Теоретичні основи генно-модифікованих продуктів

Стан і перспективи розвитку генної інженерії в Україні та за кордоном. Генно-інженерні підходи до створення інтенсивних технологій в харчовій галузі, промисловості та рослинництві. Методи застосування генної інженерії в медицині та в епідеміології.

Рубрика Кулинария и продукты питания
Вид курсовая работа
Язык украинский
Дата добавления 29.04.2009
Размер файла 2,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Зміст

Вступ: Стан і перспективи розвитку генної інженерії в Україні та за кордоном.

1. Теоретичні основи генно-модифікованих продуктів.

1.1. Ген як елементарна одиниця спадковості

1.2. Генетичний код

1.3. Структурна організація генному

1.4. Кланування генів

2. Генно-інженерні підходи до створення інтенсивних технологій в харчовій галузі

2.1. Використання генної інженерії у м'ясній і молочній промисловості

2.2. Використання генної інженерії у рослинництві

2.3. Методи генної інженерії мікроорганізмів

2.4. Позитивні і негативні наслідки використання ГМП

3. Методи застосування генної інженерії в медицині

3.1. Біоматеріали

3.2. Генна інженерія в епідеміології

4. Вплив генно-модифікованих продуктів на стан здоров'я людини

5. Висновки

Список літератури

Вступ

За прогнозами демографів, в 2000 р. населення Землі становило 6,2 млрд. чол., а до 2025 р. повинне досягти 8,3 млрд. Вчені зайняті розв'язанням проблеми пошуку нових сільгосппродуктів, яких буде багато і які вирощувати й захищати від шкідливих впливів навколишнього середовища полегшає легені.

Як усунути навислу над світом і ще не цілком усвідомлену нами погрозу голоду? Розширювати посівні площі, будувати нові ферми? Але адже Земля й так забудована й розорана уздовж і поперек. Підвищувати врожайність зернових і виробництво м'яса традиційними способами? Ні, так теж проблему не вирішити. Адже врожайність основних світових культур - пшениці й рису досягла межі. А нескінченні "м'ясні скандали" - те з коров'ячим сказом, то з малайзійськими свинями, то з бельгійськими курми - показують, що робити якісну яловичину, свинину й птаха стає усе сутужніше.

"Ми завалимо мир нашою їжею й урятуємо його від голоду", - упевнено говорять представники американської компанії "Монсанто" і інших світових лідерів у виробництві генетично модифікованої їжі. Що ж насправді являє собою ця загадкова їжа й наскільки обгрунтовані викликувані нею побоювання? Що ж таке генна інженерія і який механізм її дії? У загальному поданні генна інженерія - це нова, революційна технологія, за допомогою якої вчені можуть витягати гени з одного організму й впроваджувати їх у будь-який іншій. Пересадження генів змінює програму організму-одержувача, і його клітини починають робити різні речовини, які, у свою чергу, створюють нові характеристики усередині цього організму. За допомогою цього методу дослідники можуть міняти особливі властивості й характеристики в потрібному їм напрямку: наприклад, вони можуть вивести сорт соєвих бобів, стійких до впливу гербіцидів.

Дослідники з дуже більшою наснагою узялися використати генну інженерію для створення більше живильних продуктів харчування ліквідації певних хвороб, у тому числі й у свійських тварин, сподіваючись у такий спосіб поліпшити життя людини на Землі. Але в дійсності, незважаючи на те що гени можуть бути витягнуті й правильно схрещені, у житті дуже важко прогнозувати наслідку вживляння генів у чужий організм. Такі операції можуть стати причиною мутацій, у результаті яких придушується діяльність природних генів організму. Впроваджені гени можуть також викликати несподівані побічні ефекти: генетично модифікована їжа може, приміром, містити токсини й алергени або мати знижену поживність, і в результаті споживачі занедужують або навіть, як уже траплялося, умирають. Крім того, організми, виведені за допомогою генної інженерії, здатні самостійно розмножуватися й схрещуватися із природними, що не перетерпіли генне втручання популяціями, викликаючи при цьому необоротні біологічні зміни у всієї екосистеми Землі. Так уважають багато вчених, і зокрема д-р наук, проф. молекулярної біології в Університеті Менеджменту Махариши (Фэарфилд, Айова) Джон Фейган, що одержав понад 2,5 млн. дол. державних субсидій на проведення досліджень в області генної регуляції й вивчення молекулярного механізму виникнення ракових новотворів.

Чи відрізняються генетично модифіковані культури по смаку й зовнішньому вигляді від звичайних? Анітрошки. Їхня відмінність розпізнається лише на рівні ДНК. Принцип генно-інженерного методу полягає в тім, що із клітини-донора виділяють гени, відповідальні за те або інша властивість, і вводять у клітини сільськогосподарських культур або тварин. Модифікована клітина потім стає основою для створення нового виду Рослини або тварини, що володіє бажаними властивостями.

Так, наприклад, генетично змінена соя має імунітет до хімічних гербіцидів. Вражаючи бур'яни, вони не заподіюють ніякої шкоди самій корисній рослині. В Азії, наприклад, виростає мутованой рис, що добре переносить посуху й засолені ґрунти. Швейцарський концерн «Новартис» почав вирощувати кукурудзу, що виділяє власна отрута проти польових шкідників. В Америці виведений картопля, що при прожарюванні усмоктує менше жиру. А голландська картопля з «досадженим» геном дуже стійка до вірусних захворювань. У цей час створений ряд трансгенних культур: соя, кукурудза, бавовна, рапс, томати, картопля. Світовий товарообіг цих культур за період з 1995 по 1998 р. зріс в 20 разів і в 1998 р. склав 1,2-1,5 млрд. дол. За експертними оцінками, уже в 2000 р. ця сума досягла 3 млрд. дол. Список сортів трансгенних рослин, що пройшли польові випробування й уже оброблюваних у Європі й Америці, росте так само стрімко, як і пов'язані із цією галуззю науки слухи, страхи й надії людства.

Правда, уряди й громадськість у різних країнах ставляться до проблеми трансгенеза по-різному. Якщо, наприклад, у США розширюються рамки законопроектів, що допускають включення продуктів трансгенного сільського господарства в комерційний оборот, а самі вирощують такі рослини на більших площах, то в країнах Європейського союзу поки тільки визнають необхідність науково обґрунтованої оцінки безпеки рослин і тварин, одержуваних у результаті трансгенеза.

Уже сьогодні трансгенні продукти в значній мірі становлять харчування американців (сир, м'ясо, ті ж гамбургери, не говорячи про сою, кукурудзу, томати, картоплі). Поля трансгенних кукурудзи й картоплі займають у США й чи Канаді не 30 % посівних площ.

