Физическая химия
Изменение энтропии в химических и фазовых переходах. Простые и сложные вещества. Скорость химической реакции. Смещение химического равновесия, принцип Ле Шателье. Модель атома Томсона. Классификация элементарных частиц. Двойственная природа электрона.
Рубрика | Химия |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 12.01.2012 |
Размер файла | 364,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Предмет и задачи химии. Место химии среди естественных наук
Химия -- наука о строении, свойствах веществ, их превращениях и сопровождающих явлениях. В зависимости от атомарной природы изучаемого вещества, типов химических связей между атомами различают неорганическую, органическую и элементоорганическую химии. Объектом неорганической химии являются все химические элементы и их соединения, другие вещества на их основе. Органическая химия изучает свойства обширного класса соединений, образованных посредством химических связей углерода с углеродом. Химия является общетеоретической дисциплиной. Она призвана дать студентам современное научное представление о веществе как одном из видов движущейся материи, о путях, механизмах и способах превращения одних веществ в другие. Знание основных химических законов, владение техникой химических расчетов, понимание возможностей, предоставляемых химией с помощью других специалистов, работающих в отдельных и узких ее областях, значительно ускоряют получение нужного результата в различных сферах инженерной и научной деятельности.
Предмет, задачи, значение предмета химия
Химия изучает свойства, состав, строение и процессы превращения веществ. впервые определения химии как науки дал м. в. ломоносов: «химическая наука рассматривает свойства и изменения тел... должна исследовать состав тел, объяснить причину того, что с веществами при химическом превращениях происходит» . задачи определённые ломоносовым очень близки к современным.
Химия тесно связана с физикой. «и эти две науки, - писал ломоносов,- так соединены между собой, что одна без другой в совершенстве быть не могут». химия также соприкасается также и с другими естественными науками из задач химии вытекает её значение. «широко распростирает химия руки свои в дела человеческие. куда не посмотрим , куда не оглянемся - везде перед очами нашими успехи её применения», - указывал ломоносов ещё в 1751г. в настоящие время невозможно представить себе жизнь без химии. современная химия приникла во все области народного хозяйства . химическая промышленность выпускает продукты, которые являются предметом потребления человека: синтетический каучук, пластические массы, искусственное волокно, искусственное топливо, красители, лекарственные вещества и многое другое. в сельском хозяйстве широко применяются минеральные удобрения и химические средства защиты растений.
Атомно-молекулярное учение помогает составить правильное понимание о природе веществ и их превращениях. оно лежит в основе всех законов химии.
Ломоносов создал стройное атомно-молекулярное учение и впервые применил его в химии. основные положения атомно-молекулярного учения м.в. ломоносова изложены в работе «элементы математической химии»(1741г.) сущность атомо-молекулярного учения сводиться к следующему:
1. все вещества состоят из «корпускул» (так ломоносов называл молекулы). между которыми имеются промежутки.
2. молекулы находятся в непрерывном движении.
3. молекулы состоят из «элементов» (так ломоносов называл атомы).атомы, как и молекулы находятся в непрерывном движении.
4. атомы характеризуются определенной массой и размерами.
5. молекулы простых веществ из одинаковых атомов, а молекулы сложных - из различных атомов.
Через 67 лет после ломоносова атомистическое учение в химии применил английский ученый дальтон. в своей основе учение дальтона повторяет учение ломоносова. вместе с тем оно развивает его дальше, поскольку дальтон впервые попытался установить атомные веса известных тогда элементов. однако дальтон отрицал существование молекул у простых веществ, что по сравнению с учением ломоносова является шагом назад. по дальтону, простые вещества состоят только из атомов, и лишь сложные веществами - из «сложных атомов» (молекул).
Атомно-молекулярное учение в химии окончательно утвердилось лишь в середине xix в. на международном съезде химиков в карлсруе в 1986 г. были приняты определения молекулы и атома.
Молекула - это наименьшая частица данного вещества, обладающая его химическими свойствами. химические свойства молекулы её составм и химическим строением.
Атом - наименьшая частица, входящая в состав простых и сложных веществ. химические свойства атома определяются его строением . атом - это электронетральная частица , состоящего из положительно заряженного ядра и одного или нескольких электронов.
По современным представлениям из молекул состоят лишь вещества молекулярного строения (многие неметаллы , вода, органические соединения с неионными связями).вещества немолекулярного строения состоят не из молекул, а из других химических частиц, химически связанные друг с другом (алмаз, кремний, соли).у веществ молекулярного строения химическая связь между молекулами слабая, поэтому они имеют сравнительно низкие температуры плавления и кипения. у веществ немолекулярного строения химическая связь между частицами весьма прочная, поэтому эти вещества имеют высокие температура плавления и кипения.
2. Простые и сложные вещества
Среди чистых веществ принято различать простые (состоящие из одного химического элемента) и сложные (образованы несколькими химическими элементами) вещества.
Простые вещества следует отличать от понятий «атом» и «химический элемент».
Химический элемент -- это вид атомов с определённым положительным зарядом ядра. Все химические элементы указаны в Периодической системе элементов Д. И. Менделеева; каждому элементу отвечает свой порядковый (атомный) номер в Периодической системе. Значение порядкового номера элемента и значение заряда ядра атома того же элемента совпадают, то есть химический элемент -- это совокупность атомов с одинаковым порядковым номером.
Простые вещества представляют собой формы существования химических элементов в свободном виде; каждому элементу соответствует, как правило, несколько простых веществ (аллотропных форм), которые могут различаться по составу, например атомный кислород O, кислород O2 и озон O3, или по кристаллической решетке, например алмаз и графит для элемента углерод C. Очевидно, что простые вещества могут быть одно- и многоатомными.
Сложные вещества иначе называются химическими соединениями. Этот термин означает, что вещества могут быть получены с помощью химических реакций соединения из простых веществ (химического синтеза) или разделены на элементы в свободном виде (простые вещества) с помощью химических реакций разложения (химического анализа).
Простые вещества представляют собой конечные формы химического разложения сложных веществ. Сложные вещества, образующиеся из простых веществ, не сохраняют химические свойства составляющих веществ.
