Некоторые характеристики загрязняющих и биогенных веществ в водной среде

Главные источники соединений железа в поверхностных водах. Аналитическая классификация катионов, связанная с их разделением на аналитические группы при последовательном действии групповыми реагентами. Окислительные состояния хрома в природных водах.

Рубрика Экология и охрана природы
Вид статья
Язык русский
Дата добавления 06.09.2015
Размер файла 610,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Некоторые характеристики загрязняющих и биогенных веществ в водной среде

Загрязняющие вещества

загрязняющий биогенный водный

К тяжелым металлам относят более 40 элементов периодической системы Д.И. Менделеева с атомной массой свыше 50 атомных единиц: V, Сг, Мn, Fе, Со, Ni, Си, Хп, Мо, Сn, Hg, Рb, Вi и др. При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов.

Ионы металлов являются непременными компонентами природных водоемов. В зависимости от условий среды (рН, окислительно-восстановительного потенциала, наличия лигандов) они существуют в разных степенях окисления и входят в состав разнообразных неорганических и металлорганических соединений, которые могут быть истинно растворенными, коллоидно-дисперсными или входить в состав минеральных и органических взвесей.

Истинно растворенные формы металлов, в свою очередь, весьма разнообразны, что связано с процессами гидролиза, гидролитической полимеризации (образованием полиядерных гидроксокомплексов) и комплексообразования с различными лигандами. Соответственно, как каталитические свойства металлов, так и доступность для водных микроорганизмов зависят от форм существования их в водной экосистеме.

Многие металлы образуют довольно прочные комплексы с органическими соединениями; эти комплексы являются одной из важнейших форм миграции элементов в природных водах. Большинство органических комплексов образуются по хелатному механизму и являются устойчивыми. Комплексы, образуемые почвенными кислотами с солями железа, алюминия, титана, урана, ванадия, меди, молибдена и других тяжелых металлов, относительно хорошо растворимы в условиях нейтральной, слабокислой и слабощелочной сред. Поэтому металлорганические комплексы способны мигрировать в природных водах на весьма значительные расстояния. Особенно важно это для маломинерализованных и в первую очередь поверхностных вод, в которых образование других комплексов невозможно.

Источниками загрязнения вод тяжелыми металлами служат сточные воды альванических цехов, предприятий горнодобывающей промышленности, черной и цветной металлургии, машиностроительных заводов. Тяжелые металлы входят в состав удобрений и пестицидов и могут попадать в водоемы вместе со стоком с сельскохозяйственных угодий.

Повышение концентраций тяжелых металлов в природных водах часто связано с другими видами загрязнения, например, с закислением. Выпадение кислотных осадков способствует снижению рН и переходу металлов из сорбированного (на минеральных и органических веществах) состояния в свободное.

ТМ относятся к числу распространенных и сильно токсичных веществ. Загрязнение ими морских вод происходит в результате демпинга, сброса в акватории стоков от различных промышленных предприятий, стоков сельского хозяйства, стоков рек, а также через атмосферу (с пылью и жидкими атмосферными осадками).

Основным источником поступления меди в природные воды являются сточные воды предприятий химической, металлургической промышленности, шахтные воды, альдегидные реагенты, используемые для уничтожения водорослей. Медь может появляться в результате коррозии медных трубопроводов и других сооружений, используемых в системах водоснабжения. В подземных водах присутствие меди обусловлено взаимодействием воды с медьсодержащими горными породами.

Главными источниками соединений железа в поверхностных водах являются процессы химического выветривания горных пород, сопровождающиеся их механическим разрушением и растворением. В процессе взаимодействия с содержащимися в природных водах минеральными и органическими веществами образуется сложный комплекс соединений железа, находящихся в воде в растворенном, коллоидном и взвешенном состояниях. Значительные количества железа поступают с подземным стоком и со сточными водами предприятий металлургической, металлообрабатывающей, текстильной, лакокрасочной промышленности и с сельскохозяйственными стоками.

В поверхностные воды марганец поступает в результате выщелачивания железомарганцевых руд и других минералов, содержащих марганец. Значительные количества марганца поступают в процессе разложения водных животных и растительных организмов, особенно сине-зеленых, диатомовых водорослей и высших водных растений. Соединения марганца выносятся в водоемы со сточными водами марганцевых обогатительных фабрик, металлургических заводов, предприятий химической промышленности и с шахтными водами.

Присутствие никеля в природных водах обусловлено составом пород, через которые проходит вода: он обнаруживается в местах месторождений сульфидных медно-никелевых руд и железоникелевых руд. В воду попадает из почв и из растительных и животных организмов при их распаде. Повышенное по сравнению с другими типами водорослей содержание никеля обнаружено в сине-зеленых водорослях. Соединения никеля в водные объекты поступают также со сточными водами цехов никелирования, заводов синтетического каучука, никелевых обогатительных фабрик. Значительные выбросы никеля сопровождают сжигание ископаемого топлива. Концентрация его может понижаться в результате выпадения в осадок таких соединений, как цианиды, сульфиды, карбонаты или гидроксиды (при повышении рН), за счет потребления его водными организмами и процессов адсорбции.

В поверхностные воды соединения трех- и шестивалентного хрома попадают в результате выщелачивания их из пород. Некоторые количества поступают из почв, в процессе разложения организмов и растений. Значительные количества могут поступать в водоемы со сточными водами гальванических цехов, красильных цехов текстильных предприятий, кожевенных заводов и предприятий химической промышленности. Понижение концентрации ионов хрома может наблюдаться в результате потребления их водными организмами и процессов адсорбции.