Більше того, у тих же Сполучених Штатах дозволено не вказувати на етикетці походження харчової сировини, оскільки творці глибоко впевнені (і змогли це довести своєму Міністерству охорони здоров'я) у безпеці трансгенної їжі.

Трохи інший - більше критичний - підхід у європейців. Він викликаний поруч факторів. Перший - чисто економічний, пов'язаний з конкуренцією й захистом ринку від американців, що лідирують у біотехнологіях. Інші фактори пов'язані з так званими протестами різних громадських організацій проти виробництва трансгенних продуктів.

Неформальним світовим лідером у боротьбі з генетично зміненою продукцією стала Великобританія, що після історії з «коров'ячим сказом» проявляє особливу розбірливість у відношенні того, що надходить на її обідній стіл. Сам принц Чарльз, відомий своєю пристрастю до фермерства, написав більшу статтю в лондонську газету «Дейли мейл», у якій обрушився на генетично модифіковані продукти і їхніх виробників. «Людство вторгається в заборонну зону, що належить Богу й одному тільки Богу, - уважає принц Чарльз, - і може бути за це жорстоко покарано... Чи потрібна нам у цій країні генетично модифікована їжа? На підставі того, що ми про неї знаємо й що ми дотепер бачили, можна із упевненістю сказати - не потрібна зовсім!» - викликує принц.

Здавалося б, після такої потужної антиреклами навряд чи в когось із англійців повинне виникнути бажання споживати «трансгенні культури». Проте британський уряд, що підтримує тісні зв'язки з біотехнологічними компаніями, робить все можливе, щоб перекласти негативне відношення до «диявольської їжі». У ситуацію втрутився прем'єр-міністр Тоні Блер, що кинув свій авторитет на чашу ваг у суперечці прихильників і супротивників «трансгенних культур». «Генетично модифікована їжа може бути дешевше й здоровіше, - заявив Блер у звертанні до націй. Прем'єр-міністр повідомив, що він сам і його родина із задоволенням їдять такі продукти.

У цілому супротивники генетично модифікованих продуктів в Beликобритании поки беруть гору над її прихильниками. Компанії «Нестле», «Макс енд Спенсер», «Уайтроуз» заявили, що починають шукати постачальників «чистих» продуктів. А найбільші мережі супермаркетів «Теско», «Юнілевер», «Дж.Сайнсбери Плс» оголосили про те, що забирають зі своїх полиць будь-яку продукцію, де є хоч один компонент, створений генною інженерією.

Тим часом на Заході найбільш затяті супротивники біотехнології активно пручаються вторгненню генетики в сферу споживання: по ночах, проникнувши на експериментальні поля, ріжуть під корінь урожай або топчуть посіви. А західні союзи споживачів домагаються того, щоб продавці постачали їстівних мутантів спеціальними етикетками: "нехай покупець сам вирішує, які продукти купувати - звичайні або генетичні". Росії прийде самої потурбуватися про власну безпеку.

15 травня 1999 р. 36 американських сенаторів - більше третини Сенату США - направили президентові Клінтону лист, у якому в різкій формі зажадали, щоб він устав на захист американських виробників генетично модифікованих продуктів. Президент повинен запобігти « торговельну війну, що насувається, з Європи і підняти питання на майбутній зустрічі країн «великої вісімки» у Бонні, заявили сенатори. Вони зажадали від Клінтона також зайняти тверду позицію на всіх інших міжнародних форумах.

Лист сенаторів збігся за часом з оприлюдненим у Лондоні висновком британських лікарів, які заявили, що генетично змінені продукти повинні мати спеціальне маркування й перероблятися харчовою промисловістю окремо, не змішуючись із «нормальними» харчовими інгредієнтами. Якщо США відмовляться виконати ці умови, Великобританія, на думку лікарів, повинна повністю заборонити ввіз американських генетично модифікованих продуктів. Страсті навколо генетично зміненої їжі сьогодні киплять не тільки в Європі, причому вони стосуються не тільки зернових, овочів, але й м'яса.

Саме тому в європейському підході до трансгенезу велике значення надається роз'яснювальній роботі. Стурбованому населенню втолковуєтся, зокрема, що в трансгенні рослини ніколи не вводили й не збираються вводити ген людини або тварин. При цьому основні страхи самих медиків і біологів із приводу трансгенеза зв'язані, по-перше, з непередбаченими ефектами прояву гена - іншими словами, з можливостями зміни хімічного складу, зниження харчової цінності продукту й інших його споживчих властивостей.

Крім того, у результаті генної модифікації можуть синтезуватися якісь компоненти, що викликають алергійні реакції або з'являться небезпечні з'єднання, що володіють мутагенним, канцерогенним або токсичним ефектом,

Росія теж не поспішає налагоджувати масові вирощування й продаж трансгенних рослин - чи те з розсудливого консерватизму, чи те через відсутність засобів і на науку, і на сільське господарство.

Для того щоб упорядкувати й взяти під державний контроль ввіз у Росію генетично модифікованих продуктів, з 1 липня 1999 р. Мінздрав РФ вирішив реєструвати імпортні продукти харчування, виготовлені із сировини з генетично зміненою структурою. Імпортери, що ввозять таку продукцію в Росію, зобов'язані сертифікувати її в НДІ харчування РАМН або в державному центрі «Біоинженерія» РАН. Саме в цих двох організаціях проводиться медико-генетична експертиза. Якщо експерти порахують ті або інші продукти безпечними, імпортер одержить документ, що дозволяє ввозити їх у Росію.

«Реєстрація генетично модифікованих продуктів - міра, покликана попередити появу на прилавках їжі, що несе погрозу здоров'ю людини», - заявив журналістам головний санітарний лікар Російської Федерації Г.Г. Онищенко. За його словами, дотепер лікарі в нас не зіштовхувалися із захворюваннями, викликаними вживанням цих продуктів. Проте «це не виходить, що вони нешкідливі, просто люди не завжди звертаються до лікарів».

«Ми буде цікавити та сама «генна вставка», завдяки якій рослина або тварина одержали нову властивість. Наша мета - неї охарактеризувати», - уважає директор центра «Біоинженерія» РАН К.Г. Скрябін.

За словами К.Г. Скрябіна, в очолюваному їм центрі є база даних з інформацією про всіх зареєстровані у світі трансгенних культурах.

Вітчизняних трансгенних культур, дозволених для комерційного використання, поки немає. На даному етапі в Росії проводяться випробування восьми сортів таких рослин - сої, кукурудзи, цукрового буряка, картоплі, причому із трьох сортів картоплі всього один - вітчизняний.