Суммируя всё сказанное выше, можно записать
Где E -- простые вещества (элементы в свободном виде),
C -- сложные вещества (химические соединения),
S -- синтез,
A -- анализ.
В настоящее время понятия «синтез» и «анализ» химических веществ используются в более широком смысле. К синтезу относят любой химический процесс, который приводит к получению необходимого вещества и при этом существует возможность его выделения из реакционной смеси. Анализом считается любой химический процесс, позволяющий определить качественный и количественный состав вещества или смеси веществ, то есть установить, из каких элементов составлено данное вещество и каково содержание каждого элемента в этом веществе. Соответственно различают качественный и количественный анализ -- две составные части одной из химических наук -- аналитической химии.
Органические вещества в своем составе наряду с другими элементами всегда содержат углерод. Изучение соединений углерода - их строения, химических превращений - и составляет предмет органической химии.
Вещества органические и неорганические.
Наряду с углеродом в состав органических веществ чаще всего входят водород, кислород и азот, сравнительно реже - сера, фосфор, галогены и другие элементы. Известно несколько миллионов органических соединений, неорганических же веществ значительно меньше. Из всех химических элементов только углерод образует такое большое число органических соединений.
С органическими веществами мы встречаемся на каждом шагу. Они содержатся во всех растительных и животных организмах, входят в состав нашей пищи, служат материалом для изготовления одежды, образуют различные виды топлива, используются нами в качестве лекарств, красителей, средств защиты урожая и т. д.
Резкой грани между органическими и неорганическими веществами не существует. Оксиды углерода, угольная кислота, ее соли и некоторые другие вещества по наличию в них углерода должны считаться органическими, но по свойствам они близки к неорганическим соединениям подобного типа и изучаются обычно в неорганической химии.
С органическими веществами человек знаком с давних времен. Наши далекие предки применяли природные красители для окраски тканей, использовали в качестве продуктов питания растительные масла, животные жиры, тростниковый сахар, получали уксус брожением спиртовых жидкостей.
В настоящее время синтезированы многие органические вещества, не только имеющиеся в природе, но и не встречающиеся в ней: многочисленные пластмассы, различные виды каучуков, всевозможные красители, взрывчатые вещества, лекарственные препараты.
Синтетически полученных веществ сейчас известно даже больше, чем найденных в природе, и число их быстро растет. Осуществляются синтезы самых сложных органических веществ - белков.
Название науки «органическая химия», утратив первоначальный смысл, приобрело в связи с этим более широкое толкование.
Можно сказать, что такое название получило и новое подтверждение, так как ведущей познавательной задачей современной органической химии является глубокое изучение процессов, происходящих в клетках организмов на молекулярном уровне, выяснение тех тонких механизмов, которые составляют материальную основу явлений жизни.
Изучение химии органических веществ, таким образом, расширяет наши знания о природе.
Неорганическое вещество это химическое вещество, химическое соединение, которое не является органическим, то есть оно не содержит углерода. Неорганические соединения не имеют характерного для органических углеродного скелета. К числу неорганических соединений принадлежат соединения всех элементов, за исключением большинства соединений углерода, являющихся объектом изучения органической химии. Неорганическая химия тесно связана с геохимией, минералогией, петрографией, а также с материаловедением и нанохимией, обеспечивая разработку и создание новых неорганических материалов для новейшей техники. Число известных на сегодняшний день неорганических веществ приближается к 400 тысячам. .Теоретическим фундаментом химии, в том числе неорганической, является периодический закон Д.И. Менделеева. Важнейшая задача неорганической химии состоит в разработке и создании новых веществ с заданными функциональными свойствами. К их числу относятся не только индивидуальные вещества, но и материалы на их основе.
Классификация
Все неорганические соединения делятся на две большие группы:
Простые вещества -- состоят из атомов одного элемента;
Сложные вещества -- состоят из атомов двух или более элементов.
Простые вещества по химическим свойствам делятся на:
металлы;
неметаллы;
амфотерные простые вещества;
благородные газы.
Сложные вещества по химическим свойствам делятся на:
оксиды:
основные оксиды;
кислотные оксиды;
амфотерные оксиды;
двойные оксиды;
несолеобразующие оксиды;
гидроксиды;
основания2 и др.);
кислоты;
амфотерные гидроксиды2, Al3 и др.);
соли:
средние соли2 и др.);
кислые соли;
основные соли2 и др.);
двойные и/или комплексные соли2, K3, KFe и др.);
бинарные соединения:
бескислородные кислоты;
бескислородные соли;
прочие бинарные соединения.
3. Моль - одно из важнейших понятий в химии, - это, своего рода, звено для перехода из микромира атомов и молекул в обычный макромир граммов и килограммов.В химии часто приходится считать большие количества атомов и молекул. Для быстрого и эффективного подсчета принято пользоваться методом взвешивания. Но при этом надо знать, вес отдельных атомов и молекул. Для того, чтобы узнать молекулярную массу надо сложить массу всех атомов, входящих в соединение. Моль (обозначение: моль, международное: mol) -- единица измерения количества вещества. Соответствует количеству вещества, в котором содержится NA частиц (молекул, атомов, ионов, или любых других тождественных структурных частиц).[1] NA это постоянная Авогадро, равная количеству атомов в 12 граммах нуклида углерода 12C. Таким образом, количество частиц в одном моле любого вещества постоянно и равно числу Авогадро NA.NA = 6,02214179(30)Ч1023.Иначе говоря, моль -- это количество вещества, масса которого, выраженная в граммах, численно равняется его массе в атомных единицах массы. Иногда моль молекул, атомов или ионов называют, соответственно, грамм-молекулой, грамм-атомом и грамм-ионом.
Молярная масса вещества -- масса одного моля вещества. Для отдельных химических элементов молярной массой является масса одного моля отдельных атомов этого элемента. В этом случае молярная масса элемента, выраженная в г/моль, численно совпадает с массой атома элемента, выраженной в а.е.м.. Однако надо чётко представлять разницу между молярной массой и молекулярной массой, понимая, что они равны лишь численно и отличаются по размерности.
Молярные массы сложных молекул можно определить, суммируя молярные массы входящих в них элементов.