Цинк попадает в природные воды в результате протекающих в природе процессов разрушения и растворения горных пород и минералов, а также со сточными водами рудообогатительных фабрик и гальванических цехов, производств пергаментной бумаги, минеральных красок, вискозного волокна и др.

Аналитическая классификациая катионов

Аналитическая классификация катионов связана с их разделением на аналитические группы при последовательном действии групповыми реагентами. В настоящем руководстве подробно рассматривается кислотно-щелочная схема разделения катионов, поэтому их аналитические реакции целесообразно изучать в соответствии с кислотно-щелочной классификацией:

Номер группы Катионы

I Li(I), NH4 +, Na(I), K(I), Mg(II)

II Ca(II), Sr(II), Ba(II)

III Ag(I), Hg(I), Pb(II), W(VI)

IV Zn(II), Al(III), Sn(II, IV), V(V), Сr(III), Mo(VI)

V Ti(IV), Zr(IV), Sb(III, V), Bi(III), Mn(II),

Fe(II, III)

VI Co(II), Ni(II), Cu(II), Cd(II), Hg(II), Mg(II)

Поскольку катион Mg(II) практически всегда встречается с катионами I и II групп и по аналитическим свойствам занимает промежуточное положение, характерные реакции ионов магния изучают после реакций катионов I группы.

Далее рассмотрены свойства, формы содержания в природных водах, а также качественные реакции и методы анализа наиболее значимых катионов тяжелых металлов, представленных III-VI аналитическими группами.

ТРЕТЬЯ ГРУППА КАТИОНОВ

Ртуть (I)

1. Сероводород и сульфид аммония. При добавлении сульфид-иона к раствору, содержащему ионы Hg(I), образуется черный осадок, состоящий из HgS и Hg:

Hg22+ + S2? = Hgv + HgSv

Ртуть в степени окисления + 1 существует в виде иона Hg22+. Близость величин и обусловливает равновесие

Hg22+ = Hg2+ + Hg

Диспропорционирование Hg22+ возможно, поскольку ионы Hg(II) образуют малорастворимые и малодиссоциированные соединения с большинством лигандов. Предел обнаружения ртути -- 5 мкг.

2. Аммиак. При действии аммиака на Hg2Cl2 образуется черный осадок Hg и HgNH2Cl:

Hg2Cl2 + 2NH3 = Hgv + HgNH2Clv + NH4Cl

Предел обнаружения ртути -- 20 мкг.

3. Соляная кислота (люминесцентная реакция). Для обнаружения Hg(I) можно использовать реакцию образования каломели Hg2Cl2, способной люминесцировать оранжево-красным светом в ультрафиолетовом свете. Предел обнаружения ртути -- 0,5 мкг. Не мешают 200-кратные количества Cu(II), Pb(II), Ag(I), Sn(II), Bi(III). Интенсивность свечения каломели значительно снижается в присутствии Hg(II), металлической ртути и оксида азота (IV).

Свинец

1. Дихромат или хромат калия. При добавлении дихромата или хромата калия к нейтральному или уксуснокислому раствору соли свинца образуется желтый осадок РbСrО4:

2Pb(NO3)2 + К2Сr2О7 + 2СН3COONa + Н2О = 2PbCrO4 + 2СН3СООН + 2KNO3 + 2NaNO3

Cr2O72? + H2O = 2CrO42? + 2Н +

Осадок РbСrO4 малорастворим в разбавленных HNO3 или НС1; практически нерастворим в аммиаке, уксусной кислоте, ацетате и тартрате аммония. Растворяется в NaOH и концентрированной HNO3. Например:

PbCrO4 + 4NaOH =Na2Pb(OH)4 + Na2CrO4

Эта реакция позволяет отличить РbСrО4 от ВаСrО4, который не растворяется в NaOH.

Предел обнаружения свинца -- 20 мкг. Мешают Ba(II), Sr(II), Bi(III), Hg(II), Ag(I), образующие с хромат-ионами окрашенные осадки. В их присутствии свинец предварительно выделяют в виде сульфата (при этом осаждаются также BaSO4 и SrSO4). Осадок сульфатов растворяют при нагревании в ацетате или тартрате аммония; свинец в виде комплексных соединений переходит в раствор:

2PbSO4 + 2CH3COONH4 = Pb2SO4(CH3COO)2 + (NH4)2SO4

PbSO4 + C4H4O6(NH4)2 = (NH4)2PbC4H2O6 + H2SO4

При добавлении к полученному раствору СН3СООН и К2Сr2O7 выпадает желтый осадок РbСrО4.

2. Иодид калия. Ионы свинца осаждаются иодид-ионами в виде желтого осадка PbJ2, легкорастворимого при нагревании и вновь выпадающего при охлаждении раствора. Это одна из наиболее красивых аналитических реакций. Предел обнаружения свинца -- 100 мкг.

В избытке KJ осадок растворяется с образованием РbJ(Н2О)3+, РbJ22О)2 и РbJ32О)?, РbJ42?. Аналогичные комплексы образуются при действии избытка галогеноводородной кислоты на РbС12 и РbВr2, а во фторидных растворах образуется только PbF(H2O)3+. Поскольку РbJ2 растворим значительно меньше, чем РbС12, то при добавлении KJ к насыщенному раствору РbС12 выпадает желтый осадок РbJ2.