«На початку XXI століття в країні складається важка економічна ситуація, а підвищити врожай ми можемо тільки за допомогою трансгенних культур. Завдання вчених - зробити так, щоб вони були економічно ефективні й безпечні», - відзначає акад. РАСХН К.Г. Скрябін.

У цей час у багатьох закордонних і вітчизняних лабораторіях отриманий ряд трансгенних тварин з новими біологічними й технологічними властивостями. При цьому вивчається вплив генної модифікації на безпеку таких тварин і їхня можлива комерціалізація. Ці широкі дослідження активно ведуться на вівцях і великій рогатій худобі в Австралії, США, Англії.

З 1996 р. у Росії діє закон «Про державне регулювання в області генної інженерії», у якому визначені стандарти безпеки генетично модифікованих продуктів. Наприклад, посадити трансгенние рослини для випробувань можна тільки з дозволу Міжвідомчої комісії із проблем генно-інженерної діяльності на іспитових полях, оточених забором, з охороною.

Введення системи контролю й всебічної експертизи харчової продукції з генетично модифікованих джерел викликано в першу чергу турботою про безпеку людей, - уважає заступник директора Медико-генетичного наукового центра РАМН, д-р наук, проф. С.А. Шишкін. Убудовані в генетичний код мікроорганізмів, рослин і тварин генно-інженерні конструкції теоретично можуть бути небезпечними. Важко сказати, у яких саме формах це може виявитися. Приміром, людина, що вживала продукти або ліки на основі такої сировини, може перестати адекватно реагувати на певні ліки, тобто придбати лікарську стійкість. Тому всі подібні продукти повинні проходити всебічну експертизу. Дуже важливо, що проблема поставлена саме зараз, поки суспільство ще не зіштовхнулося на практиці з теоретично можливими труднощами. Наші вчені давно стурбовані можливими наслідками генної інженерії.

Тільки після перевірки на мутагенність і канцерогенність, а також надання матеріалів досліджень на тваринах і людях-добровольцях, підприємства-виробники й імпортери такої продукції можуть розраховувати на одержання офіційного реєстраційного посвідчення. Воно буде видаватися компетентними органами на 3 роки, а після благополучної перереєстрації - на 5 років. Після того як новий порядок почне діяти, споживачі зможуть жадати від продавця генетично модифікованої продукції офіційне свідчення безпеки його товару.

Варто підтримувати декларацію Громадської організації "лікарі й учені проти модифікованих за допомогою генної інженерії продуктів харчування", у якій звернене увага громадськості на наступне:

· НЕПРАВИЛЬНО експлуатувати технологію, що може непередбачено викликати поява небезпечних для здоров'я речовин, перш ніж не буде ретельно вивчена можливість такого ризику.

· НЕПРАВИЛЬНО експлуатувати технологію, що може зробити необоротний вплив на навколишнє середовище, перш ніж не буде доведено, що дана технологія не заподіє серйозного збитку навколишньому середовищу.

· НЕПРАВИЛЬНО піддавати людей і навколишнє середовище навіть найменшої небезпеки, зважаючи на те, що в цей час наявні продукти харчування, модифіковані за допомогою генної інженерії, не представляють цінності або вона незначна.

· НЕПРАВИЛЬНО сьогодні виправдувати експлуатацію потенційно небезпечної технології, приводячи в обґрунтування науково недоведена думка, що ця технологія може дати корисні продукти в майбутньому.

Однак це не означає, що дослідження в цій області й дослідній перевірці їхніх результатів повинні бути припинені. Звісно ні. Особливої уваги заслуговують наступні аспекти. Перший - медико-генетичної, оцінюючої зміни в генотипі даної рослини або тварину й можливість їхній наступного впливу на людину. Другий - технологічний, що встановлює, що отриманий цим методом продукт не міняє свої технологічні властивості.

І третій - медико-біологічна оцінка впливу трансгенних продуктів на імунний статус організму, систему ферментного захисту клітини. Тільки після вивчення якісних показників продуктів генної інженерії, у тому числі на декількох поколіннях лабораторних тварин, почнеться процес державної реєстрації й дозволу до широкого використання при обов'язковому подальшому моніторингу. Таке думка академіка РАМН В.А. Тутельяна.

Застосування продуктів харчування, отриманих за допомогою генної інженерії, настільки серйозно, що навіть при наявності всіх розв'язних документів, необхідна певна законодавча база, що дозволяє у випадках появи негативних наслідків з юридичної точки зору вирішити проблему, що створилася.

1. Теоретичні основи генно-модифікованих продуктів

Генетична інженерія - це нова галузь молекулярної біології, яка розробляє методи перенесення генетичного матеріалу від одного живого організму до іншого з метою одержання нової генетичної інформації та управління спадковістю.) Розвиток генетичної інженерії пов'язаний з досягненнями сучасної генетики, мікробіології, біохімії та інших наук. Початок генетичної інженерії покладений П.Бергом в 1972 р., який здержав перші гібридні (рекомбінантні) ДНК.

У нас використовують два терміни - генетична інженерія та генна інженерія. Слід зазначити, що назву "генетична інженерія" використовують в більш широкому понятті, тобто зона включає і генну інженерію. При цьому до генної інженерії не відносять перебудову генома звичайними генетичними методами, тобто мутаціями, рекомбінаціями.

Раніш для переносу генів використовували в основному метод статевої гібридизації. Генетична інженерія дозволяє, на відміну від статевої гібридизації, вводити в геном організму тільки конкретний ген будь-якого походження поза зв'язку зі статевою сумісністю донора та реципієнта, виключає необхідність довгострокових беккросів та відборів для видалення непотрібних ознак та, в кінцевому рахунку, розширює можливості, прискорює та значно полегшує проблему покращення сортів та порід.

За останні роки генетична інженерія досягла істотного прогресу. Центр досліджень перейшов з прокаріотичних на еукаріотичні системи. Інтенсивно досліджуються структура та функція генів, які визначають економічно важливі ознаки сільськогосподарських рослин та тварин.

Зараз вже виділено та детально охарактеризовано біля сотні різних структурних генів. Методами молекулярної біології, в основному шляхом синтезу кДНК на ЇРНК, отримані копії геномних генів (клони), досліжуються оптимальні шляхи перенесення в організм чужорідної генетичної інформації, її експресія в новому генетичному середовищі, а також засоби виявлення та відбору трансформованих генотипів.

Перенесення генів здійснюється у багатьох видів рослин шляхом використання як технології рекомбінантної ДНК, так і соматичної гібридизації.

Сформувалися два альтернативних напрямки у використанні технології рекомбінантної ДНК: введення генів шляхом векторних систем та пряме введення ДНК до рослинних клітин. Ці технології знаходяться на стадії модельних експериментів, однак ряд розробок вже мають практичне використання в селекції. Найбільш тріумфальні успіхи генетичної інженерії пов'язані з мікробіологічним синтезом просто організованих білків тваринного (людського) походження (гормони, ферменти, інтерферон та ін.).