Например, молярная масса воды есть
MH2O = 2 MH +MO = 2·1+16 = 18
Эквивалент вещества или Эквивалент -- это реальная или условная частица, которая может присоединять, высвобождать или другим способом быть эквивалентна катиону водорода в ионообменных реакциях или электрону в окислительно-восстановительных реакциях[1][2].
Например, в реакции:
NaOH + HCl = NaCl + H2O
эквивалентом будет реальная частица -- ион Na+, в реакции
Zn(OH)2 + 2HCl = ZnCl2 + 2H2O
эквивалентом будет являться мнимая частица ЅZn(OH)2.
Под эквивалентом вещества также часто подразумевается количество эквивалентов вещества или эквивалентное количество вещества -- число моль вещества эквивалентное одному моль катионов водорода в рассматриваемой реакции.
Введение в химию понятия "эквивалент" позволило сформулировать закон эквивалентов: "Вещества вступают в реакцию в количествах, пропорциональных их эквивалентам".
При решении некоторых задач удобно пользоваться другой формулировкой закона: массы реагирующих веществ пропорциональны их эквивалентным массам.
Для определения эквивалентной массы элемента необходимо знать состав его соединения с другим элементом, эквивалентная масса которых известна.
Если один элемент образует с другим элементом несколько соединений, то его эквивалентная масса в этих соединениях неодинакова. Например, сера с кислородом образует диоксид серы (SO2) и триоксид серы (SO3). В первом соединении на 8 единиц массы кислорода приходится 8 единиц массы серы. В триоксиде серы на 8 единиц массы кислорода приходится 5,3 единицы массы серы. Следовательно, в диоксиде серы ее эквивалент равен 1/4 моля, а в триоксиде 1/6 моля.
4. Химическая система
Характер любой системы, как известно, зависит не только от состава и строения ее элементов, но и от их взаимодействия. Именно такое взаимодействие определяет специфические, целостные свойства самой системы. Поэтому при исследовании разнообразных веществ и их реакционной способности ученым приходилось заниматься и изучением их структур. Соответственно уровню достигнутых знаний менялись и представления о химической структуре веществ. Хотя разные ученые по-разному истолковывали характер взаимодействия между элементами химических систем, тем не менее все они подчеркивали, что целостные свойства этих систем определяются именно специфическими особенностями взаимодействия между их элементами.
В качестве первичной химической системы рассматривалась при этом молекула и поэтому, когда речь заходила о структуре веществ, то имелась в виду именно структура молекулы как наименьшей единицы вещества. Сами представления о структуре молекулы постепенно совершенствовались, уточнялись и конкретизировались, начиная от весьма общих предположений отвлеченного характера и кончая гипотезами, обоснованными с помощью систематических химических экспериментов. Если, например, по мнению известного шведского химика Йенса Берцелиуса (1779-1848) структура молекулы возникает благодаря взаимодействию разноименно заряженных атомов или атомных групп, то французский химик Шарль Жерар (1816-1856) справедливо указывал на весьма ограниченный характер такого представления. В противовес этому он подчеркивал, что при образовании структур различные атомы не просто взаимодействуют, но известным образом преобразуют друг друга, так что в результате возникает определенная целостность или, как мы сказали бы теперь, система. Однако эти общие и в целом правильные представления не содержали практических указаний, как применить их для синтеза новых химических соединений и получения веществ с заранее заданными свойствами.
Такую попытку раскрытия структуры молекул и синтезирования новых веществ предпринял известный немецкий химик Фридрих Кекуле (1829-1896). Он стал связывать структуру с понятием валентности элемента или числа единиц сродства. На этой основе возникли структурные формулы, в которых элементы связывались друг с другом по числу единиц сродства или валентности. Комбинируя атомы различных химических элементов по их валентности, можно прогнозировать получение различных химических соединений в зависимости от исходных реагентов. Таким путем можно было управлять процессом синтеза различных веществ с заданными свойствами, а именно это составляет важнейшую задачу химической науки.
Дальнейший шаг эволюции понятия химической системы связан с теорией химического строения Александра Михайловича Бутлерова (1828-1886), который, хотя и признавал, что образование новых молекул из атомов происходит за счет их химического сходства, но обращал особое внимание на степень напряжения или энергии, с которой они связываются друг с другом. Именно поэтому новые идеи А.М. Бутлерова нашли не только широкое применение в практике химического синтеза, но и получили свое обоснование в квантовой механике.
ТЕПЛОВОЙ ЭФФЕКТ РЕАКЦИИ -теплота, выделенная или поглощенная термодинамич. системой при протекании в ней хим. р-ции. Определяется при условии, что система не совершает никакой работы (кроме возможной работы расширения), а т-ры реагентов и продуктов равны. Поскольку теплота не является ф-цией состояния, т. е. при переходе между состояниями зависит от пути перехода, то в общем случае Т. э. р. не может служить характеристикой конкретной р-ции. В двух случаях бесконечно малое кол-во теплоты (элементарная теплота) dQ совпадает с полным дифференциалом ф-ции состояния: при постоянстве объема dQ = = dU(U-внутр. энергия системы), а при постоянстве давления dQ = dH(H-энтальпия системы).
Термохимические уравнения включают в себя кроме химических формул тепловой эффект реакции. Числовое значение в уравнении реакции строго соответствует количествам веществ, участников реакции, т.е. коэффициентам. Благодаря этому соответствию, можно установить пропорциональные отношения между количеством вещества или массой и количеством теплоты в этой реакции.
Например: Термохимическое уравнение разложения малахита
(CuOH)2 CO3 = 2CuO + H 2 O + CO 2 - 47 кДж
Мы видим, что на разложение 1 моля малахита необходимо израсходовать 47 кДж, при этом образуется 2 моля оксида меди, 1 моль воды и 1 моль углекислого газа. Если мы затратим энергии в 2 раза больше, мы сумеем разложить 2 моля малахита, при этом получим 4 моля оксида меди, 2 моля воды и 2 моля углекислого газа.