Реакция неселективна: Ag(I), Hg(I), Cu(II), Fe(III), CrO42?, MnO4? взаимодействуют с KJ. Поэтому для обнаружения свинца предварительно выделяют осадок хлоридов свинца, серебра и ртути (I). При обработке этого осадка горячей водой растворяется только РbС12. К полученному водному раствору после охлаждения прибавляют KJ и наблюдают выпадение желтого осадка.

3. Дитизон. В нейтральных и слабощелочных растворах дитизон реагирует с ионами свинца, образуя внутрикомплексное соединение красного цвета. Предел обнаружения свинца -- 0,8 мкг.

Дитизонат свинца нерастворим в воде, но растворим в органических растворителях (СС14 и СНС13).

Дитизон образует окрашенные комплексные соединения с Мn(II), Fe(II), Со(II), Ni(II), Cu(I, II), Ag(I), Zn(II), Cd(II), Hg(I, II), Sn(II) и др. Избирательность можно повысить, применяя маскирующие реагенты. В присутствии 0,1 М раствора цитрата или тартрата (для предотвращения образования нерастворимых гидроксидов металлов) и цианид-ионов (в качестве маскирующего реагента) кроме свинца дитизон взаимодействует только с висмутом и оловом (II). От висмута свинец можно легко отделить реэкстракцией разбавленной азотной кислотой (рН 2). Дитизонат висмута полностью остается в органической фазе. Мешающее влияние олова (II) можно устранить его предварительным окислением. Свинец маскируют ЭДТА и фосфат-ионами.

4. Соляная кислота (люминесцентная реакция). При медленном приливании НСl к раствору соли свинца выделяется белый осадок РbС12, растворимый в избытке НС1 с образованием РbС132О)? и РbС142?. Замороженные солянокислые растворы свинца (-196 °С, жидкий азот) обладают синей люминесценцией, которая переходит в зеленую при размораживании. Ион Рb(II), подобно Sb(III) и Bi(III), принадлежит к ряду так называемых ртутеподобных ионов. В замороженном состоянии их галогенидные комплексы обладают собственной люминесценцией. Обнаружение свинца можно проводить в 1 -- 11 НС1.

Предел обнаружения свинца -- 0,04 мкг. Не мешают 1000-кратные количества Na(I), NH4+, K(I), Ba(II), Sr(II), Mg(II), ), Cd(II), Co(II), Ni(II), Сr(III), Fe(III), Al(III), As(III).

Вольфрам

1. Соляная, азотная и серная кислоты. Подкисление растворов вольфрама (VI) при комнатной температуре приводит к образованию белого осадка вольфрамовой кислоты WO3•2H2O. Это соединение не содержит отдельных молекул H2WO4; все протоны связаны в молекулах воды. При нагревании дигидрат превращается в желтый моногидрат WO3•Н2О.

Осаждение вольфрамовой кислоты начинается при рН 5,4 (KS = 2,1•10?22). Растворимость в 1 М НС1 при 25 °С равна 1,0•10?4 М.

В зависимости от рН, концентрации W(VI) и времени стояния раствора состояние ионов W(VI), их реакционная способность различны, что необходимо учитывать при проведении реакций обнаружения W(VI).

Фтористоводородная и органические кислоты (щавелевая, винная, лимонная и др.) препятствуют осаждению вольфрамовой кислоты, так как образуют устойчивые комплексы:

WO3•2H2O + HF = HWO3F + 2H2O

WO3•2Н2О + Н2С2О4 = H2WO3(C2O4) + 2Н2О

2. Сероводород и сульфид аммония. В кислых растворах сероводород с вольфрамовой кислотой не взаимодействует. При добавлении сульфида аммония к раствору вольфраматов образуются тиосоли:

WO42? + 4S2? + 8NH4+ = WS42? + 8NH3 + 4Н2О

При подкислении тиосоли разлагаются с образованием желтого сульфида:

WS42? + 2Н + = WS3v + H2S

Реакции образования вольфрамовой кислоты и сульфида вольфрама применяются для отделения вольфрама (VI) от других ионов.

3. Металлический цинк (алюминий) и хлорид олова (II) в кислом растворе восстанавливают вольфрамовую кислоту с образованием продуктов переменного состава, содержащих соединения W(VI) и W(V) интенсивно-синего цвета. Предел обнаружения вольфрама -- 5 мкг.

ЧЕТВЕРТАЯ ГРУППА КАТИОНОВ

Цинк

Цинк - энергичный водный мигрант; особенно характерна его миграция в термальных водах вместе с Pb; из этих вод осаждаются сульфиды цинка, имеющие важное промышленное значение. Цинк также энергично мигрирует в поверхностных и подземных водах; главным осадителем для него является H2S, меньшую роль играет сорбция глинами и другие процессы. Цинк - важный биогенный элемент; в живом веществе содержится 5•10-4% цинка, но имеются и организмы- концентраторы (например, некоторые фиалки).

В воде цинк существует главным образом в ионной форме или в форме его минеральных и органических комплексов, иногда встречается в нерастворимых формах: в виде гидроксида, карбоната, сульфида и др.

В речных водах концентрация цинка обычно колеблется от 3 до 120 мкг/дм , в морских -- от 1,5 до 10 мкг/дм .

