорость ферментативной реакции, из гиперболической преобразовалась в прямолинейную, что, очевидно, представляет большее удобство в экспериментальной практике, уравнение Холдейна-Бриггса было преобразовано Лайнуивером и Берком по методу двойных обратных величин.

1

V0

=

K m

Vmax

·

1

[S]

+

1

Vmax

Величина Km - это ключевой кинетический параметр; если [S] = K m, то V= Vmax/2, следовательно, константа Михаэлиса численно равна концентрации субстрата (в молях на литр), при которой скорость реакции равна половине максимальной.

Приблизительное значение Km можно получить простым графическим способом, как это показано на рис. 8.4 а; однако в этом способе достаточно велика погрешность в нахождении Vmax. Значительно удобнее пользоваться прямолинейной зависимостью при обработке данных по методу двойных обратных величин, рис. 8.4 б. В этом случае можно получить более точное значение Km.

Таблица 8.1. Значение констант Михаэлиса - К (мМ/л) для некоторых ферментов

Фермент

Субстрат

К

Каталаза

H2 O 2

25,0

Гексокиназа

АТФ

0,4

Глюкоза

0,05

Фруктоза

1,5

Химотрипсин

Глицил-тирозинил-глицин

10,8

N-бензол-тирозин-амид

2,5

P - Галактозидаза

Лактоза

4,0

Источником множества недоразумений как в прошлом, так и в настоящем, является некорректное использование термина "константа Михаэлиса" и двух символов Ks и Km для обозначения величин отнюдь неидентичных, несмотря на совершенно четкие рекомендации Комиссии по ферментам Международного Биохимического Союза. Первая величина -Ks- константа равновесия, выражаемая отношением

Ks =

k-1

k+1

характеризует сродство фермента к субстрату (или, иначе, прочность комплекса ES), причем существует обратная пропорциональность между величиной Ks и сродством фермента к субстрату. Вторая величина -Km-соответствует концентрации субстрата, при которой V= Vmax/ 2. Часто свойство Ks ошибочно приписывают Km. Ha самом деле Km будет являться мерой сродства фермента к субстрату только в том единственном случае, когда величина k+2 будет настолько мала, что Km практически совпадет с Ks.

Многие ферменты катализируют реакции с участием двух субстратов. К так называемым бимолекулярным реакциям относятся реакции переноса химических группировок с одного соединения на другое, реакции синтеза, окислительно-восстановительные реакции.

Такие реакции могут протекать по двум различным механизмам. В реакциях первого типа, называемых реакциями единичного замещения, два субстрата А и В образуют с ферментом комплекс EAB, который затем распадается с образованием продуктов реакции С и Д. Второй тип двухсубстратных реакций протекает по механизму двойного замещения (механизм типа "пинг-понг"). В этих реакциях с активным центром фермента в каждый момент времени связан только один из двух субстратов.

При исследовании кинетики бимолекулярных реакций концентрацию одного из субстратов оставляют постоянной (В), а второго - изменяют (А). В этом случае в координатах 1/V от 1/[A] можно получить "кажущееся" значение К т. Истинное значение Vmax и К Bmполучают при исследовании нескольких концентраций субстрата В. Точно так же поступают при определении K Am(когда концентрация А постоянна, а концентрация В варьируется). Кт по отношению к различным субстратам в одной и той же реакции могут быть различными - это хорошо видно из следующего примера.

Реакция катализируемая алкогольдегидрогеназой:

CH3CH2OH + НАД+ - CH3COH + НАДН + H+

этанол уксусный альдегид

Значение Кт для алкогольдегидрогеназы дрожжей:

Субстрат

Кт, М/л

НАД+

1,0 ?10-4

CH3CH2OH

2,4 ?10-2

НАДН + H+

3,5 ?10-5

CH3COH

1,0 ?10-4

Влияние концентрации фермента на скорость ферментативной реакции.

Концентрация фермента оказывает существенное влияние на скорость ферментативной реакции. При насыщающей концентрации субстрата, обеспечивающей Vmax, начальная скорость ферментативной реакции будет, в первую очередь, зависеть от концентрации фермента. Эта зависимость прямо пропорциональная, что свидетельствует о том, что начальная скорость является мерой количества фермента.

Влияние температуры на активность ферментов. Общий вид кривой, характеризующей влияние температуры на активность фермента, можно представить в виде графика, изображенного на рис. 8.6.

Оптимальная температура, при которой наблюдается максимальная активность, для большинства ферментов находится в пределах 37-50 0C, но некоторые ферменты имеют температурный оптимум за пределами этой зоны.

Влияние температуры на активность фермента, которое может быть легко изучено экспериментально, имеет очень сложный характер, так как обусловлено целым рядом факторов, а именно:

- влиянием температуры на скорость расщепления комплекса ES на свободный фермент и продукт реакции, т. е. на константу скорости реакции

- влиянием температуры на сродство фермента к субстрату, то есть на константы k+1 и k_,;

- влиянием на теплоту ионизации, а, следовательно, на процессы ионизации всех компонентов реакции: самого фермента, субстрата, промежуточных и конечных продуктов реакции;

- влиянием на образование таких соединений, как "фермент-активатор" или "фермент-ингибитор";

- влиянием на процесс денатурации ферментного белка.

Известное уравнение Аррениуса, характеризующее влияние температуры на скорость химической реакции, может быть приложено к левой части температурной кривой (см. рис. 8.6):

d ln k

dT

=

E

RT2

где k - константа скорости реакции; T- абсолютная температура, °К; E- энергия активации; R - универсальная газовая постоянная.