З точки зору операційної технології рекомбінантні ДНК можна поділити на декілька головних компонентів: індивідуальні гени, регуляторні елементи, векторні та селекційні системи.

Таблиця 1 Прогрес генетичної інженерії в різних сферах біології.

Перенесення та експресія індивідуальних добре охарактеризованих генів, власне, і складає кінцеву мету будь яких генно-інженерних маніпуляцій. Регуляторні елементи у представників різних родів, не кажучи вже про більш значні таксономічні одиниці, можуть значно розрізнятися. Тому перед перенесенням гену (наприклад, бактеріального) в чужорідне генетичне оточення (наприклад, в рослинну клітину) в гені необхідно замінити бактеріальні регуляторні елементи на рослинні, так як в іншому випадку перенесений ген не буде експресуватися. Подібній модифікації необхідно н ряді випадків піддавати також і структурну частину ієну, оскільки у рослин та тварин вона в типовому випадку складається з так званих інтронів та екзонів, при цьому тільки останні ділянки гена кодують поліпептидний ланцюг білку, а перші - вирізаються (видаляються) в процесі дозрівання ДНК. Імовірно, що ген з невидаленими інтронами, що належить до оукаріотичної клітини, не може кодувати синтез відповідного білку в клітині бактерії. Третім істотним елементом генно-інженерних маніпуляцій є спеціальні пекторні системи, які забезпечують високоефективне перенесення чужорідного гену в реципієнтну клітину та мого стабільне закріплення або шляхом інтеграції з клітинною ДНК, або шляхом набуття статусу автономного ядерного або цитоплазматичного елементу. Та, нарешті, четвертим важливим фактором технології рекомбінантної ДНК є система селекції або детекції тих химерних клітин або організмів, в які включився та функціонує чужорідний ген.

Для вирішення головних завдань біотехнології необхідно сконцентрувати увагу на питанні використання індивідуальних генів, молекулярних механізмів формування основних селекційно-вагомих показників та регуляторних елементів, так як вони визначають експресію генів в онтогенезі еукаріот.

Особливу увагу слід приділити розробці складових технології рекомбінантної ДНК, в першу чергу різноманітних векторних систем та систем селекції, при цьому не допустити розриву між фундаментальними та прикладними розробками; для цього необхідно забезпечити пріоритетність науковим працям в галузі мікробіології та вірусології. Тоді можна очікувати, що генетична інженерія стане лідируючою наукою, яка буде використовуватися в технологічних процесах отримання нових біологічно активних речовин, сироваток, різноманітних ліків та іншого

При обговоренні переваг методів клітинної та генетичної інженерії для створення на їх базі сучасних напрямків біотехнології неодноразово висловлювалась думка, що з двох біоінженерій клітинна по ряду причин забезпечує більш швидке отримання практично вагомих результатів. Це висловлювання, яке є правильним у загальній формі, потребує істотних доробок. Дійсно, строки реалізації ряду вагомих біотехнологічних розробок на базі методів клітинної інженерії знаходяться в межах початку та кінця 90-х років, а деякі з них впроваджуються в практику вже зараз. Так, наприклад, безвірусне насінництво ряду сільськогосподарських культур або трансплантація ембріонів с/г тварин. Технологія рекомбінантної ДНК, в протилежність напівемпіричним підходам клітинної інженерії, спроможна реалізовувати свій вагомий науковий потенціал тільки при детальній молекулярно-біологічній та генетичний вивченості об'єктів та господарсько вагомих ознак, які є предметом генно-інженерного експерименту. Це як раз і зумовлює строки реалізації більшої частини розробок генетичної інженерії на початок 2000-х років.

Однак, існує можливість (і вона частково використується) для значного прискорення результатів генетичної інженерії. Джерелом цього прискорення можуть стати інтенсивні дослідження мікроорганізмів та вірусів, які мають практичне значення, а також стабільний пошук простих моногенних ознак рослин та тварин, за якими просто вести селекцію. У цьому випадку мова не йде про мікробіологічний синтез фізіологічно активних речовин на основі технології рекомбінатної ДНК типу гормонів, антибіотиків та ферментів, які використовуються у виробництві. У загальній формі віруси та мікроби відіграють дуже важливу роль у життєдіяльності тварин та рослин, виступаючи в ролі симбіонтів або паразитів. Тому, маніпулюючи з просто організованим генетичним матеріалом вірусів та мікробів, можливо в значних масштабах впливати на життєдіяльність та продуктивність цих об'єктів, обходячи обмеження, які віддаляють строки реалізації розробок генетичної інженерії при безпосередніх маніпуляціях з генетичним матеріалом рослин та тварин.

На порозі польових випробувань знаходиться проект, націлений на створення "біологічних пестицидів" - рекомбінантних клітин Pseodomonas fluorescens, які входять до асоційованої сапрофітної мікрофлори ряду культурних рослин, куди вбудований ген ентомопатогенного токсину Васіllus thiringiensis. Можна вказати також на успішні спроби боротьби з ранніми заморозками шляхом генетичної модифікації клітин Pseodomonas syringae , які являють собою сапрофітну мікрофлору багатьох рослин, яка відповідає за уражуючий ефект ранніх заморозків. Особливий білок, що секретується цими бактеріями, служить центрами кристалізації льоду, в результаті чого вода на поверхні рослини замерзає, як звичайно, не при -4°, а при температурі 0°С. Рекомбінантні клітини Рs. syringae, які загубили здатність секретувати білок-кристалізатор льоду, будуть першими химерними організмами, які вийдуть з лабораторії у довкілля.

Значну практичну вагу для інтенсивних біотехнологій має стійкість культурних рослин до гербіцидів, яка може досягатися двома шляхами: або за рахунок значного руйнування гербіциду в клітині, або за рахунок непроникненності клітин для конкретного гербіциду. Зараз гербіцидостійкість може бути досягнена шляхом перенесення в культурні рослини або бактеріального гену, або мутантного рослинного гtну, що руйнують такі розповсюджені гербіциди, як гліфосат та сульфоніл-сечовина, У процесі розробок знаходяться і рекомбінантні плазміди, які спроможні попереджувати утворення корончатих галів у рослин. Строки реалізації інших генно-інженерних проектів, так чи інакше пов'язаних з мікроорганізмами, відносяться до початку третього тисячоліття.