Цинк относится к числу активных микроэлементов, влияющих на рост и нормальное развитие организмов. В то же время многие соединения цинка токсичны, прежде всего его сульфат и хлорид.

ПДКВ 2п составляет 1 мг/дм (лимитирующий показатель вредности -- общесанитарный), ПДКвр 2п2+ -- 0,01 мг/дм3 (лимитирующий показатель вредности -- токсикологический).

Эндрогенный минерал цинка - сфалерит ZnS - в воде растворяется лучше, чем другие сульфиды.В зоне окисления сфалерит сравнительно легко разлагается с образованием сульфатов и карбонатов. Почти все соединения цинка, кроме фтористого цинка ZnF2, относительно широко растворимы в природных водах. В следствии этого, в отличие от меди и свинца цинк хорошо растворен в водах (занимает второе место после марганца). В загрязненных тяжелыми металлами водах концентрация цинка может достигать сотни микрограммов на 1 л. При содержании цинка 10 мкг/л рН выпадения его гидроксида равняется 9,5.Цинк - необходимый элемент, как для человека, так и для растений. В организме цинк уменьшает токсичность кадмия и меди. При недостатке цинка в растительных организмах нарушается обмен углеводов и белков, уменьшается содержание хлорофилла. Цинк образует значительное количество комплексов различной прочности. Среди процессов, оказывающих наиболее существенное влияние на поведение цинка (II) в водных растворах, выделяют гидролиз и комплексообразование.

В результате гидролиза образуется несколько многоядерных гидрокомплексов, для природных вод наиболее характерны [ZnOH+] и в меньшей степени [Zn(OH)2]o. В составе неорганических комплексных соединений цинка при отсутствии органических лигандов преобладают карбонатные и гидрокарбонатные комплексы. В присутствии органических лигандов степень закомплексованности Zn2+ значительно возрастает и достигает 85-97% валового содержания растворенных форм цинка. Среди металлов цинк (II) по устойчивости комплексных соединений с гумусовыми веществами занимает четвертое место после Hg(II), Cu(II), Ni(II). Прочность комплексов цинк с гумусовыми веществами зависит от кислотности среды и увеличивается с возрастанием рН. Миграционная способность у цинка более высокая, чем у меди и свинца.

В почве цинк принадлежит к числу редких элементов (микроэлемент). Накопление цинка в почве происходит при разложении органических веществ, поскольку он входит в зольный состав растений и микроорганизмов. Цинк - постоянная, необходимая для жизни составная часть растений и животных. Концентрируют его многие морские моллюски и рыбы (в печени и мышцах). Обычная концентрация цинка в пищевых растениях 1-10 мг/100 г свежего вещества. Повышенное содержание его обнаруживается в дрожжах, пшеничных и рисовых отрубях, зернах какао, шляпках грибов. Физиологическая роль цинка определяется его связью с активностью некоторых ферментов и гормонов. Цинк существенно влияет на активность гормонов гипофиза, участвует в реализации биологического действия инсулина, поддерживает кислотно-щелочное равновесие в организме. Его липотрофные свойства с способствуют нормализации жирового обмена, усиливая распад жиров и предотвращая жировую дистрофию печени. Определенную роль цинк играет в кроветворении. В организме он находится в виде легко диссоциирующих соединений с белком. При недостатке цинка замедляется рост и развитие организма. Избыток цинка также отрицательно сказывается на жизнедеятельности организма, вызывая анемию. Это объясняется тем, что цинк вытесняет медь из биологически активных соединений, участвующих в кроветворении. Следует отметить, что металлический цинк не токсичен для организма, выраженной токсичность обладают сульфаты, хлориды и другие соли.

1. Тетрароданомеркурат (II) аммония образует с ионами цинка в слабокислой среде белый кристаллический осадок ZnHg(SCN)4:

ZnCl2 + (NH4)2Hg(SCN)4 = ZnHg(SCN)4v + 2NH4C1

Осадок растворяется в сильных кислотах и разлагается щелочами с образованием желтого осадка HgO. Предел обнаружения цинка -- 30 мкг.

В присутствии Cu(II) образуются изоморфные кристаллы фиолетового цвета; в присутствии Со(II) -- от голубого до синего цвета в зависимости от концентрации Со(II). Следует иметь в виду, что ионы Со(II) и Cu(II) при достаточно высоких концентрациях образуют с (NH4)2Hg(SCN)4 осадки синего и травянисто-зеленого цветов соответственно. Поэтому концентрация раствора СоС12•6Н2О не должна превышать 0,02%, a CuSO4•5Н2О -- 0,1%.

Мешают реакции большие количества никеля и железа (II, III). Никель и железо (II) образуют осадки зеленоватого цвета, железо (III) -- фиолетового цвета. Кроме того, в присутствии железа (III) возможно образование комплексных соединений Fe(SCN)n(3-n)+ красного цвета. Мешающее влияние железа (III) устраняют добавлением фторидов, оксалатов, фосфатов. Мешают обнаружению цинка Cd, Sn(II). Олово (II) восстанавливает Hg(II) до Hg(I) и образуется осадок Hg2Cl2.

При выполнении реакции обнаружения цинка в присутствии небольших количеств Со (II) предел обнаружения цинка снижается до 4 мкг (рН 7) и до 10 мкг в 0,5 М НС1.