Изменение скорости ферментативной реакции при повышении температуры измеряется температурным коэффициентом Q10, который показывает, во сколько раз ускоряется данная реакция при повышении температуры на десять градусов. Можно преобразовать уравнение Аррениуса, подставив в него коэффициент Q10:

E =

RT2InQ

10

Это уравнение дает возможность определить энергию активации путем определения значений Q10 для данной ферментативной реакции.

Для обычных химических реакций Q10= 2-3, для ферментативных реакций (левая часть температурной кривой) Q10= 1-2, причем значение Q10= 1 характерно для температур, близких к оптимальным.

Правая часть температурной кривой показывает резкое снижение скорости ферментативной реакции при температурах, превышающих оптимальную. И это зависит, в первую очередь, от денатурации ферментного белка. Поэтому очень важным показателем, характеризующим отношение фермента к температуре, является его термостабильность.

Термостабильность фермента складывается как бы из двух критериев: величины температуры и времени ее воздействия на фермент. Кроме того, на термостабильность различных ферментов могут оказывать влияние и такие факторы, как рН среды, ее солевой состав, защитное действие субстрата.

Влияние рН на активность ферментов. Для каждого фермента характерна определенная узкая область значений рН, при которой он проявляет максимальную активность.

Форма кривых, описывающих зависимость активности фермента от рН, отражает способность важных для данного фермента протон-донорных или протон-акцепторных групп в активном центре фермента переходить в состояние с требуемой степенью ионизации при определенных значениях рН.

Кроме влияния рН на состояние ионизации активного центра фермента, ход представленных кривых будет зависеть и от других факторов. В частности, изменение рН среды изменяет состояние ионизации субстрата (если это заряженное вещество), комплексов ES и EP, в некоторых, например, окислительно-восстановительных реакциях, ионы H+ сами могут принимать участие в реакции; помимо этого, скорость денатурации ферментативного белка зависит от рН.

При экспериментальном изучении активности фермента от рН следует помнить, что рH-оптимум зависит от состава среды (от природы используемого буфера); оптимумы рН прямой и обратной реакции могут быть совершенно различными; при действии одного и того же фермента на различные субстраты рН-оптимумы также могут быть различными. Кроме понятия оптимума рН, очень важным является понятие рН-стабильности. Это тот диапазон рН, при котором фермент или ферментативный препарат сохраняет свою активность в течение определенного периода времени. рН-Стабильность также зависит от ряда факторов, среди которых, кроме уже названных, форма ферментного препарата, степень его очистки и др.

Все выше сказанное позволяет утверждать, что варьируя температурный режим и изменяя рН, можно в какой-то мере регулировать каталитическую активность фермента.

Влияние активаторов и ингибиторов. Активаторами называют вещества, которые повышают активность ферментов. Хорошим примером таких соединений являются аминокислота цистеин и восстановленный глутатион, содержащие свободную SH-группу. Их активирующее действие заключается в том, что они восстанавливают дисульфидные связи с образованием SH-групп, необходимых для проявления каталитической активности тиоловых ферментов. Кроме того, некоторые ферменты активируются металлами, которые либо участвуют в построении активного центра, либо стабилизируют пространственную конформацию ферментного белка и тем самым обеспечивают проявление каталитических функций.

Ингибиторами называют вещества, специфически снижающие активность ферментов. Снижение или полная потеря активности ферментов могут быть вызваны разного рода денатурирующими воздействиями, в этом случае правильнее употреблять термин "инактивация" фермента.

Механизм действия ингибиторов может быть самым разнообразным:

- ингибитор взаимодействует с апоферментом, при этом возможны такие варианты, как связывание функциональных групп белка, изменение третичной и четвертичной структуры апофермента, специфическое связывание с определенным участком апофермента, неспецифическая адсорбция на белке;

- ингибитор образует комплекс с субстратом;

- ингибитор связывает кофермент;

- ингибитор связывает активатор;

- ингибитор связывает кофактор.

Чаще всего ингибитор взаимодействует с ферментом, образуя комплекс. Это можно выразить следующим уравнением:

Константа диссоциации комплекса фермент-ингибитор (или константа ингибирования) Ki.определяется выражением:

ki =

k+1

k-1

=

[E]·[S]

[EI]

Кi прямо пропорциональна концентрации фермента и ингибитора и обратно пропорциональна концентрации комплекса фермент-ингибитор.

Существует ингибирование двух основных типов: необратимое и обратимое. Теоретически, в случае необратимого ингибирования k-1 = 0, то есть комплекс EI настолько прочен, что совершенно не диссоциирует. Но для большинства необратимых ингибиторов величина k-1_, хотя и очень мала, но не равна нулю.

Обратимое ингибирование, в свою очередь, бывает конкурентным и неконкурентным.

Конкурентный ингибитор конкурирует с субстратом на основе структурного сходства, связываясь с активным центром фермента с образованием неактивного комплекса фермент-ингибитор. Отличительная особенность конкурентного ингибирования состоит в том, что его можно устранить или ослабить, повысив концентрацию субстрата. Конкурентный ингибитор снижает сродство фермента к субстрату, следовательно, величина Кm в присутствии конкурентного ингибитора увеличивается.

При неконкурентном торможении ингибитор связывается не с активным центром фермента (то есть не там, где присоединяется субстрат), а с другим участком молекулы фермента. Очевидно, что в этом случае ингибитор не оказывает влияние на величину константы Михаэлиса Кт, но будет снижать максимальную скорость реакции - Vmax

Одними из самых распространенных неконкурентных ингибиторов являются аллостерические ингибиторы. Присоединяясь не к активному, а к другому, так называемому аллостерическому центру молекулы фермента, ингибитор вызывает конформационные изменения в структуре активного центра, вследствие чего становится невозможным образование комплекса фермент- субстрат.