Що стосується генів виших еукаріот, то відносно швидко можуть бути реалізовані інтерфероновий та гормональний проекти, як у формі продуктів мікробного синтезу, так і у формі генів, що переносяться до організму. У випадку інтерферону продукт мікробного синтезу в ряді експериментів підвищував стійкість рослинних клітин до фітовірусних інфекцій, і можна розраховувати, що подібний ефект забезпечить безпосереднє введення інтерферонового гену до рослин. Препарати типу гормону росту при введенні тваринам стимулюють їх ріст. Отримання гігантських форм може бути досягнено, як це продемонстровано в експериментах на лабораторних тваринах, також при введенні гена гормону росту, який забезпечує посилений синтез цього регулятора в організмі. Інші генно-інженерні проекти наведені в таблиці 3 та розраховані на більш довгострокові терміни реалізації.

ГЕН ЯК ЕЛЕМЕНТАРНА ОДИНИЦЯ СПАДКОВОСТІ

Раніше вважалося, що гени являють собою частину хромосом і є неподільною одиницею з такими ознаками: здатністю визначати ознаки організму, здатністю до рекомбінації, тобто до переміщення з однієї гомологічної хромосоми в іншу при кросинговері, та здатністю до мутації з утворенням нових алельних генів. Надалі виявилося, що ген - це складна система, в якій зазначені особливості неподільні.

Ген складається з окремих ніби сходинок, що блискуче підтвердилося новими дослідженнями. Ген являє собою частину молекули ДНК і складається з сотень пар нуклеотидів. Ген як функціональну одиницю американський генетик С.Бензер запропонував назвати цистроном. Саме цистрон визначає послідовність амінокислот у коленому специфічному білку.

Цистрон у свою чергу підрозділяється на гранично малі в лінійному вимірі одиниці - рекони, які здатні до рекомбінації при кросинговері. Виділяють, крім того, поняття мутон - це найменша частина гена, здатна до мінливості (мутації). Розміри рекону та мутону можуть становити одну або кілька пар нуклеотидів, цистрону -сотні і тисячі пар нуклеотидів.

Виявляється, що різні функції -гена пов'язані з відрізками ланцюга ДНК різного розміру. Ген має складну структуру, в середині якої можуть відбуватися процеси мутації та рекомбінації. Виявлені також гени, які не контролюють синтез визначених білкіп, але регулюють цей процес. Таким чином, виникла необхідність роз'єднати гени на дві категорії: структурні та функціональні.

Стурктурні гени визначають послідовність амінокислот у поліпептидному ланцюзі (тобто, колінеарність). У тих бактерій, де вони вивчені, структурні гени, як правило, розміщені в хромосомі в послідовності відповідно до кодованих реакцій.

Функціональні гени, мабуть, не утворюють специфічних продуктів, які можна виявити в цитоплазмі. Ці гени контролюють функцію інших генів. Один з функціональних генів одержав назву гена-оператора.

За уявленнями, введеними в науку Ф.Жакобом та Ж.Моно, ген-оператор і ряд структурних генів, розміщених поряд у лінійній послідовності, складають оперон. Оперон - це одиниця зчитування генетичної інформації, тобто з кожного оперона знімається своя молекула ІРНК. Функція гена-оператора, в свою чергу, регулюється геном-регулятором. Він кодує синтез білка-репресора. Наявність чи вісутність цього білка, який приєднується до гена-оператора, визначає початок або припинення зчитування інформації.

Колінеарність - властивість, зумовлена відповідністю між послідовностями кодонів нуклеїнових кислот та амінокислот поліпептидних ланцюгів. Тобто колінеарність - це властивість, яка створює таку саму послідовність амінокислот у білку, в якій відповідні кодони розміщуються в гені. Це значить, що положення кожної амінокислоти у поліпептидному ланцюзі залежить від особливої ділянки гена. Генетичний код вважається колінеарним, якщо кодони нуклеїнових кислот та відповідні їм амінокислоти в білку розміщені в однаковому лінійному порядку.

Явище колінеарності доведено експериментально. Так, встановлено, що серповидноклітинна анемія, при якій пошкоджується будова молекули гемоглобіну, зумовлюється зміною розміщення нуклеотидів у гені, який відповідає за синтез гемоглобіну.

Завдяки концепції колінеарності можна визначити приблизний порядок нуклеотидів всередині гена та в ІРНК, якщо відомий склад поліпептидів. Навпаки, визначивши склад нуклеотидів ДНК, можна прогнозувати амінокислотний склад білка. Виходячи з цього, зміна порядку нуклеотидів у гені (його мутація) веде до зміни амінокислотного складу білків.

Під впливом різних фізичних та хімічних агентів, а також при нормальному біосинтезі білка в клітині можуть виникати пошкодження. Виявилося, що клітини мають механізми виправлення пошкоджень у нитках ДНК. Така їх здатність одержала назву репарації.

Вперше здатність до репарації була виявлена у бактерій, на які впливали ультрафіолетовими променями. Внаслідок опромінювання цілісність молекул ДНК порушується, оскільки в ній виникають димери, тобто з'єднані між собою сусідні піримідинові основи. Ці димери виникають між: двома тимінами, тиміном та цитозином, двома цитозинами, тиміном та урацилом, цитозином та урацилом, двома урацилами. Проте опромінені клітини на світлі виживають набагато краще, ніж у темряві. Після ретельного аналізу причин цього встановили, що в опромінених клітинах на світлі відбувається репарація (явище світлової репарації). Вона здійснюється спеціальним ферментом, який активується квантами видимого світла. Фермент з'єднується з пошкодженою ДНК, роз'єднує зв'язки, що виникли у димерах, та відновлює цілісність ДНК.

Пізніше була виявлена темнова репарація, тобто властивість клітин ліквідувати пошкодження ДНК без участі видимого світла. Темнова репарація здійснюється комплексом із п'яти ферментів: який "впізнає" хімічні зміни на ділянці в ланцюзі ДНК; здійснює "вирізування" пошкодженої ділянки; видаляє цю ділянку; синтезує нову за принципом комплементарності та з'єднує кінці старого ланцюга і відновленої ділянки.

Під час світлової репарації виправляються тільки ті пошкодження, які виникають під впливом ультрафіолетових променів, при темповій - такі, що виникають під дією іонізуючої радіації, хімічних речовин та інших факторів. Темнова репарація виявлена як у прокаріотів, так і в клітинах еукаріотів (тварин та людей), у яких вона вивчається в культурах тканин. Питання про те, чому одні пошкодження репаруються, а інші ні, залишається відкритим. Якщо репарація не відбувається, то клітина гине або виникає мутація.

1.2 ГЕНЕТИЧНИЙ КОД

З моделі структури ДНК, запропонованої Уотсоном і Кріком, відомо, що генетична інформація передається за допомогою якоїсь специфічної послідовності нуклеотидів її молекули. Вперше питання про код було поставлене Гамовим у 1953 р.