химический реакция элементарный атом
5. Каждое вещество, точнее химическая термодинамическая система при постоянных физических условиях (давление p, температура T) обладает определенным запасом энергии, называемым внутренней энергией (обозначение U). Внутренняя энергия системы, содержащей только это вещество, представляет собой энергию хаотического (теплового) движения всех микрочастиц вещества и энергию взаимодействия этих частиц, но не включает кинетическую энергию движения системы как целого и ее потенциальную энергию во внешних силовых полях.
Внутренняя энергия - это функция состояния системы и ее не следует путать с параметрами (физическими условиями) существования вещества - температурой и давлением (или объем V). Значения p, T и V доступны для непосредственного измерения, а определить запас внутренней энергии вещества невозможно. Для химии интерес представляет не само абсолютное значение внутренней энергии, а изменение внутренней энергии ДU, вызванное изменением состояния вещества, происходящим при химических процессах. Таким образом, величина ДU есть результат протекания в системе любого процесса.
Изменение внутренней энергии веществ, участвующих в реакции, при постоянном объеме принято кратко называть внутренней энергией реакции. Поскольку все химические реакции сопровождаются перераспределением (обменом) внутренней энергии, сумма внутренней энергии продуктов отличается от суммы внутренней энергии реагентов на значение внутренней энергии реакции
ДU = ?Uпродуктов - ?Uреагентов
Единицей внутренней энергии, как и энергии вообще, в СИ является джоуль (обозначение Дж). В химической практике, где расчеты ведут на молярные количества реагентов и продуктов, более удобна кратная единица - килоджоуль (кДж). Ранее использовалась и до сих пор еще встречается внесистемная единица энергии - термохимическая калория (обозначение калтх); эта единица при меняется в основном для выражения количества теплоты. Соотношение между этими единицами таково
1 калтх = 4,1840 Дж (точно)
Изменение ДU в каком - либо процессе представляет собой разность количества теплоты Q, которой химическая реакция обменивается с окружающий средой при теплопередаче, и совершенной работы A
ДU = Q - A
Энтальпимя, также тепловая функция и теплосодержание -- термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц.
Проще говоря, энтальпия - это та энергия, которая доступна для преобразования в теплоту при определенных температуре и давлении.
Если термомеханическую систему рассматривать как состоящую из макротела (газа) и поршня с грузом весом Р = p S, уравновешивающего давление газа р внутри сосуда, то такая система называется расширенной.
Энтальпия или энергия расширенной системы Е равна сумме внутренней энергии газа U и потенциальной энергии поршня с грузом
Eпот = pSx = pV
H = E = U + pV
1-й закон -- первое начало термодинамики. Представляет собой формулировку обобщённого закона сохранения энергии для термодинамических процессов. В наиболее простой форме его можно записать как дQ = дA + dU, где dU есть полный дифференциал внутренней энергии системы, а дQ и дA есть элементарное количество теплоты, переданное системе, и элементарная работа, совершенная системой соответственно.
Нужно учитывать, что дA и дQ нельзя считать дифференциалами в обычном смысле этого понятия, поскольку эти величины существенно зависят от типа процесса, в результате которого состояние системы изменилось.
6. Энтальпия образования (enthalpy of formation) является основным свойством, используемым при решении многих теоретических и практических задач. Знание энтальпий образования реагентов позволяет вычислить тепловые эффекты интересующих реакций, что необходимо при оценке адиабатического перепада температур в зоне реакции, формировании требований к конструкции реактора и технологическим особенностям химического процесса. Энтальпии образования веществ необходимы при выполнении количественного термодинамического анализа процессов, определении теоретической степени конверсии реагентов, выборе условий проведения химического превращения и т.п. Качество выполненного термодинамического анализа во многом зависит от надежности сведений по энтальпиям образования веществ.
Единицами измерения энтальпии являются кДж/моль и Дж/моль. В справочной литературе прежних лет энтальпии образования часто представлены в ккал/моль (1 кал = 4,184 Дж, 1 ккал = 4,184 кДж).
Закон Гесса Закон Гесса -- основной закон термохимии, который формулируется следующим образом:
Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.
Иными словами, количество теплоты, выделяющееся или поглощающееся при каком-либо процессе, всегда одно и то же, независимо от того, протекает ли данное химическое превращение в одну или в несколько стадий. Например, окисление глюкозы в организме осуществляется по очень сложному многостадийному механизму, однако суммарный тепловой эффект всех стадий данного процесса равен теплоте сгорания глюкозы.
На рисунке приведено схематическое изображение некоторого обобщенного химического процесса превращения исходных веществ А1, А2… в продукты реакции В1, В2…, который может быть осуществлен различными путями в одну, две или три стадии, каждая из которых сопровождается тепловым эффектом ДHi. Согласно закону Гесса, тепловые эффекты всех этих реакций связаны следующим соотношением:
ДH1 = ДH2 + ДH3 = ДH4 + ДH5 + ДH6
Закон открыт русским химиком Г.И. Гессом в 1840 г.; он является частным случаем первого начала термодинамики применительно к химическим реакциям. Практическое значение закона Гесса состоит в том, что он позволяет рассчитывать тепловые эффекты самых разнообразных химических процессов; для этого обычно используют ряд следствий из него.
7. Энтропия. Изменение энтропии в химических и фазовых переходах
Состояние любой системы может быть охарактеризовано значениями непосредственно измеряемых параметров (р, Т и др.). Это характеристика макросостояния системы. Состояние системы может быть описано также характеристиками каждой частицы системы (атома, молекулы): координаты, частота колебания, частота вращения и т.д. Это характеристика микросостояния системы. Системы состоят из очень большого числа частиц, поэтому одному макросостоянию будет отвечать огромное число различных микросостояний. Это число называется термодинамической вероятностью состояния и обозначается (W). Термодинамическая вероятность связана с другим свойством вещества - энтропией (S) - формулой Больцмана.
где R - универсальная газовая постоянная, а NA - постоянная Авогадро. Измеряется энтропия в Дж/(моль.К).
Физический смысл: энтропия является мерой неупорядоченности состояния системы. Энтропия системы увеличивается во всех процессах, когда возрастает неупорядоченность (нагревание, растворение, испарение, реакции разложения и т.п.) и уменьшается в процессах, идущих с увеличением упорядоченности (охлаждение, кристаллизация, сжатие и т.п.).