Изучение взаимодействия ферментов с ингибиторами и активаторами ферментов позволяет получать ценные сведения о субстратной специфичности ферментов, природе функциональных групп активного центра, механизмах каталитической активности.

Так как в качестве ингибиторов могут выступать конечные продукты реакции, различные промежуточные продукты метаболизма, нет сомнения в той огромной роли, которую выполняют ингибиторы в регуляции ферментативной активности.

Это подтверждает и факт широкого распространения ингибиторов белковой природы (см. гл. 2). Кроме того, по принципу специфического ингибирования действуют многие лекарственные препараты, антибиотики, токсичные вещества, антиалиментарные факторы питания.

Специфические ингибиторы, встречающиеся в пищевом сырье и пищевых продуктах, присутствуют в качестве составляющих как в традиционных рецептурах, так и в сложных композиционных составах новых, модифицированных продуктов питания. Поэтому нельзя не учитывать их влияние на активность отдельных ферментов и на биохимические процессы в целом, протекающие при хранении и переработке пищевого сырья.

Все это лишний раз говорит о множестве сложных проблем, которые встречаются в экспериментальной работе с ферментами и использовании ферментных препаратов на практике.

8.2 КЛАССИФИКАЦИЯ И НОМЕНКЛАТУРА ФЕРМЕНТОВ

Катализируемая химическая реакция представляет собой тот специфический признак, по которому один фермент отличается от другого. Поэтому естественно и логично, что классификация и номенклатура ферментов основывается на этом принципе. Современная классификация ферментов разработана специальной Комиссией Международного Биохимического Союза и изложена в книге "Номенклатура ферментов", которая вышла в русском переводе в 1979 г.

В основе классификации лежат три положения:

а) все ферменты делятся на 6 классов по типу катализируемой реакции;

б) каждый фермент получает систематическое название, включающее название субстрата, тип катализируемой реакции, и окончание "аза"; кроме того, Комиссией были сохранены и узаконены тривиальные названия. Таким образом, возникла двойная система наименования ферментов;

в) каждому ферменту присваивается четырехзначный шифр (код). Первое число указывает класс ферментов, второе -- подкласс, третье -- подподкласс, четвертое -- порядковый номер фермента в подподклассе.

Например, алкогольдегидрогеназа (Н.Ф.1.1.1.1): первая цифра -- 1 -- означает класс оксидоредуктаз, вторая цифра -- 1 -- подкласс дегидрогеназ (действует на СН -- ОН-группу доноров), третья цифра -- 1 -- подподкласс анаэробные дегидрогеназы (акцептором служит НАД+ или НАДФ+), четвертая цифра -- 1 -- конкретный фермент алкогольдегидрогеназа.

Или ?-амилаза (Н.Ф.3.2.1.1): первая цифра -- 3 -- класс гидролаз, вторая цифра -- 2 -- подкласс карбогидраз, третья цифра -- 1 -- подподкласс полиаз, четвертая цифра -- 1 -- конкретный фермент ?-амилаза.

Современная международная классификация ферментов делит все ферменты на 6 основных классов:

1 класс -- оксидоредуктазы -- ферменты, катализирующие окислительно-восстановительные реакции (присоединение О2, отнятие и перенос Н2, перенос электронов);

2 класс -- трансферазы -- ферменты переноса. Катализируют перенос целых атомных группировок с одного соединения на другое (например, остатков моносахаридов, аминокислот, остатков фосфорной кислоты, метальных и аминных групп и т.д.);

3 класс -- гидролазы -- ферменты, катализирующие реакции гидролиза, то есть расщепления сложных органических соединений на более простые с участием воды. Эти реакции могут быть выражены следующим уравнением:

RR1 + НОН > R -- OH + R1 -- H;

4 класс -- лиазы -- ферменты, катализирующие реакции негидролитического отщепления каких-либо групп от субстрата с образованием двойной связи или присоединение группировок по месту разрыва двойной связи (например, отщепление Н2О, СО2, NH3 и т.д.);

5 класс -- изомеразы -- ферменты, катализирующие реакции изомеризации, то есть внутримолекулярного переноса химических группировок и образование изомерных форм различных органических соединений;

6 класс -- лигазы (синтетазы) -- ферменты, катализирующие реакции синтеза, сопряженные с разрывом высокоэнергетической связи АТФ и других нуклеозидтрифосфатов (при этом возможно образование С-С-; C-S-; С-О-; и C-N- связей).

В табл. 8.2 представлены шифры, принятые для различных ферментов, их систематические и тривиальные названия. В таблицу включены лишь ферменты, имеющие принципиальное значение при хранении, переработке сырья и в производстве пищевых продуктов. В дальнейшем, везде где это возможно, будут применяться тривиальные названия.