Початок прямого генетико-біохімічного аналізу кодонів було покладено в 1961 р. Ніренбергом та Маттеї, які створили найпростіші синтетичні полімери й замінили ними нативні молекули іРНК в системі компонентів клітин бактерій та суміші амінокислот. У суміші кожного типу одна з амінокислот була помічена радіоактивним вуглецем С14, інші дев'ятнадцять не мали позначення. Було встановлено, що синтетичний полірибонуклеотид, складений тільки з урацилу (поліуридилова кислота - УУУУУ), визначає синтез білка, в якому кожна амінокислоти була фенілаланіном. Виходячи з цього, встановили, що триплет УУУ є кодоном для фенілаланіну.

У наступних подібних експериментах було визначено, що поліаденінова кислота містить код для лізину, а поліцитидинова - для проліну. Наступні досліди, де як штучні ІРНК виступали полінуклеотиди змішаного складу (наприклад, полі-АУ), виявили зв'язок між рядом інших поєднань нуклеотидів та конкретними амінокислотами.

Синтетичні полінуклеотиди створюють з використанням ферменту полінуклеотидфосфорилази, який зв'язує нуклеотиди у випадковому порядку. Для перших експериментів цього було достатньо, оскільки в них використовували синтетичні полінуклеотиди, складені з одного типу нуклеотидів. Потім були знайдені шляхи складніших синтезів молекул з різних нуклеотидів із різними положеннями.

Нову методику широко використав Очоа із співробітниками, що дало їм можливість визначити триплети для всіх 20 амінокислот (табл.4). При цьому було зазначено, що код має вироджений характер, який означає здатність для однієї й тієї ж кислоти бути кодованою кількома різними триплетами. Наприклад, є амінокислоти, які мають по шість кодонів; п'ять амінокислот, кожна з яких кодується чотирма різними кодонами. Так, аланін кодується триплетами ГЦУ, ГЦЦ, ГЦА, ГЦГ, куди в усіх випадках входять нуклеотиди цитозину та гуаніну. Поряд з тим є амінокислоти, що кодуються трьома, двома і тільки дві - одним триплетом азотистих основ.

Крім того, триплети УАА, УАГ, УГА не кодують амінокислоти, а є своєрідними "крапками" в процесі зчитування інформації. Якщо процес синтезу наближається до такої "крапки" в молекулі ДНК, синтез даного поліпептидного ланцюга припиняється. Після "крапки" починає синтезуватися нова молекула білка. Процес зчитування інформації відбувається в одному і тому ж напрямі. Так, якщо в молекулах азотисті основи розміщені в такому порядку: ААА, ЦЦЦ, УГУ, УЦУ, то це значить, що закодовані такі послідовно розміщені амінокислоти: лізин (ААА), пролін (ЦЦЦ), цистин (УГУ), серін (УЦУ). Саме в цій послідовності вони повинні розміщуватися в поліпептидному ланцюзі при синтезі білка. Якщо в першому триплеті ІРНК буде втрачено один аденін, то порядок основ набуває вигляду ААЦЦЦУГУУЦУ. Внаслідок цього склад всіх триплетів змінюється. Так, перший стане не ААА, а ААЦ. Подібний триплет кодує амінокислоту аспарагін, а не лізин, як було раніше. Другий стане вже не ЦЦЦ, а ЦЦГ і так далі. У деяких умовах іn vitro код може бути двозначним, тобто один триплет може кодувати кілька амінокислот. Кодон УУУ в звичайних умовах кодує амінокислоту фенілаланін. Проте якщо рибосоми обробити стрептоміцином, то цей кодон починає також кодувати ізолейцин і серин. Знижена температура та висока концентрація іонів Мg++ також зумовлюють двозначність у дії кодонів.

Таблиця

Генетичний код послідовності нуклеотидів у триплетних кодонах інформаційної РНК, який визначає певну амінокислоту

Перший

Третій нуклеотид

(на 3'- кінці

кодону)

нуклеотид (на 5'-кінці кодону)

Другий гуклео-тид

У

ц

А

г

У

У

Фен

Фен

Лей

Лей

ц

Сер

Сер

Сер

Сер

А

Тир

Тир

Термінатор (знак закінчення)

Термінатор (знак закінчення)

Г

Цис

Цис

Арг

Три

У

Лей

Лей

Лей

Лей

Ц

Ц

Про

Про

Про

Про

А

Гіс

Пс

Глі

Глі

Г

Арг

Арг

Арг

Арг

У

Іле

Іле

Іле

Мет

А

Ц

Тре

Тре

Тре

Тре

А

Асп

Асп

Ліз

Ліз

Г

Сер

Сер

Арг

Арг

У

Вал

Вал

Вал

Вал

г

Ц

Ала

Ала

Ала

Ала

А

Асп

Асп

Глу

Глу

Г

Глі

Глі

Глі

Глі

Генетичний код характеризується неперекритістю. Цей принцип був доведений дослідженням мутацій, які порушують синтез білків. У випадку перекриття коду зміна в одній парі нуклеотидів неминуче повинна спричинити порушення в трансляції трьох амінокислот, бо у коді, що перехрещується, кожний з нуклеотидів входить до трьох кодонів. Насправді експериментами доведено, що мутації змінюють транслювання тільки однієї амінокислоти, що чітко вказує на неперекритість коду. Для поняття принципів генетичного коду значний інтерес являють дані по заміщенню амінокислот внаслідок зміни всередині триплетів.

У Е. соlі (кишкової палички, яка є в кишечнику всіх організмів) були одержані шість мутантів, що мали різні дефекти у триптофансинтетазі, причиною яких стали заміщення гліцину в специфічній точці поліпептидного ланцюга. Ці мутації відрізняються від попереднього стану зміною одного нуклеотиду. Якщо ця гіпотеза правильна, то вона може бути перевірена в дослідах по рекомбінації, оскільки кросинговер всередині триплетів повинен змінювати його код. Наприклад, схрещування між мутацією В, кодуючою аргінін, та мутацією С, кодуючою валін, повинні дати рекомбінантні триплети, які будуть кодувати серин та гліцин: мутант В - УГЦ -аргінін; мутант С - УУГ - гліцин.

У випадку кросинговеру на іншій ділянці (ГЦ і УГ) повинні з'явитися рекомбінанти - перший блок кросинговеру: ЦГГ - дикий тип - гліцин; другий -додатковий кросинговер: УУЦ - мутант - серин. У наступних дослідах ці рекомбінанти були виявлені і повністю відповідали передбаченням.