Энтропия является функцией состояния, но в отличие от большинства других термодинамических функций возможно экспериментальное определение абсолютного значения энтропии вещества. Эта возможность основана на постулате М.Планка, согласно которому «при абсолютном нуле энтропия идеального кристалла равна нулю» (третий закон термодинамики).
8. Свободная энергия Гиббса (или просто энергия Гиббса, или потенциал Гиббса, или термодинамический потенциал в узком смысле) -- это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на принципиальную возможность протекания химической реакции; это термодинамический потенциал следующего вида
Энергию Гиббса можно понимать как полную химическую энергию системы (кристалла, жидкости и т. д.)
Понятие энергии Гиббса широко используется в термодинамике и химии.
Самопроизвольное протекание изобарно-изотермического процесса определяется двумя факторами: энтальпийным, связанным с уменьшением энтальпии системы (ДH), и энтропийным T ДS, обусловленным увеличением беспорядка в системе вследствие роста ее энтропии. Разность этих термодинамических факторов является функцией состояния системы, называемой изобарно-изотермическим потенциалом или свободной энергией Гиббса (G, кДж)
Классическим определением энергии Гиббса является выражение
где U -- внутренняя энергия, P -- давление, V -- объем, T -- абсолютная температура, S -- энтропия.
Дифференциал энергии Гиббса для системы с постоянным числом частиц, выраженный в собственных переменных -- через давление p и температуру T
Для системы с переменным числом частиц этот дифференциал записывается так
Здесь м -- химический потенциал, который можно определить как энергию, которую необходимо затратить, чтобы добавить в систему ещё одну част. Условия самопроизвольного протекания процессов в закрытых системах:
Изобарно-изотермические (P = const, T = const):
ДG < 0, dG < 0
ДF < 0, dF < 0
Процессы, которые сопровождаются увеличением термодинамических потенциалов, протекают лишь при совершении работы извне над системой. В химии наиболее часто используется изобарно-изотермический потенциал, поскольку большинство химических (и биологических) процессов происходят при постоянном давлении. Для химических процессов величину ДG можно рассчитать, зная ДH и ДS процесса, по уравнению (I.75), либо пользуясь таблицами стандартных термодинамических потенциалов образования веществ ДG°обр; в этом случае ДG° реакции рассчитывается аналогично ДН° по уравнению (I.77)
Величина стандартного изменения изобарно-изотермического потенциала в ходе химической любой реакции ДG°298 есть мера химического сродства исходных веществ. Основываясь на уравнении (I.75), можно оценить вклад энтальпийного и энтропийного факторов в величину ДG и сделать некоторые обобщающие заключения о возможности самопроизвольного протекания химических процессов, основываясь на знаке величин ДН и ДS.
1. Экзотермические реакции; ДH < 0.
а) Если ДS > 0, то ДG всегда отрицательно; экзотермические реакции, сопровождающиеся увеличением энтропии, всегда протекают самопроизвольно.
б) Если ДS < 0, реакция будет идти самопроизвольно при ДН > TДS (низкие температуры).
2. Эндотермические реакции; ДH > 0.
а) Если ДS > 0, процесс будет самопроизвольным при ДН < TДS (высокие температуры).
б) Если ДS < 0, то ДG всегда положительно; самопроизвольное протекание эндотермических реакций, сопровождающихся уменьшением энтропии, невозможно.
9. Скорость химической реакции
Химические реакции протекают с различными скоростями. Некоторые из них полностью заканчиваются за малые доли секунды, другие осуществляются за минуты, часы, дни; известны реакции, требующие для своего протекания несколько лет, десятилетий и еще более длительных отрезков времени. Кроме того, одна и та же реакция может в одних условиях, например, при повышенных температурах, протекать быстро, а в других, -- например, при охлаждении, -- медленно; при этом различие в скорости одной и той же реакции может быть очень большим.
Знание скоростей химических реакций имеет очень большое научное и практическое значение. Например, в химической промышленности при производстве того или иного вещества от скорости реакции зависят размеры и производительность аппаратуры, количество вырабатываемого продукта.
Различают гомогенные и гетерогенные системы. Гомогенной называется система, состоящая из одной фазы, гетерогенной-- система, состоящая из нескольких фаз. Фазой называется часть системы, отделенная от других ее частей поверхностью раздела, при переходе через которую свойства изменяются скачком.
Гомогенные реакции протекают в однородной среде (например, в газовой фазе или жидком растворе). Гетерогенные реакции протекают в неоднородной среде - между веществами, которые находятся в разных фазах (твердой и жидкой, газовой и жидкой и т.д.). Таким образом, гомогенные реакции происходят равномерно во всем объеме, заполненном реагентами; гетерогенные - только на некоторых пограничных поверхностях - на границе раздела фаз.
Скорость химической реакции х определяется изменением количества реагирующего вещества за единицу времени в единице реакционного пространства. В гомогенной системе реакционным пространством служит объем сосуда, в котором протекает взаимодействие. Так как отношение количества вещества к единице объема выражается концентрацией С, то скорость гомогенной реакции равна изменению концентрации исходных веществ или продуктов реакции во времени. Концентрация С выражается обычно в моль/л, а время ф - в минутах или секундах; поэтому размерность скорости реакции моль/л . мин или моль/л . с. При химическом взаимодействии концентрация каждого из исходных веществ уменьшается во времени (С2<С1; ДС<0), а концентрация каждого из продуктов реакции возрастает (С2>C1; ДC>0).
Факторы, влияющие на скорость химической реакции
Для гомогенных, гетерогенных реакций:
1) концентрация реагирующих веществ;
2) температура;
3) катализатор;
4) ингибитор.
Только для гетерогенных:
1) скорость подвода реагирующих веществ к поверхности раздела фаз;
2) площадь поверхности.
Главный фактор - природа реагирующих веществ - характер связи между атомами в молекулах реагентов.
1) Скорость реакции зависит от природы реагирующих веществ.
скоростью, например хлор быстрее йода
2) Для веществ в растворенном состоянии и газов скорость реакции зависит от концентрации реагирующих веществ.
3) Для веществ в твердом состоянии скорость реакции прямо пропорциональна поверхности реагирующих веществ.