Внимание технологов, перерабатывающих биологическое сырье, привлекают прежде всего ферменты 1-го класса -- оксидоредуктазы, а также 3-го класса -- гидролазы, поскольку при переработке пищевого сырья происходит разрушение клеточной структуры биологического материала, повышается доступ кислорода воздуха к измельченным тканям и создаются

Таблица. 8.2. Номенклатура ферментов, имеющих значение в пищевой промышленности ["Номенклатура ферментов", Рекомендации 1972 г. -- М., 1979 (под ред. акад. А. Е Браунштейна)]

Шифр

Систематическое название

Тривиальное название

Оксидоредуктазы

1.1.3.4

?-D-глюкоза: О2-оксидоредуктаза

Глюкозооксидаза

1.11.1.6

Н2О2: Н2О2-оксидоредуктаза

Катал аза

1.14.18.1

Монофенол, дигидрооксифенилаланин: О2-оксидоредуктаза

Монофенолоксидаза, полифенолоксидаза, тирозиназа, фенолаза

Гидролазы

3.1.1.3

Триацилглицерол -- ацилгидролаза

Липаза, триацилглицероллипаза

3.1.1.11

Пектин-пектилгидролаза

Пектинэстераза

3.2.1.1

1,4-?-О-глюкан глюканогидролаза

?-Амилаза

3.2.1.2

1,4-?-О-глюкан мальтогидролаза

?-Амилаза

3.2.1.3

1 ,4-?-О-глюкан глюкогидролаза

?-Амилаза, глюкоамилаза

3.2.1.4

1 ,4-?-О-глюкан-4-глюкангидролаза

Целлюлаза

3.2.1.15

Поли-?- 1 ,4-галактуронид-гликаногидролаза

Полигалактуроназа

3.2.1.20

?-D-глюкозид глюкогидролаза

?-Гликозидаза

3.2.1.21

D-глюкозид глюкогидролаза

?-Гликозидаза

3.2.1.23

?-D-глюкозид галактогидролаза

Лактаза, ?-галактозидаза

3.4.23.1

--

Пепсин

3.4.23.4

--

Химозин (реннин)

3.4.21.4

--

Трипсин

3.4.21.1

--

Химотрипсин

3.4.22.5

--

Эластаза

3.4.21.1

--

Папаин

3.4.21.6

--

Химопапаин

3.4.22.6

--

Фицин

3.4.22.3

--

Бромелаин

3.4.22.14

--

Субтилизин

3.4.23.6

--

Кислая протеиназа

3.4.24.3

--

Коллагеназа

Изомеразы

5.3.1.9

D-глюкозо-6-фосфат-кетолизомераза

Глюкозоизомераза, глюкозофосфат-изомераза

благоприятные условия для действия ферментов типа оксигеназ, а также высвобождаются гидролитические ферменты, которые активно расщепляют все основные структурные компоненты клетки (белки, липиды, полисахариды), в связи с чем процессы распада клеточного содержимого (процессы автолиза, самопереваривания) становятся преобладающими.

Остановимся на рассмотрении отдельных представителей этих двух важнейших для пищевой промышленности классов ферментов с позиции описания их свойств, активности, механизма реакции и коснемся вопросов практического применения, которые будут рассмотрены более подробно в разделах, посвященных применению ферментов в конкретных пищевых технологиях.

Оксидоредуктазы

Полифенолоксидаза (Н.Ф. 1.14.18.1). Этот фермент известен под различными тривиальными названиями: о-дифенолоксидаза, тирозиназа, фенолаза, катехолаза и др. Фермент может катализировать окисление моно-, ди-, и полифенолов.

Молекула фермента обладает четвертичной структурой и имеет молекулярную массу около 34 000 Да. Полифенолоксидаза -- купропротеид. Содержание меди -- 0,2%, или один атом Си на 1 молекулу фермента. Зона оптимальной активности лежит между рН 5,0 -- 7,0.

В зависимости от того, из какого источника выделен фермент, способность его к окислению различных фенолов различна. Более того, даже в одном и том же объекте Полифенолоксидаза может содержаться в виде различных молекулярных форм, отличающихся по способности к окислению различных фенолов.

С действием этого фермента связано образование темноокрашенных соединений -- меланинов при окислении кислородом воздуха аминокислоты -- тирозина. Потемнение срезов картофеля, яблок, грибов, персиков и других растительных тканей в большей степени или полностью зависит от действия полифенолоксидазы. В пищевой промышленности основной интерес к этому ферменту сосредоточен на предотвращении рассмотренного нами ферментативного потемнения, которое имеет место при сушке плодов и овощей, а также при производстве макаронных изделий из муки с повышенной активностью полифенолоксидазы. Эта цель может быть достигнута путем тепловой инактивации фермента (бланшировка), добавлением ингибиторов (NaHSO3, SO2, NaCl) или связыванием субстрата посредством метилирования.

Положительная роль фермента проявляется при некоторых ферментативных процессах: например, при ферментации чая. Окисление дубильных веществ чая под действием полифенолоксидазы приводит к образованию темноокрашенных и ароматических соединений, которые определяют цвет и аромат черного чая.

Каталаза (Н.Ф. 1.11.1.6). Этот фермент катализирует разложение пероксида водорода в соответствии со следующей реакцией:

Таким образом, фермент окисляет одну молекулу перекиси водорода до кислорода с одновременным восстановлением другой молекулы перекиси водорода до Н2О.

Каталаза относится к группе гемопротеиновых ферментов. Содержит 0,009% железа в виде геминовой группировки или 4 атома на одну молекулу фермента. Молекулярная масса ферментов, выделенных из различных объектов (дрожжей, растительных и животных тканей, микроорганизмов), лежит в пределах от 225 000 до 250 000 Да. Они имеют существенные различия в оптимуме рН (от 2 до 9), в термо- и рН-стабильности. Фермент ингибируется цианидом (обратимо), фенолами (обратимо лишь в слабой форме), щелочью и мочевиной (необратимо). Функцией каталазы в живом организме является защита клетки от губительного действия перекиси водорода.

Хорошим источником для получения промышленных препаратов каталазы являются культуры микроорганизмов и печень крупного рогатого скота.