У випадках серповидноклітинності гемоглобіну у людини серед 300 амінокислот, які входять до складу гемоглобіну, тільки одна замінена мутацією. У гемоглобіні С в цьому місці з'являється інша амінокислота - лізин (рис.1)

(Численними дослідженнями встановлена дивовижна універсальність генетичного коду. Він однаково проявляє себе в системах, одержаних з вірусів, бактерій, водоростей та ссавців. Очевидно, він єдиний для всього органічного світу, що є одним з найпереконливіших доказів загального походження всієї живої природи.

Рис. 1 Зміна нуклеотидів у кодових триплетах у цистроні, що визначає молекулу гемоглобіну у людини

1.3 СТРУКТУРНА ОРГАНІЗАЦІЯ ГЕНОМА

Під геномом розуміють сукупність носіїв спадкової інформації, що міститься в клітині. ДНК прокаріот оточена слабо зв'язаним з нею основним білком і ніяк структурно не організована. Характерна морфологія еукаріотичних хромосом свідчить, що вони організовані значно складніше, ніж: геноми прокаріотичних клітин. У еукаріотів більша частина ДНК знаходиться у міцному комплексі з білками та утворює нуклеопротеїдні волокна, які називаються хроматином. У переважній більшості клітин хроматинові білки представлені гістонів. Гістоні -цс невеликі за розміром (50-200 амінокислотних залишків) основні білки з позитивним зарядом (зумовлений наявністю трьох амінокислот: аргініну, лізину, гістидину). Утворення комплексу з ДНК (що має негативний заряд) відбувається за рахунок іонних зв'язків між; фосфатною групою полінуклеотидного ланцюга та аміногрупою поліпептиду. Гістоні розділяють на п'ять типів: Н1, Н2А, Н2В, НЗ, Н4, які відрізняються один від одного кількістю амінокислот та відношенням лізин : аргінін. Цікаво, що структура гістонів НЗ та Н4 з проростків гороху і з тімусу теляти, як довели Сміт та Де Ланж, дуже подібні, тобто послідовність амінокислот збереглася протягом приблизно 3-6*108 років з часу розділення всього живого на рослини та тварини. Ця консервативність свідчить, що зазначені гістони виконують дуже важливу функцію, яка виникла на початку еволюції еукаріот і збереглася до нашого часу. Білкам властива здатність до зміни заряду, форми молекул, до утворення водневих зв'язків, що може мати важливе значення у регуляції доступності ДНК до реплікації та транскрипції.

Слід зазначити, що, на відміну від ядерної ДНК, ДНК мітохондрій та хлоропластів не зв'язана з гістонів (як ДНК прокаріот), що підтверджує гіпотезу симбіотичного походження цих органоїдів.

Виходячи з даних, одержаних різними методами, Корнберг (1974) висловив припущення, що хроматин складається з повторюваних субодиниць, кожна з яких містить 200 пар нуклеотидів та по дві молекули гістонів Н2А, Н2В, НЗ, Н4. Повторювані одиниці називають нуклеосомами. Більша частина ДНК намотана на гістонову серцевину, решта, так звана міжнуклеосомна ДНК, з'єднує сусідні нуклеосоми та забезпечує гнучкість гістонів нитки. Таким чином, хроматинова нитка являє собою гнучкий ланцюг гістонів, що нагадує намистини на нитці.

В 60-х роках цього століття почались інтенсивні дослідження по локалізації конкретних генів на хромосомах для побудови хромосомних карт. Як встановлено, в геномі людини нараховується близько 500 тис. різних структурних генів, тобто генів, в яких закодована інформація про амінокислотну послідовність білків; кількість ДНК в ядрі клітини така, що відповідає числу генів, яка в 50-100 раз більша.

Значна кількість ДНК приходиться на повторювані послідовності нулеотидів, які можуть грати в хромосомі регуляторну, структурну або функціональну роль.

Реєструючи порушення, які викликаються мутаціями генів, вдалося виявити більше 900 генних локусів із загального числа 500 тис. структурних генів (геном людини), до якого входять гени, які кодують всі ферменти внутрішнього метаболізму, всі структурні білки та всі білки, яким властиві спеціальні функції, такі як гемоглобіни та імуноглобуліни, а також ферменти, які беруть участь в утворенні фібрил колагену (її роколагенпептидаза, глюкозилтрансфераза, лізнлоксидаза) та в утворенні нуклеїнових кислот (ДНК- та РНК-полімераза).

Істотна частина постульованої кількості генів приходиться на регуляторні гени.

Положення генних локусів на хромосомах людини визначали на основі аналізу гетерозигот та вивчення родин (варіації в межах виду), а пізніше - за допомогою гібридних клітин, які утворюються в результаті злиття соматичних клітин. Зручним інструментом досліджень був також метод гібридизації нуклеїнових кислот: таким засобом на хромосомах 13, 14, 15, 21 та 22 були локалізовані гени 183 та 283 рРНК, а на хромосомі 1 -гени 53 рРНК. Цим же методом встановлено, що гени а- та р-ланцюгів гемоглобіну знаходяться на хромосомах 2 та 4 або 5. Метод гібридизації нуклеїнових кислот дозволяє картувати гени гістонів, імуноглобулінів та колагенів.

Клонування нуклеїнових кислот та наступна гібридизація їх з фрагментами хромосом також можуть бути корисними для точної локалізації генів та побудови докладної карти геному.

Результати подібних досліджень будуть досить важливими для прогресу медицини, який буде залежати від повного розуміння функціонування геному. Дійсно, ряд хвороб пов'язані з наявністю дефектів певних генів. Лікування або попередження генетичних порушень потребує загальних знань структури, функціонування та регуляції роботи генів.

1.4 КЛОНУВАННЯ ГЕНІВ

Основою проведення генно-інженерних досліджень є молекула ДНК, що показана на схемах (рис. 2-3 ).При цьому роботи виконують в певній послідовності : спочатку виділяють гени з окремих клітин або синтезують їх поза організмом, потім включають нові гени у вектор, поєднують ДНК гена і вектора і одержують рекомбінантну ДНК; далі переносять визначені гени в геном клітини-хазяїна, проводять копіювання і розмноження виділених або синтезованих генів у складі вектора (клонування генів) і одержують генний продукт шляхом експериментальної експресії чужорідного гена в реципієнтній клітині. Відомо два шляхи виділення генів та створення ргкомбінантної ДНК.