Чем сильнее измельчено твердое вещество, тем больше его поверхность. Уголь в виде больших кусков сгорает в печи медленнее, чем измельченный
4) При повышении температуры на каждые 10°С скорость большинства реакций увеличивается в 2-4 раза.
Железо при обычной температуре реагирует с хлором очень медленно, при высокой же температуре протекает бурная реакция (железо горит в хлоре)
5) Скорость реакции зависит от присутствия некоторых веществ (катализаторов и ингибиторов).
10. Закон действия масс
Закон действия масс открыт опытным путем К.М. Гульдбергом и П. Вааге в 1867 г. Он гласит: При постоянной температуре скорость химической реакции пропорциональна произведению концентраций реагирующих веществ, причем каждая концентрации входит в произведение в степени, равной коэффициенту, стоящему перед формулой вещества в уравнении реакции.
Уравнение химической реакции в общем виде можно представить так:
аА + вВ - сС + dD
Тогда скорость реакции можно выразить уравнением:
V = k*[A]a *[B]b
Все химические реакции можно разделить на обратимые и необратимые реакции. Необратимые реакции протекают до конца - до полного израсходования одного из реагирующих веществ. Обратимые реакции протекают не до конца: ни одно из реагирующих веществ не расходуется полностью. Когда скорости прямой и обратной реакции становятся одинаковыми, наступает химическое равновесие. Количественной характеристикой химического равновесия служит константа химического равновесия.
Согласно закону действия масс, скорости прямой V1 и обратнойV2 реакции выражаются уравнениями:
V1= k1*[A]a *[B]b
V2= k2*[C]c *[D]d
При равновесии V1 = V2 , значит, k1*[A]a *[B]b= k2*[C]c *[D]d
Отношение констант скорости прямой и обратной реакций есть величина постоянная. Она и называется константой химического равновесия
К = k1 / k2 K = (k2*[C]c *[D]d )/k1*[A]a *[B]b
Кинетическим уравнением химической реакции называют математическую формулу, связывающую скорость реакции с концентрациями веществ. Это уравнение может быть установлено исключительно экспериментальным путём.
В зависимости от механизма все химические реакции классифицируют на простые (элементарные) и сложные. Простыми называются реакции, протекающие в одну стадию за счёт одновременного столкновения молекул, записанных в левой части уравнения. В простой реакции могут участвовать одна, две или, что встречается крайне редко, три молекулы. Поэтому простые реакции классифицируют на мономолекулярные, бимолекулярные и тримолекулярные реакции. Так как с точки зрения теории вероятности одновременное столкновение четырёх и более молекул маловероятно, реакции более высокой, чем три, молекулярности не встречаются. Для простых реакций кинетические уравнения относительно просты. Например, для реакции H2 + I2 = 2 HI кинетическое уравнение имеет вид
= k • C(I2) • C(H2)
Сложные реакции протекают в несколько стадий, причём все стадии связаны между собой. Поэтому кинетические уравнения сложных реакций более громоздки, чем простых реакций.
Например, для сложной реакции H2 + Br2 = 2 HBr известно
= .
Сложность кинетического уравнения напрямую связана со сложностью механизма реакции.
Основным законом химической кинетики является постулат, вытекающий из большого числа экспериментальных данных и выражающий зависимость скорости реакции от концентрации. Этот закон называют законом действующих масс. Он утверждает, что скорость химической реакции в каждый момент времени пропорциональна концентрациям реагирующих веществ, возведённым в некоторые степени.
11. Со скоростью химических реакций связаны представления о превращении веществ
Учение о скоростях и механизмах химических реакций называется химической кинетикой.
Под скоростью химической реакции понимают изменение концентрации одного из реагирующих веществ в единицу времени при неизменном объеме системы.
При этом безразлично, о каком из участвующих в реакции веществе идет речь: все они связаны между собой уравнением реакции, и по изменению концентрации одного из веществ можно судить о соответствующих изменениях концентраций всех остальных. Обычно концентрацию выражают в моль/л, а время - в секундах или минутах. Если, например, исходная концентрация одного из реагирующих веществ составляла 1 моль/л, а через 4 с от начала реакции она стала 0,6 моль/л, то средняя скорость реакции будет равна (1 - 0,6)/4 = 0,1 моль/(л•с).
Рассмотрим в общем виде скорость реакции, протекающей по уравнению
А + В = С + D (I)
По мере расходования вещества А скорость реакции уменьшается
Отсюда следует, что скорость реакции может быть определена лишь для некоторого промежутка времени. Так как концентрация вещества А в момент времени t1 измеряется величиной с1, а в момент t2 - величиной c2, то за промежуток времени ?t = t2 - t1 изменение концентрации вещества составит ?с = с2 - с1, откуда определится средняя скорость реакции ( )
Знак минус ставится потому, что, несмотря на убывание концентрации вещества А и, следовательно, на отрицательное значение разности с2 - с1, скорость реакции может быть только положительной величиной. Можно также следить за изменением концентрации одного из продуктов реакции - веществ С или D; она в ходе реакции будет возрастать, и потому в правой части уравнения нужно ставить знак плюс.
Поскольку скорость реакции все время изменяется, то в химической кинетике рассматривают только истинную скорость реакции v, т.е. скорость в данный момент времени. Влияние природы веществ на скорость химических реакций очень велико. Например, процесс превращения гранита в глину, тек называемое выветривание горных пород, протекает на протяжении тысячелетий. Природа бутылочного или оконного стекла, полиэтилена и других веществ, созданных человеком, такова, что эти вещества практически не разлагаются или разлагаются чрезвычайно медленно. Вот и приходится человеку находить способы их утилизации, например сжигать. И как мудро распорядилась эволюция, когда предусмотрела для человека и большинства животных в качестве транспортирующего кислород вещества гемоглобин крови, который уже при комнатной температуре способен соединяться с кислородом воздуха со значительной скоростью, а следовательно, и быстро доставлять его из легких в тканях.