Каталаза находит свое применение в пищевой промышленности при удалении избытка Н2О2 при обработке молока в сыроделии, где последняя используется в качестве консерванта; а также совместно с глюкозооксидазой применяется для удаления кислорода и следов глюкозы.

Пероксидаза (Н.Ф. 1.11.1.7). Пероксидазы могут быть определены как ферменты, катализирующие следующую реакцию:

Пероксидаза -- двухкомпонентный фермент, представляющий собой сочетание тема и гликопротеида. Показано, что углеводная часть придает белку большую специфичность; предполагают, что углеводы стабилизируют трехмерную структуру фермента.

В настоящее время выделено и охарактеризовано большое число множественных форм фермента и доказано существование изоферментов, то есть тех форм ферментов, которые обусловлены генетически. В связи с этим принято говорить о целой системе пероксидаз, работающих в любом живом организме. Интересным представляется факт широкой субстратной специфичности пероксидаз по отношению к донорам водорода (1 -и субстрат), ими могут служить фенолы, амины, другие органические соединения; и строгой специфичности по отношению к акцептору водорода (2-й субстрат) -- перекиси водорода. Механизм реакции, предположительно, основан на образовании комплексов фермент -- донор и двух одновалентных ступеней окисления, как это отражает следующая схема:

Пероксидаза + Н2О2 = Комплекс I

Комплекс I + АН2 = Комплекс II + АН

Комплекс II + АН = Пероксидаза + А

Изучению пероксидазы были посвящены классические работы Г. Теореля, Б. Чанса, А. Н. Баха, Р. Шода. Наиболее активная Пероксидаза выделена из корней хрена. Ее молекулярная масса равна примерно 40 000 Да, изоэлектрическая точка 7,2. Фермент содержит один атом железа на молекулу. Он достаточно устойчив в растворах при величинах рН от 4 до 12; его термостабильность значительно выше термостабильности каталазы. Оптимум рН для пероксидазы хрена равен 7; при рН от 6 до 8 сохраняется 70% его активности.

Липоксигеназа (Н.Ф.1.13.11.12). Этот фермент катализирует окисление полиненасыщенных высокомолекулярных жирных кислот (линолевой и линоленовой) кислородом воздуха с образованием высокотоксичных гидроперекисей. Ниже приведена реакция, катализируемая этим ферментом:

R ....... СН2-СН=СН-СН2-СН=СН-СН2 ....... СООН

v + О2

R ....... СН2-СН=СН-СН=СН-С(ООН)Н-СН2 ....... СООН

Возможно образование и циклических гидроперекисей по следующей схеме:

Однако основное количество жирных кислот превращаются в гидроперекиси, обладающие сильными окислительными свойствами, и именно на этом основано использование липоксигеназы в пищевой промышленности.

Липоксигеназа впервые была выделена из семян сои в 1928 г. Последующие исследования показали, что липоксигеназа широко распространена и в других растительных объектах: пшенице и других злаках, в семенах масличных и бобовых культур, в картофеле, баклажанах и т. д.

Тем не менее, самым богатым источником фермента является мука соевых бобов. Липоксигеназа, полученная в кристаллическом состоянии из семян сои, имеет молекулярную массу 102 000 Да, изоэлектрическую точку 5,4. Оптимумы рН для ферментов, выделенных из различных объектов, сильно различаются. Оптимум температуры липоксигеназы находится между 20 и 30°С.

В зерне пшеницы активность липоксигеназы колеблется в значительных пределах и является сортовым признаком. Кроме того, активность липоксигеназы связана с показателем жизнеспособности зерна. Она закономерно снижается со снижением всхожести зерна и может быть биохимическим тестом жизнеспособности семян. Значительная часть липоксигеназы пшеницы прочно связана с клейковинными белками и освобождается при обработке клейковинного комплекса раствором восстановленного глутатиона.

Липоксигеназе принадлежит важная роль в процессах созревания пшеничной муки, связанных с улучшением ее хлебопекарных достоинств. Образующиеся под действием фермента продукты окисления жирных кислот способны вызывать сопряженное окисление ряда других компонентов муки (пигментов, SH-групп клейковинных белков, ферментов и др.). При этом происходит осветление муки, укрепление клейковины, снижение активности протеолитических ферментов и другие положительные изменения.

В разных странах разработаны и запатентованы способы улучшения качества хлеба, основанные на использовании препаратов липоксигеназы (главным образом, липоксигеназы соевой муки). Все они требуют очень точного дозирования фермента, так как даже небольшая передозировка приводит к резко отрицательному эффекту и вместо улучшения качества хлеба происходит его ухудшение.

Более мягкий способ воздействия на компоненты муки и теста связан с активацией собственной липоксигеназы муки путем некоторого варьирования технологического процесса. При этом исключается эффект передозировки фермента со всем комплексом нежелательных последствий.

Использование липоксигеназы как улучшителя окислительного действия требует определенной осторожности, так как хорошо известна токсичность переокисленных жиров. Интенсивное окисление липоксигеназой свободных жирных кислот может сопровождаться вторичными процессами образования веществ различной химической природы с неприятным вкусом и запахом, характерным для прогорклого продукта. Технологически приемлема ограниченная степень окисления полиненасыщенных жирных кислот как промежуточного звена преобразования других компонентов биологического материала, не приводящая к накоплению фракции окисленных липидов.