2. Дитизон образует с ионами цинка внутрикомплексное соединение, хорошо растворимое в органических растворителях (СС14, СНС13). Это соединение в отличие от дитизонатов других катионов окрашивает в щелочной среде не только органическую, но и водную фазу в красный цвет. Предел обнаружения цинка -- 1 мкг. Мешают Ag(I), Hg(II), Рb(II), Cu(II), Cd(II), Со(II), Ni(II), Bi(III). Их маскируют тиосульфатом, цианидом либо осаждают в виде сульфидов.

3. Тетрароданомеркурат (II) аммония (микрокристаллоскопическая реакция). С (NH4)2Hg(SCN)4 в слабокислой среде ионы цинка образуют характерные кристаллы -- кресты, дендриты; в подкисленных минеральной кислотой или разбавленных растворах кристаллы имеют вид неравносторонних треугольников и клиньев. Предел обнаружения цинка -- 0,2 мкг (рН 7) и 0,5 мкг (0,5 М НС1). Мешают Cd(II), Co(II), Сu(II) и Fe(II).

Олово (II)

1. Сероводород в сильнокислой среде (2 М НСl) образует с ионами олова (II) осадок шоколадного цвета:

SnCl42? + H2S = SnSv + 4Сl? + 2Н+

Предел обнаружения олова -- 1,5 мкг.

Сульфид олова растворим в концентрированной НСl с образованием хлоридных комплексов; нерастворим в растворах сульфидов щелочных металлов и аммония. Это объясняется тем, что SnS обладает основными свойствами. Однако он легко растворяется в полусульфиде аммония, который сначала окисляет SnS до SnS2, а последний растворяется с образованием тиосолей:

SnS + S22? = SnS2 + S2?

SnS2 + S22? = SnS32? + S

2. Хлорид ртути (II). Ионы олова (II) в солянокислой среде восстанавливают ионы Hg(II) до Hg(I), при этом образуется белый осадок каломели Hg2Cl2:

2HgCl2 + SnCl42? = Hg2Cl2v + SnCl62?

В избытке ионов олова (II) осадок каломели постепенно чернеет, так как Hg(I) восстанавливается до металлической ртути. Предел обнаружения олова -- 12,5 мкг.

Олово (IV)

1. Восстановление олова (IV) до олова (II) металлами. Металлическое железо восстанавливает Sn(IV) только до Sn(II); металлические Mg и Аl при недостатке кислоты могут восстановить Sn(IV) до металлического. Однако при действии концентрированной НСl металлическое олово растворяется с образованием комплексов Sn(II).

2. Диметилглиоксим с ионами олова (II) или олова (IV) в присутствии ионов железа (II) образуют смешанное комплексное соединение Sn(II) -- Fe(II) -- диметилглиоксим красного цвета, экстрагируемое бутанолом. Предел обнаружения олова -- 10 мкг. Обнаружение возможно в присутствии больших количеств щелочных и щелочноземельных металлов, а также Аl(III), Сr(III), Fe(III), Zn(II), Mn(II), Ni(II), Pb(II), Cu(II), Cd(II) и 50-кратных количеств ионов Hg(I, II), Bi(III), Sb(III, V). При избытке ионов Fe(III) нужно прокипятить раствор с железными опилками до обесцвечивания раствора. Кобальт мешает определению олова, если его концентрация в исследуемом растворе больше, чем концентрация Fe(II), так как в щелочной среде кобальт образует соединение с диметилглиоксимом. Если концентрация Fe(II) превышает концентрацию кобальта, олово хорошо обнаруживается.

Ванадий (V)

1. Кислоты. Состояние ионов ванадия (V) в водном растворе зависит от концентрации ионов водорода. В щелочной среде преобладает ион VO43?. При подкислении раствора образуются более сложные ионы:

2VO43? + 3Н+ > V2O6(OH)3? + Н2О

3VO43? + 6Н+ > V3O93? + 3Н2О

При рН 1 -- 2 присутствуют ионы HnV10O28(6-n)?, в сильнокислой среде (4 М и выше) -- VO2+, VO3+.

При высоких значениях рН растворы ванадатов бесцветны, но по мере понижения рН они приобретают желтую и затем оранжевую окраску вследствие образования поливанадатов вышеуказанного состава.

Выполнение реакции. К 2 -- 3 каплям раствора, содержащего ионы ванадия (V), добавляют по каплям 1 М H2SO4. Наблюдают изменение окраски от бесцветной до оранжевой.

2. Пероксид водорода в кислой среде (2 М H2SO4 и выше) образует с ионами ванадия (V) пероксосоединения красно-коричневого цвета:

VO(O2)+ , V(O2)3+ , [V(O2)]2(SO4)3

Интенсивность окраски пероксидных соединений максимальна при соотношении компонентов 1:1 и кислотности раствора не менее 9 моль H2SO4 на 1 моль ванадия. Предел обнаружения ванадия -- 50 мкг. Следует избегать избытка Н2О2 и H2SO4; в присутствии избытка Н2О2 образуется желтая ортопероксиванадиевая кислота VO2(OH)3.

В щелочной среде пероксосоединения имеют различный состав и окраску:

VO43? + 2H2O2 = VO2(O2)23? + 2H2O

желтый

VO43? + 4H2O2 = V(O2)43? + 4H2O

сине-фиолетовый

Мешающее влияние железа (III) и титана (IV) устраняют добавлением фосфатов и фторидов, которые с указанными ионами образуют бесцветные устойчивые комплексы Fe(HPO4)+, FeF63?,TiF62?.