Сильное изменение скорости реакции с изменением температуры объясняет теория активации. Согласно этой теории в химическое взаимодействие вступают только активные молекулы (частицы), обладающие энергией, достаточной для осуществления данной реакции. Неактивные частицы можно сделать активными, если сообщить им необходимую дополнительную энергию, - этот процесс называется активацией. Один из способов активации - увеличение температуры: при повышении температуры число активных частиц сильно возрастает, благодаря чему резко увеличивается скорость.
Энергия, которую надо сообщить молекулам (частицам) реагирующих веществ, чтобы превратить их в активные, называется энергией активации.
Ее определяют опытным путем, обозначают буквой Еa и обычно выражают в кДж/моль. Так, например, для соединения водорода и иода (Н2 + I2 = 2НI) Еа = 167,4 кДж/моль, а для распада иодоводорода (2НI = Н2 + I2) Еа = 186,2 кДж/моль.
Энергия активации Еa зависит от природы реагирующих веществ и служит характеристикой каждой реакции. Эти представления поясняются рисунком
На примере реакции в общем виде А2 + В2 = 2АВ. Ось ординат характеризует потенциальную энергию системы, ось абсцисс - ход реакции: исходное состояние > переходное состояние > конечное состояние. Чтобы реагирующие вещества А2 и В2 образовали продукт реакции АВ, они должны преодолеть энергетический барьер С. На это затрачивается энергия активации Еа, на значение которой возрастает энергия системы. При этом в ходе реакции из частиц реагирующих веществ образуется промежуточная неустойчивая группировка, называемая переходным состоянием или активированным комплексом (в точке С), последующий распад которого приводит к образованию конечного продукта АВ. Механизм реакции можно изобразить схемой
исходные реагенты (начальное состояние системы) активированный комплекс (переходное состояние) продукты реакции (конечное состояние системы)
Если при распаде активированного комплекса выделяется больше энергии, чем это необходимо для активации частиц, то реакция экзотермическая. Примером эндотермической реакции служит обратный процесс - образование из вещества АВ веществ А2 и В2: 2АВ = А2 + В2. В этом случае процесс протекает также через образование активированного комплекса А2В2, однако энергия активации больше, чем для прямого процесса: Еа = Еа + ?H (?H - тепловой эффект реакции). Для протекания эндотермических реакций требуется подвод энергии извне.
Как видно из рисунка
Разность энергий конечного состояния системы (Hкон) и начального (Hнач) равна тепловому эффекту реакции:
?H = Hкон - Hнач.
Скорость реакции непосредственно зависит от значения энергии активации: если оно мало, то за определенное время протекания реакции энергетический барьер преодолеет большое число частиц и скорость реакции будет высокой, но если энергия активации велика, то реакция идет медленно.
При взаимодействии ионов энергия активации очень мала и ионные реакции протекают с очень большой скоростью (практически мгновенно).
Уравнемние Арремниуса устанавливает зависимость константы скорости химической реакции от температуры .
Согласно простой модели столкновений химическая реакция между двумя исходными веществами может происходить только в результате столкновения молекул этих веществ. Но не каждое столкновение ведёт к химической реакции. Необходимо преодолеть определённый энергетический барьер, чтобы молекулы начали друг с другом реагировать. То есть молекулы должны обладать некой минимальной энергией (энергия активации ), чтобы этот барьер преодолеть. Из распределения Больцмана для кинетической энергии молекул известно, что число молекул, обладающих энергией , пропорционально
В результате скорость химической реакции представляется уравнением, которое было получено шведским химиком Сванте Аррениусом из термодинамических соображений
Здесь характеризует частоту столкновений реагирующих молекул, универсальная газовая постоянная.
В рамках теории активных соударений зависит от температуры, но эта зависимость достаточно медленная
Оценки этого параметра показывают, что изменение температуры в диапазоне от 200 °C до 300 °C приводит к изменению частоты столкновений A на 10 %.
В рамках теории активированного комплекса получаются другие зависимости от температуры, но во всех случаях более слабые, чем экспонента.
Уравнение Аррениуса стало одним из основных уравнений химической кинетики, а энергия активации -- важной количественной характеристикой реакционной способности веществ.
12. Зависимость скорости реакции от температуры определяют в соответствии с так называемым «правилом Вант-Гоффа», которое в 19 в. сформулировал голландский химик Якоб Вант-Гофф. Это чисто эмпирическое правило, т.е. правило, основанное не на теории, а выведенное из опытных данных. В соответствии с этим правилом, повышение температуры на 10° приводит к увеличению скорости в 2-4 раза. Математически эту зависимость можно выразить уравнением v2v1 = g (T2 - T1)/10, где v1 и v2 - скорости реакции при температурах Т1 и Т2; величина g называется температурным коэффициентом реакции. Например, если g = 2, то при Т2 - Т1 = 50о v2/v1 = 25 = 32, т.е. реакция ускорилась в 32 раза, причем это ускорение никак не зависит от абсолютных величин Т1 и Т2, а только от их разности.Правило Вант-Гоффа заключается в том, что при нагревании на 10 оС скорость большинства химических реакций увеличивается в 2 4 раза. Математически это означает, что скорость реакции зависит от температуры степенным образом
где - температурный коэффициент скорости ( = 2 Правило Вант-Гоффа является весьма грубым и применимо только в очень ограниченном интервале температур.
Правило Вант-Гоффа: при повышении Т на скорость хим. реакции увеличивается в 2-4 раза. Математически это правило можно записать: , , - температурный коэффициент хим. реакции. Правило Вант-Гоффа является приближённым и его обычно используют для приблизительно оценки скорости при изменении температуры. Более точным является уравнение Аррениуса, по которому
Они могут быть вычислены по значению констант скорости при 2-х различных Т. При : (1). При : (2). Вычитая из (1) (2) получаем . Отсюда можно выразить А. Зная А, по уравнению (1) или (2) вычисляют В.
13. КАТАЛИЗ - процесс, заключающийся в изменении скорости химических реакций в присутствии веществ, называемых катализаторами
Катализаторы - вещества, изменяющие скорость химической реакции, которые могут участвовать в реакции, входить в состав промежуточных продуктов, но не входят в состав конечных продуктов реакции и после окончания реакции остаются неизменными.