Глюкозооксидаза (Н.Ф. 1.1.3.4). Этот фермент был впервые выделен еще в 1904 г. Н. А. Максимовым из плесневых грибов. Фермент представляет собой флавопротеид, в котором белок соединен с двумя молекулами ФАД. Он окисляет глюкозу с образованием в конечном счете глкжоновой кислоты и обладает практически абсолютной специфичностью по отношению к глюкозе. Суммарное уравнение имеет следующий вид:

Глюкоза + Н2О + О2 = глюконовая кислота + Н2О2

Представленный выше процесс на самом деле протекает в несколько стадий:

1-я стадия:

2-я стадия:

3-я стадия:

Белок-ФАД Н2 + О2 > Белок-ФАД + Н2О2

4-я стадия:

На первом этапе этой реакции происходит отнятие двух атомов водорода у первого углеродного атома глюкозы. При этом образуется восстановленный флавиновый фермент и лактон глюконовой кислоты. Далее восстановленный фермент реагирует с кислородом воздуха, и образуется перекись водорода. Токсичная перекись водорода расщепляется каталазой на кислород и воду, а ?-О-глюконо-б-лактон подвергается спонтанному расщеплению с присоединением воды, в результате чего образуется глюконовая кислота.

Высокоочищенные препараты глюкозооксидазы получают из плесневых грибов рода Aspergillus и Penicillium. Они имеют примерно одинаковую молекулярную массу -- около 150 000 Да, изоэлектрическую точку 4,2 -- 4,3 и оптимум рН 5,6.

В последние годы глюкозооксидаза получила широкое применение. Благодаря исключительной специфичности препараты глюкозооксидазы применяются как аналитическое средство для количественного определения глюкозы.

Кроме этого, препараты глюкозооксидазы нашли применение в пищевой промышленности как для удаления следов глюкозы, так и для удаления следов кислорода. Первое -- необходимо при обработке пищевых продуктов, качество и аромат которых ухудшаются из-за того, что в них содержатся восстанавливающие сахара; например, при получении из яиц сухого яичного порошка. Здесь имеется в виду реакция Майяра, т. к. глюкоза при сушке и хранении яичного порошка, особенно при повышенной температуре, легко вступает в реакцию с аминными группами аминокислот и белков. Порошок темнеет, и образуется ряд веществ с неприятным вкусом и запахом. Второе -- необходимо при обработке продуктов, в которых длительное присутствие небольших количеств кислорода приводит к изменению аромата и цвета (пиво, вино, фруктовые соки, майонез). Внесение пакетиков, содержащих смесь воды, глюкозы, фермента и буфера, способствует удалению кислорода из воздушного пространства. Во всех подобных случаях в ферментную систему включают каталазу, разлагающую Н2О2, которая образуется при реакции глюкозы с кислородом. Этот метод нашел широкое применение в США для удаления кислорода из банок с сухим молочным порошком.

Гидролитические ферменты

Роль ферментов класса гидролаз в пищевых технологиях очень велика. Это находит отражение в специальной литературе, монографиях, технических инструкциях, стандартах. Поэтому в этом разделе остановимся на краткой характеристике наиболее важных представителей гидролитических ферментов. Для технологов наибольший интерес представляют три подкласса ферментов класса гидролаз. Это ферменты, действующие на сложноэфирные связи -- эстеразы (Н.Ф.3.1); действующие на гликозидные соединения -- гликозидазы (Н.Ф.3.2) и действующие на пептидные связи -- протеазы (Н.Ф.3.4).

Эстеразы (Н.Ф.3.1). Этот подкласс включает большое число ферментов (около 150), которые разделены на семь подподклассов: ферменты, действующие на эфиры карбоновых кислот (3.1.1); эстеразы тиоловых эфиров (3.1.2); гидролазы фосфорных моноэфиров или фосфатазы (3.1.3); гидролазы фосфорных диэфиров (3.1.4); гидролазы моноэфиров олигофосфорных кислот (3.1.5); сульфатазы (3.1.6); эстеразы моноэфиров дифосфорных кислот (3.1.7).

Наиболее важными с точки зрения участия в различных биохимических процессах, имеющих место при хранении и переработке пищевого сырья, являются ферменты подподкласса 3.1.1.

Липаза (Н.Ф.3.1.1.3). Липаза или триацилглицероллипаза широко распространена в природе и играет важную роль в процессах, протекающих при переработке и хранении пищевых продуктов. В настоящее время выделены и охарактеризованы липазы растительного происхождения (липаза клещевины, пшеницы и других злаков), животного (панкреатическая липаза, липаза молока) и микробного (бактериальные и грибные липазы).

Обычно липазы катализируют реакцию расщепления триглицеридов согласно приведенному ниже суммарному уравнению:

Причем предпочтительнее гидролизуются связи в положении 3 и 1 и лишь затем в положении 2. Многочисленные экспериментальные данные дают основание предположить следующий путь липолиза:

триглицерид > 1,2-диглицерид > 2-моноглицерид > глицерин

Установлено, что липазы быстрее отщепляют остатки высокомолекулярных жирных кислот, чем низшие карбоновые кислоты. Ферментативный гидролиз липидов имеет существенное отличие от других гидролитических реакций. Парадокс заключается в том, что липаза -- водорастворимый фермент, а ее субстрат гидрофобен; однако активность липазы возрастает на границе "вода -- липид". Этот феномен известен под названием "межфазная активация".

Липазы различного происхождения сильно отличаются друг от друга по специфичности действия, сродству к различным субстратам, растворимости, оптимуму рН и другим свойствам. Так, например, липаза семян клещевины нерастворима в воде, имеет оптимум рН 4,7 -- 5,0; панкреатическая липаза растворима, и оптимум рН ее действия лежит в слабощелочной среде. Липазы микробного происхождения и липаза пшеничных зародышей также отличаются от липазы клещевины. Они растворимы в воде и имеют рН оптимум при 8,0. Липаза молока, молекулярная масса которой примерно 7000 Да, имеет оптимум рН 9,0 -- 9,2 при гидролизе молочного жира.