Вольфрам (VI) образует с Н2О2 бесцветный комплекс W2O112?. Молибден (VI) в аммиачной среде образует красный комплекс Мо2О112?, который при подкислении приобретает желтую окраску. Для уменьшения влияния ионов вольфрама и молибдена добавляют щавелевую кислоту. Пероксидные соединения хрома синего цвета экстрагируют диэтиловым эфиром. Предел обнаружения повышается в присутствии иодидов, бромидов, а также в присутствии окрашенных ионов металлов.

3. Металлы (Zn, Al, Cd) в кислой среде восстанавливают ионы ванадия (V) ступенчато с образованием ионов V(IV), V(III), V(II) с характерной окраской. Сначала образуются ионы VO(H2O)52+, синего цвета; затем акваионы V(H2O)63+ зеленого цвета и, наконец, V(H2O)62+ фиолетового цвета:

VO2+ + 2H+ + 4H2O + e = VO(H2O)52 + E° = 1,0 В;

VO(H2O)52+ + 2H+ + e = V(H2O)63+ E° = 0,36 В;

V(H2O)63+ + e = V(H2O)62+ E° = 0,25 В.

Если в растворе одновременно присутствуют ионы V(H2O)62+ и VO(H2O)52+ , возможно образование промежуточного соединения коричневого цвета, в котором имеется мостиковая группа VOV4+.

4. 8-Оксихинолин в уксуснокислых растворах с ионами VO3? образует нерастворимое в воде соединение, экстрагируемое хлороформом. Строение этого соединения отличается от строения оксихинолинатов многих металлов; вероятно, в этом случае образуются эфиры 8-оксихинолина с ванадиевой кислотой:

Предел обнаружения ванадия -- 2 мкг. Мешают Cu(II), Fe(III), Ti(IV); используя в качестве маскирующего реагента ЭДТА, можно устранить влияние этих элементов.

Хром (III)

Хром. В поверхностных водах соединения хрома находятся в растворенном и взвешенном состояниях, соотношение между которыми зависит от состава вод, температуры, рН раствора. Взвешенные соединения хрома представляют собой в основном сорбированные соединения хрома. Сорбентами могут быть глины, гидроксид железа, высокодисперсный оседающий карбонат кальция, остатки растительных и животных организмов. В растворенной форме хром может находиться в виде хроматов и бихроматов. При аэробных условиях Сг(V1) переходит в Сг(III), соли которого в нейтральной и щелочной средах гидролизуются с выделением гидроксида.

В речных незагрязненных и слабозагрязненных водах содержание хрома колеблется от нескольких десятых долей микрограмма до нескольких микрограммов в 1 дм3, в загрязненных водоемах оно достигает нескольких десятков и сотен микрограммов в 1 дм3. Средняя концентрация в морских водах -- 0,05 мкг/дм , в подземных водах -- обычно в пределах n•10 -n•102 мкг/дм .

Соединения Сг(V1) и Сг(II1) в повышенных количествах обладают канцерогенными свойствами. Соединения Сг(V1) являются более опасными.

ПДКВ для Сг(V1) 0,05 мг/дм3, для Сr(III) -- 0,5 мг/дм3 (лимитирующий показатель вредности -- санитарно-токсикологический); ПДКвр для Сг(V1) -- 0,001 мг/дм , для Сг(III) -- 0,005 мг/дм (лимитирующий показатель вредности -- токсикологический).

Хром присутствует в малых количествах в ДНК некоторых организмов.

Млекопитающие способны перенести 100-200- кратное увеличение содержания хрома в организме против нормы без вредных последствий. В желудке за счет кислой среды Cr6+, поглощение которого стенками желудка не превышает 1%.

Поступающий из антропогенных источников Cr6+ в пресных водах восстанавливается до Cr3+, а затем сорбируется взвесью и донными осадками. Поступление бытовых стоков в реки вызывает резкое падение содержания растворенного кислорода и образование сероводорода. Это в 2,5-3 раза снижает долю Cr6+ от общего содержания хрома в растворе.

Поведение хрома зависит как от рН, так и от окислительно-восстановительного потенциала. Так, при одном и том же значении Еh = 500 мВ в интервале рН 5-7 преобладает Cr(III), а при рН>7 - Cr(VI). На поведение хрома существенное влияние, оказывают органические вещества. Установлено, что Cr6+ и органические соединения хрома не соосаждаются с дидроксидолм железа в морской воде; в водах хром на 10-20% представлен формой Cr3+ , на 25-40% - Cr6+, на 45-65% - органической формой.

Поскольку хром (III) в кислой среде инертен (выпадая почти полностью в осадок при рН 5,5), его соединения в почве весьма стабильны. Напротив, хром (IV) крайне нестабилен и легко мобилизируется в кислых и щелочных почвах. Снижение подвижности хрома в почвах может приводить к его дефициту в растениях.

Установлено, что известкование, а также применение фосфора и органических веществ существенно снижают токсичность хроматов в загрязненных почвах. При загрязнении почв хромом (IV) подкисление, а затем применение восстанавливающих агентов (например, серы) используется для восстановления его до хрома (III), после чего проводится известкование для осаждения соединений Cr(III).

Перенос в природных водах

Два главных окислительных состояний хрома в природных водах - это Cr3+ и Cr6+ . В кислосодержащих водах термодинамически устойчив Cr6+ . Однако Cr3+ благодаря кинетической стабильности может присутствовать в связанной с твердыми частицами формами. Условия взаимного перехода Cr3+ Cr6+ близки к условиям природных вод.