Каталитические реакции - реакции, протекающие в присутствии катализаторов. Понятие о катализе и катализаторах
Увеличить скорость реакции можно с помощью катализаторов. Применять катализаторы выгоднее, чем повышать температуру, тем более, что ее повышение далеко не всегда возможно.
Катализаторами называются вещества, изменяющие скорость химической реакции, но сохраняющие при этом свои свойства и состав. Сам катализатор в реакциях не расходуется и в конечные продукты не входит.
Одни катализаторы ускоряют реакцию - положительный катализ, или просто катализ, другие - замедляют - отрицательный катализ. Примером положительного катализа может служить получение серной кислоты, окислением аммиака в азотную кислоту с помощью платинового катализатора и др.
Примером отрицательного катализа является замедление взаимодействия раствора сульфита натрия с кислородом воздуха в присутствии этилового спирта или уменьшение скорости разложения пероксида водорода в присутствии небольших количеств серной кислоты и др. Отрицательный катализ часто называют ингибированием, а отрицательные катализаторы, снижающие скорость реакции - ингибиторами (механизм действия последних отличен от действия катализаторов).
Химические реакции, протекающие при участии катализаторов, называются каталитическими. Различают два вида катализа - гомогенный (однородный) и гетерогенный (неоднородный) катализ.
При гомогенном катализе реагирующие вещества и катализатор образуют однофазную систему - газовую или жидкую, между катализатором и реагирующими веществами отсутствует поверхность раздела. Например, каталитическое разложение пероксида водорода в присутствии раствора солей (жидкая фаза). Для гомогенного катализа установлено, что скорость химической реакции пропорциональна концентрации катализатора.
При гетерогенном катализе реагирующие вещества и катализатор образуют систему из разных фаз. В этом случае между катализатором и реагирующими веществами существует поверхность раздела. Обычно катализатор - твердое вещество, а реагирующие вещества - газы или жидкость. Примером может служит окисление аммиака (газообразная фаза) в присутствии платины (твердая фаза). Все реакции при гетерогенном катализе протекают на поверхности катализатора. Поэтому активность твердого катализатора зависит и от свойств его поверхности (размера, химического состава, строения и состояния). На поверхности катализатора имеются активные центры, реагирующие вещества адсорбируются на них, происходит деформация молекул, ослабевают связи между атомами и молекулы становятся активными.
Механизм действия катализаторов обычно объясняют образованием промежуточных соединений с одним из реагирующих веществ. Рассмотрим схему действия катализатора на следующем примере:
Основной химический процесс:
А + В = АВ; SO2 + 1/2O2 = SO3
Образование промежуточного соединения одного из исходных веществ с катализатором:
К + А = КА; NO + 1/2O2 = NO2 (катализатор)
Взаимодействие промежуточного соединения со вторым исходным веществом и освобождение катализатора:
КА + В = АВ + К; NO2 + SO2 = SO3 + NO (катализатор)
Катализатор разбивает ход химической реакции на несколько стадий. Соответственно у каждой стадии имеется свой энергетический барьер. В сумме он составляет энергию активации (Еа). За счет снижения энергетических барьеров по стадиям реакции протекают с большими скоростями.
Некоторые вещества снижают или полностью уничтожают активность твердого катализатора. Такие вещества называются каталитическими ядами. В качестве примера можно привести соединения мышьяка, ртути, свинца, цианистые соединения, к которым особенно чувствительны платиновые катализаторы
Подобные документы
Характеристика химического равновесия в растворах и гомогенных системах. Анализ зависимости константы равновесия от температуры и природы реагирующих веществ. Описания процесса синтеза аммиака. Фазовая диаграмма воды. Исследование принципа Ле Шателье.
презентация [4,2 M], добавлен 23.11.2014Химическая кинетика как раздел химии, изучающий скорость химической реакции. Факторов влияющие на скорость химической реакции: природа реагирующих веществ, температура, концентрация реагирующих веществ, катализатор, площадь соприкосновения веществ.
презентация [2,2 M], добавлен 23.02.2015Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции. Влияние внешних условий на химическое равновесие. Влияние давления, концентрации и температуры на положение равновесия. Типы химических связей.
реферат [127,3 K], добавлен 13.01.2011Скорость химической реакции. Понятие про энергию активации. Факторы, влияющие на скорость химической реакции. Законы Бойля-Мариотта, Гей-Люссака, Шарля. Влияние температуры, давления и объема, природы реагирующих веществ на скорость химической реакции.
курсовая работа [55,6 K], добавлен 29.10.2014Изменение свободной энергии, сопровождающее химическую реакцию, связь с константой равновесия. Расчет теплового эффекта реакции. Классификации дисперсных систем по размерам дисперсных частиц, агрегатным состояниям дисперсной фазы и дисперсионной среды.
контрольная работа [49,7 K], добавлен 25.07.2008Предмет термохимии, изучение тепловых эффектов химических реакций. Типы процессов химической кинетики и катализа. Энтальпия (тепловой эффект) реакции. Скорость реакции, закон действующих масс. Константа химического равновесия, влияние катализатора.
презентация [2,2 M], добавлен 19.10.2014Понятия химической кинетики. Элементарный акт химического процесса. Законы, постулаты и принципы. Закон сохранения энергии. Принцип микроскопической обратимости, детального равновесия, независимости химических реакций. Закон (уравнение) Аррениуса.
реферат [74,3 K], добавлен 27.01.2009Обзор общих сведений о строении вещества. Изучение основных элементарных частиц. Строение атома. Минимальные энергии возбуждения и ионизации некоторых газов. Виды химических связей. Классификация электротехнических материалов по электрическим свойствам.
презентация [1,5 M], добавлен 28.07.2013Вычисление термодинамических функций для молибдена в интервале температур 100-500К. Применение вещества, описание его физических и химических свойств. Расчет константы равновесия заданной химической реакции с помощью энтропии и приведенной энергии Гиббса.
курсовая работа [251,8 K], добавлен 18.02.2013Определение константы равновесия реакции. Вычисление энергии активации реакции. Осмотическое давление раствора. Схема гальванического элемента. Вычисление молярной концентрации эквивалента вещества. Определение энергии активации химической реакции.
контрольная работа [21,8 K], добавлен 25.02.2014