Зерновая липаза участвует в процессе порчи зерновых продуктов при хранении. Особенно это касается продуктов, содержащих повышенное количество жира, например, овсяной муки или крупы, пшена. Накопление свободных жирных кислот под действием липазы (рост кислотного числа жира) -- признак ухудшения качества продукта. Свободные жирные кислоты, особенно ненасыщенные, легко подвергаются окислению под воздействием разных факторов: липоксигеназы, тепловой обработки, кислорода воздуха, солнечного света и др. Таким образом, липазы могут инициировать процесс прогоркания и ограничивать сроки хранения пищевых продуктов.

Одна из особенностей липаз связана с тем, что эти ферменты способны катализировать и обратную реакцию, осуществлять синтез сложных эфиров, а также производить переэтерефикацию триглицеридов, т. е. изменять их жирнокислотный состав. На этом основании разрабатываются способы получения новых форм жировых продуктов с использованием специфических липаз. Так, например, путем реакции переэтерифи-кации делаются попытки получения жира -- аналога масла какао из дешевого исходного сырья.

Пектинэстераза (Н.Ф.3.1.1.11). Пектинэстеразы синтезируются высшими растениями, микроскопическими грибами, дрожжами и бактериями. Пектинэстераза катализирует гидролиз сложноэфирных связей в молекуле растворимого пектина, в результате чего образуется метиловый спирт и полигалактуроновая кислота. Процесс протекает согласно следующей схеме (стрелками показано действие фермента):

Таким образом, пектинэстераза отщепляет метоксильные группы от метоксилированной полигалактуроновой кислоты (см. также гл. Углеводы).

Желирующая способность пектина зависит от степени метоксилирования или степени этерификации, поэтому действие пектинэстеразы по отщеплению метоксильных групп приводит к снижению желирующей способности и сопровождается падением вязкости. На этом, очевидно, и основывается применение этого фермента для осветления плодовых соков и вина. Обычно комплексные препараты пектолитических ферментов, применяемые для этих целей, получают из различных плесневых грибов, и прежде всего из A. niger.

Гидролазы гликозидов или гликозидазы (Н.Ф.3.2). Этот подкласс включает около ста ферментов с разной специфичностью действия, осуществяющих гидролиз олиго- и полисахаридов; некоторые ферменты этого типа способны осуществлять трансферазные реакции -- переносить гликозидные остатки на олиго- и полисахариды, наращивать полисахаридные цепочки. Представители гликозидаз были одними из первых ферментов, обратимость действия которых in vitro была экспериментально доказана.

Основной формой запасных углеводов в семенах и клубнях растений является крахмал. Ферментативные превращения крахмала лежат в основе многих пищевых технологий. Поэтому ферменты амилолитического комплекса растительного, животного и микробного происхождения интенсивно изучаются со времени их открытия Кирхгофом в 1814 г. и до настоящего времени.

?-Амилаза (Н.Ф.3.2.1.1). ?-Амилазы обнаружены у животных (в слюне и поджелудочной железе), в растениях (проросшее зерно пшеницы, ржи, ячменя), они вырабатываются плесневыми грибами и бактериями. Все эти ферменты гидролизуют крахмал, гликоген и родственные ?-1,4-глюканы с образованием, главным образом, декстринов и небольшого количества дисахарида -- мальтозы.

?-Амилазы гидролизуют ?-1,4-связи внутри молекулы крахмала, разрывая связь между первым углеродным атомом и кислородом, связывающим этот углерод с соседней молекулой глюкозы. Это наглядно демонстрирует следующая схема (стрелками показано действие фермента):

Скорость, с которой ?-амилазы гидролизуют глюканы различной степени полимеризации, быстро уменьшается по мере ее снижения. Амилоза -- линейная фракция крахмала, гидролизуется быстрее, чем амилопектин, имеющий разветвленную структуру.

Скорость гидролиза ?-амилазой зависит от вида и состояния крахмала (нативный или клейстеризованный крахмал), а также от эффективности самих амилаз. На основании параллельно проводившихся опытов (в одних -- действовали препаратами амилаз на клейстеризованный крахмал, а в других -- эквивалентными концентрациями на нативные крахмальные зерна) было показано, что эффективность амилаз различного происхождения уменьшается в следующем порядке: панкреатическая, солодовая, бактериальная, грибная.

Характерной особенностью всех ?-амилаз является наличие одного атома Са на молекулу фермента. Роль кальция состоит в том, что он стабилизирует вторичную и третичную структуру молекулы ?-амилазы, обеспечивая таким образом ее каталитическую активность и вместе с тем предохраняя фермент от действия протеолитических ферментов и тепловой денатурации.

Различные ?-амилазы отличаются по молекулярной массе, устойчивости к нагреванию и некоторым другим показателям. Молекулярная масса ?-амилаз близка к 50 000 Да, за исключением бактериальной ?-амилазы, которая имеет молекулярную массу 96 900 Да (кристаллический препарат). Так, например, широко применяемая в промышленности ?-амилаза из плесневого гриба A. oryzae, полученная в кристаллическом виде, имеет молекулярную массу 51 860 Да.

Большое практическое значение имеет влияние температуры и рН на стабильность амилаз. Быстрое разрушение зерновой ?-амилазы при рН 3,3 -- 4,0, например, дает возможность выпекать ржаной хлеб из муки, которая содержит избыток ?-амилазы, при низких значениях рН, чтобы предотвратить излишнее декстринирование крахмала и образование клейких веществ в мякише хлеба.