Cr6+ легко восстанавливается в присутствии Fe2+, растворенных сульфидов и некоторых органических веществ, содержащих SH-группы. Cr3+ , напротив, быстро окисляется при большом избытке MnO2 и медленно - кислородом в условиях природных вод.

В пресных водах, поступающих из антропогенных источников хорошо растворимый Cr6+ удаляется при восстановлении до Cr3+ с последующей сорбцией взвесью и донными осадками. Поступление бытовых стоков в реки вызывает резкое падение содержания растворимого кислорода и образование сероводорода. Это понижает долю Cr6+ от 87 до 34% от общего содержания хрома в растворе. При концентрации взвеси от 0,084 до 2,4 мг/л примерно 3-13% Cr6+ удерживалось взвешенными частицами.

1. Пероксид водорода в щелочной среде окисляет Сr(III) до Cr(VI):

2Сr(ОН)4? + 3Н2О2 + 2ОН? = 2СrО42? + 8Н2О

Образуется желтый раствор хромата натрия. При действии Н2О2 на растворы хроматов в зависимости от условий опыта образуются разнообразные пероксокомплексы хрома, например в кислой среде -- голубой CrO(O2)2S (S -- молекулы воды или кислородсодержащего органического растворителя) и в нейтральной среде -- фиолетовый, вероятно, состава СrО(О2)2ОН?:

Н2Сг2О7 + 4Н2О2 + 2S = 2CrO(O2)2S + 5Н2О

К2Сr2O7 + 6Н2О2 = 2КСrО(О2)2ОН + 5Н2О + О2

В водных растворах пероксидные соединения хрома неустойчивы; они устойчивы в органических растворителях (диэтиловом эфире, амиловом спирте и др.):

загрязняющий биогенный водный

СrО5 + 2ОН? = СrО42? + О2 + Н2О

4СrО5 + 12Н+ = 4Сr3+ + 7О2 + 6Н2О

Предел обнаружения хрома -- 10 мкг. Реакция практически селективна. Ванадий мешает обнаружению хрома при отношении V:Cr = 5:1.

2. Этилендиаминтетраацетат натрия (ЭДТА) с ионами хрома (III) при рН 4 -- 5 образует комплексное соединение фиолетового цвета состава CrY4?, где Y4? -- анион ЭДТА:

При комнатной температуре реакция идет очень медленно, так как аквакомплексы Cr(H2O)63+ инертны. Период полуобмена молекул воды ф1/2 в гексааквакомплексах хрома равен 50 ч. При нагревании скорость реакции увеличивается. При рН 7 -- 9 образуются комплексы состава Cr(OH)Y2? и фиолетовая окраска комплекса CrY? при подщелачивании раствора переходит в синюю:

CrY? + H2O = Cr(OH)Y2? + H+

фиолетовая синяя

Окрашенные комплексные соединения ЭДТА образует также с Fe(III), Cu(II), Co(II) и Ni(II), поэтому они могут мешать обнаружению хрома (III).

Так, ионы Fe(III) образуют с ЭДТА более устойчивое, чем CrY?, комплексное соединение светло-желтого цвета и вследствие этого фиолетовая окраска CrY? плохо видна. При больших избытках Со(II) и Ni(II) может появиться фиолетовая окраска, похожая на окраску комплексного соединения хрома. Обнаружению хрома мешают оксалат- и цитрат-ионы.

3. Дифенилкарбазид взаимодействует с ионами Cr(VI) в сильнокислой среде, при этом появляется фиолетовое окрашивание. Хром (VI) в кислых растворах окисляет дифенилкарбазид до бесцветного дифенилкарбазона, восстанавливаясь до Сr(III). Ионы Сr(III) образуют красно-фиолетовое внутрикомплексное соединение с дифенилкарбазоном:

Предел обнаружения хрома -- 10 мкг. Поскольку ионы хрома (III) можно легко окислить (Na2O2, K2S2O8, Br2 + NaOH) в ионы хрома (VI), то реакцию с дифенилкарбазидом можно использовать для обнаружения хрома (VI) и хрома (III). В присутствии фторид-ионов и ЭДТА в качестве маскирующих реагентов реакция обнаружения хрома селективна.

ПЯТАЯ ГРУППА КАТИОНОВ

Сурьма (III, V)

1. Металлы, стоящие в ряду напряжения левее сурьмы, в солянокислом растворе восстанавливают ионы сурьмы (III, V) до черного губчатого осадка металлической сурьмы.

Избирательность реакции повышается, если в качестве восстановителя использовать металлическое олово:

Предел обнаружения сурьмы - 0,2 мкг. Мешают ионы мышьяка (III, V), которые также восстанавливаются до металла. В отличие от мышьяка металлическая сурьма не растворяется в растворе NaBrO.

2. Сероводород или сульфиды щелочных металлов в 6 М НСl образуют оранжевые осадки сульфидов сурьмы:

Осадки растворяются при нагревании в избытке сульфида натрия или NaOH:

При нагревании сульфидов сурьмы (III, V) с концентрированной HNO3 выделяется метасурьмяная кислота HSbO3 в виде белого осадка. В отличие от сульфидов мышьяка (III, V) Sb2S3 и Sb2S5 растворяются при нагревании в концентрированной НСl, но не растворяются в карбонате аммония:

Предел обнаружения сурьмы- 0,25 мкг.