Перший - за допомогою хімічного синтезу, а другий, більш поширений, грунтується на використанні особливих ферментів (рестриктаз), які мають властивість розпізнавати чужорідну ДНК, що проникла в організм, і розщеплювати її у відповідних ділянках. В результаті утворюються фрагменти різноманітних розмірів, які різняться між собою за довжиною. Відомо близько 500 ферментів рестриктаз і кожний розщеплює ДНК специфічно. Хоча багато з них за специфічністю подібні, проте кількість сайтів (ділянок) розщеплення становить близько 120. Зазначені ферменти позбавлені видової специфічності. Завдяки цьому можна поєднувати в одне ціле фрагменти ДНК будь-якого походження і подолати природний видовий бар'єр. На рисунку 5 схематично зображено дію ферменту на молекулу ДНК, що зумовлює відокремлення від неї частини нуклеотидів.

Частини й розриви ниток ДНК лігизують (склеюють) за допомогою ферменту лігази. Особливістю виділених ділянок нуклеотидів (генів) є так звані липкі кінці, через що їх можна приєднати до ділянок ДНК плазмід (для рослин і бактерій) або фагів (тварин). Таким чином створюється вектор для перенесення виділених генів у клітину-реципієнт.

Відомо інший шлях одержання фрагментів ДНК з липкими кінцями. Для цього виділені або штучно синтезовані ділянки ДНК обробляють ендонуклеазою, яка укорочує її з обох боків. Потім за допомогою ферменту полінуклеотидтрансферази добудовують до цих кінців ділянки аденінових і тимідинових нуклеотидів. Одержану молекулу рекомбінантної ДНК використовують для перенесення чужорідного гена в бактеріальну клітину. Така схема була використана для генів інсуліну, інтерферону, імуноглобуліну.

Молекули ДНК, які мають власний апарат реплікації і здатні доставляти в клітину потрібні гени, реплікувати їх, були названі векторами. Найбільш поширені вектори - це різноманітні плазміди, які часто спостерігаються у бактерій. Вектори для клітин ссавців будуються на основі вірусів, адено- та ретровірусів.

Рис.3 Молекула ДНК, поділена на гени

Рис.4 Процес утворення рекомбінантної ДНК

1-бактеріальна ДНК; 2-рослинна ДНК.

Потрібно враховувати, що наявність навіть введення гена у хромосому організма-хазяїна ще не дає можливості одержувати продукти його синтезу.

Рис.5 Рестрикційні ферменти розпізнають послідовності, виділені прямокутником, і вирізують ДНК на місці, зазначеному стрілками

Для того, щоб ген міг функціонувати, він повинен поряд з частиною, де закодована інформація, мати ще регуляторну ділянку. Це, так звані промотор та термінатор. З промотора починається зчитування інформації (транскрипція), а в термінаторі закодовано закінченння транскрипції з даного гена. Нині створено цілий «арсенал» клонованих промоторів, які дають можливість забезпечити проявлення генів у різних типах клітині.

Слід враховувати також, що не всі молекули плазмідної ДНК можуть мати вставки чужої ДНК і відповідно не будуть рекомбінантними. Більшість плазмід відновлює вихідну кільцеву структуру. Тому, перш за все необхідно відібрати бактерії, що містять рекомбінантні плазміди.

Для відбору рекомбінантних ДНК найбільш поширеною є система, при якій чужорідну ДНК вбудовують в частину плазмідного гена, що кодує стійкість проти певного антибіотика, наприклад, ампіциліну. У випадку вбудовування чужорідної ДНК цей ген перестає нормально функціонувати, що свідчить про наявність рекомбінантної ДНК.

і Молекули рекомбінантної плазміди розмножуються в клітині. В процесі ділення бактеріальної клітини вони розподіляються між дочірними клітинами і в кожній з них знову відновлюють свою кількість. В результаті створюються колонії бактерій, кожна з яких містить багато копій рекомбінантної ДНК. У кожному такому клоні міститься лише один відрізок ДНК тварини або рослини, який випадково потрапив у вихідну бактерію.

При цьому такий клон містить 1-2 гени, а якщо врахувати, що клонів значна кількість, то вони теоретично представляють всі гени, що є в геномі тварини.

Отже, для створення банку генів кроля, що характеризує всю молекулу ДНК або весь геном, необхідно 920000 клонів, для банку класичного об'єкта генетичної інженерії - кишкової палички - 1300. Для генома ссавців потрібен банк генів з фрагментами ДНК 0,8-1 млн. клонів)

Перший банк генів було створено для Е. соlі у 1976 р; потім -для інших видів, в тому числі і для великої рогатої худоби. Також було створено бібліотеки клонів ДНК гіпофіза і гормона росту .

Велике значення мало одержання за допомогою генетичної інженерії інтерферону для людини. Відомо, що інтерферон - це білок, який характеризується універсальною антивірусною дією. Але до останнього часу не була відома амінокислотна послідовність цього білка та не розроблена методика одержання його у чистому вигляді. Тому на першому етапі в крові людини виділили інтерферонову інформаційну РНК, на якій за допомогою ревертази синтезували ген інтерферону. На другому етапі зазначений ген ввели в плазміду і одержали високопродуктивний у-штам бактерій, що виробляв штучний інтерферон. Після того, як була визначена його амінокислотна послідовність та склад нуклеотидів, цей ген було синтезовано хімічним шляхом.

2. ГЕННО-ІНЖЕНЕРНІ ПІДХОДИ ДО СТВОРЕННЯ ІНТЕНСИВНИХ ТЕХНОЛОГІЙ В ХАРЧОВІЙ ГАЛУЗІ

Сформована у світі ситуація з м'ясною сировиною приводить до дефіциту тваринного білка в раціоні харчування населення. Тому в технології виробництва харчових продуктів досить актуальне комбінування білків тваринного й рослинного походження, які економічно сполучать у собі високу харчову цінність і забезпечують виробництво готової продукції відповідно до вимог споживача до її якості.

Створення комбінованих варених ковбасних виробів з використанням функціональних рослинних білків не суперечить рекомендаціям Комісії «Кодекс Аліментариус» ФАО/ВІЗ, у яких, зокрема, декларується їхня кількість, як замінників м'яса, не більше 50%. По технологічних, органолептичних і фізико-хімічних показниках такі вироби повинні бути адекватні групі традиційних варених ковбасних виробів.

Останнім часом в усім світі зросло споживання генетично модифікованих джерел (ГМИ) рослинної сировини. В 2005р. загальна площа посівних площ під трансгенними культурами у світі перевищила 90 млн. га.

Домінуючими трансгенними культурами, використовуваними як продовольча сировина, є соя, рапс і кукурудза. Лідируюче положення в цьому ряді займають білки сої завдяки їхнім функціональним властивостям, харчовій цінності й низкою собівартості.

У Росії після проходження відповідної процедури реєстрації дозволена до ввозу, переробці й використанню в продуктах харчування, що випускається у світі в промислових масштабах генетично модифікована (ГМ) соя, стійка до гербіцидів, а також продукти її переробки.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.