Говоря о термостабильности ?-амилаз различного происхождения, можно расположить их в следующем ряду по мере снижения устойчивости к нагреванию: бактериальные амилазы -- зерновые амилазы -- грибные амилазы.

Последними работами в области изучения амилаз показано, что в семенах растений присутствуют два типа ?-амилазы: ?-амилаза созревания и ?-амилаза прорастания.

В созревающем зерне синтезируется ?-амилаза созревания, которая затем переходит в латентную форму, локализуясь на мембранах алейронового слоя. Первый этап гидролиза крахмала при прорастании осуществляется этой ?-амилазой. И только на следующем этапе в работу включается вновь синтезируемый фермент -- ?-амилаза прорастания. Ее синтез в клетках зародыша и алейронового слоя начинается при влажности зерна выше 28%. Две формы ?-амилазы семян злаков различаются по термостабильности: ?-амилаза созревания при 70°С теряет 50% своей активности, тогда как ?-амилаза прорастания при этой температуре только незначительно снижает свою активность.

Интенсивность гидролиза крахмала в перерабатываемом сырье, как уже отмечалось ранее, определяется взаимодействием многих факторов. Это прежде всего состояние амилаз созревшего зерна и возможность перехода части латентной формы в свободное состояние. Это и состояние субстрата, его доступность действию фермента (атакуемость субстрата). Большое значение имеет и фракционный состав крахмальных гранул, соотношение мелких и крупных зерен, а также содержание поврежденных зерен крахмала, которые легче поддаются действию ферментов.

Как было установлено в последнее время, важная роль в этом процессе принадлежит протеолитическим ферментам. Протеазы, осуществляя ограниченное расщепление белков, способствуют освобождению амилаз из связанного состояния, а также гидролизуют ту часть запасных белков, которая прочно связана с поверхностью крахмальных гранул, облегчая тем самым доступ фермента к субстрату.

Мощным механизмом регуляции скорости расщепления крахмальных гранул является система белковых ингибиторов амилаз, широко представленных в растениях. Ингибиторы белковой природы избирательно взаимодействуют с амилазами и образуют неактивные комплексы "амилаза -- ингибитор". Высокой активностью обладают ингибиторы амилаз картофельного сока. Из зерна пшеницы выделен ингибитор с двумя активными центрами (двухцентровой). Один активный центр имеет сродство к протеазам и способен блокировать их действие. Другой активный центр имеет сродство к амилазам. Таким образом, один ингибитор белковой природы способен блокировать работу как протеаз, так и амилаз. В образующемся надмолекулярном комплексе ингибитор выполняет своеобразную роль связывающего звена, подавляя активность ферментов разного механизма действия.


Подобные документы

  • Изучение химического состава пищевых продуктов, его полноценности и безопасности. Изменения основных пищевых веществ при технологической обработке. Концепция рационального и здорового питания. Применение полимерных материалов в пищевой промышленности.

    курс лекций [1,8 M], добавлен 19.09.2014

  • Общие сведения о пищевых добавках. Классификация веществ, добавляемых к продуктам. Технологические функции добавок. Причины их использования. Цифровая кодификация пищевых добавок. Генетически модифицированные источники. Биологически активные добавки.

    реферат [37,4 K], добавлен 05.06.2008

  • Особенности применения и классификация биологически активных добавок: способствующие снижению аппетита, содержащие пищевые волокна, снижающие аппетит, обладающие тонизирующим действием, витаминно-минеральные комплексы, мочегонные и послабляющие БАДы.

    реферат [1,3 M], добавлен 11.10.2011

  • Загрязнение пищевых продуктов тяжелыми металлами. Токсическое действие соединений мышьяка. Методы идентификации и количественного определения йода в продуктах, продовольственном сырье и биологически активных добавках. Определение кислотности молока.

    курсовая работа [160,7 K], добавлен 04.01.2013

  • Органическая химия и медицина. Какие бывают лекарства и почему они лечат. Полимеры в медицине. Применение различных полимерных материалов в сельском хозяйстве. Органическая химия и ее применение в пищевой промышленности. Добавки в продукты питания.

    доклад [19,4 K], добавлен 13.01.2010

  • Основные химические вещества: белки, липиды, углеводы, витамины, минеральные вещества и пищевые добавки. Основные химические процессы, происходящие при тепловой кулинарной обработке. Потери при тушении, запекании, припускании и пассеровании продуктов.

    курсовая работа [119,9 K], добавлен 07.12.2010

  • Содержание пищевых кислот в продуктах питания и методы их определения. Характеристика некоторых из пищевых кислот. Обоснование титрования, определения и расчета количества аскорбиновой кислоты, динамика изменения её содержания при термообработке.

    дипломная работа [1,3 M], добавлен 03.07.2015

  • Знакомство с основными химическими элементами, представленными в периодической системе Д. Менделеева. Рассмотрение классификации биогенных элементов. Микроэлементы как биологически активные атомы центров ферментов. Характеристика свойств s-элементов.

    презентация [4,5 M], добавлен 00.00.0000

  • Рассмотрение ртути как химического элемента. Механизм попадания ртути в пищевые продукты. Предельно допустимые концентрации ртути в продуктах питания. Характеристика инверсионно-вольтамперометрического метода. Определение концентрации ртути в рыбе.

    курсовая работа [64,0 K], добавлен 06.05.2019

  • Физические и химические свойства диацетила, его влияние на организм человека, причины образования в продуктах питания. Химический состав вина, анализ его качества. Метрологическая оценка показателей качества разработанной методики определение диацетила.

    дипломная работа [831,0 K], добавлен 25.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.