3. 1-(2-Пиридилазо)-2-нафтол (ПАН) в сильнокислом растворе образует с SbCle3- красно-фиолетовое соединение, экстрагируемое бензолом. Природа соединения неизвестна. Мешают ионы меди (II). Для устранения их влияния вводят тиомочевину, которая восстанавливает ионы сурьмы (V) до ионов сурьмы (III), а ионы меди (II) до ионов меди (I) и образует с последними устойчивый растворимый в воде бесцветный комплекс.

Соединение сурьмы с ПАН рекомендуется экстрагировать бензолом через 1 - 2 мин после добавления всех реагентов. Органическая фаза окрашивается в интенсивный красно-фиолетовый цвет, водная фаза - в желтый.

4. Родамин С (тетраэтилродамин) (I) и другие основные трифенилметановые красители в солянокислом растворе образуют с хлоридным комплексом сурьмы (V) малорастворимый в воде, окрашенный в фиолетовый цвет ионный ассоциат (II)

Комплексное соединение экстрагируется бензолом. Поскольку сурьма (III) не образует подобных ассоциатов, ее предварительно окисляют до сурьмы (V) нитритом калия. Предел обнару-жения сурьмы - 10 мкг. Мешают Fe(III), Hg(II), Bi(III), W(Vl), Mo(Vl) хлоридные комплексы кото-рых аналогично взаимодействуют родамином С.

5. Бромистоводородная кислота (люминесцентные реакции) В зависимости от концентрации НВr может образовать с ионами сурьмы (III) различные по составу комплексные соединения В 0,5 - 3 М НВr в растворе существуют SbBr4- и SbBr4(H2O)2 , в 3 - 8 М -SbBr52- и SbBr63-. Замороженные при -196°С (жидкий азот) растворы сурьмы (III) в 1 - 9 М НВr в отличие от сурьмы (V) способны люминесцировать оранжево-красным светом. Это позволяет определить степень окисления сурьмы и обнаружить сурьму (III) в присутствии сурьмы (V). Реакцию проводят на фильтровальной бумаге. Предел обнаружения сурьмы - 0,003 мкг. Реакция довольно селективна. Не мешьше 1000-кратные количества ионов

2)Сурьму (III) в присутствии висмута (III) легко обнаружим, капельным методом по ее оранжево-красной люминесценции в среде 4 М НВг при - 196°С (жидкий азот). Для этого на фильтровальную бумагу наносят каплю анализируемого раствора, каплю 4 М НВr и замораживают влажное пятно в жидком азоте, как указано выше. Оранжево-красная люминесценция замороженного пятна свидетельствует о присутствии сурьмы (III)

3) Висмут (III) в присутствии сурьмы (III) обнаруживают иедующим образом. В делительную воронку с анализируемым раствором прибавляют равный объем 6 М НСl и экстрагируют хлоридный комплекс сурьмы гексиловым или амиловым спиртом. Отделяют органическую фазу. Каплю водной фазы помещают на фильтровальную бумагу, замораживают в жидком азоте сразу же рассматривают в ультрафиолетовом свете. Голубое сечение свидетельствует о присутствии висмута.

Висмут (III)

1. Хлорид олова (II) в щелочной среде восстанавливает висмут (III) до металлического висмута (осадок черного цвета):

Следует избегать прибавления концентрированной щелочи и нагревания, так как в этих условиях может выпасть черный осадок металлического олова вследствие разложения гидроксокомплексов олова (II):

Если же избыток щелочи слишком мал, при стоянии может образоваться желтый осадок оксида олова. Предел обнаружения висмута -20 мкг.

2. Иодид калия образует с ионами висмута (III) в кислой среде

комплексные соединения состава ВiIn(3-n)+, где п=1 - 6; Bil3 - Осадок черного цвета, растворимый в избытке KI:

При сильном разбавлении раствора, содержащего Bil4 , получается оранжевый осадок соли BiOI:

KBiI4+H2O=BiOI| + KJ + 2HI

Предел обнаружения висмута - 0,5 мкг.

8-Оксихинолин с комплексным ионом BiI4- образует нерастворимое в воде оранжево-красное соединение OxHBiI4. В растворе должны отсутствовать Ag(I), Pb(II), Hg(I), осаждающие I-, а также окислители, окисляющие I- до I2, в частности Cu(II) и Fe(III). Мешающее влияние окислителей устраняют, прибавляя Na2S2O3 или SnCl2. Реакцию можно выполнить капельным методом. Предел обнаружения висмута - 1 мкг.

2) Полоску фильтровальной бумаги смачивают раствором SnCl42 , после чего наносят каплю раствора, содержащего ионы висмута, каплю раствора реагента (смесь 8-оксихинолина и KI в массовых соотношениях 1:1). Образование оранжево-красного пятна указывает на присутствие висмута.

3.Дитизон в интервале рН 3-10 образует с ионами висмута
(III) внутрикомплексное соединение. Дитизонаты висмута хорошо растворяются в СНС13 и СС14, растворы окрашены в оранжевый цвет. Предел обнаружения висмута - 0,5 мкг. В присутствии KCN мешают только Pb(II) и Sn(II). Мешающее влияниеSn(II) устраняют его окислением до Sn(IV). Свинец из экстракта реэкстрагируется ацетатным буферным раствором с рН 3 - 4.

4.Соляная кислота (люминесцентная реакция). Висмут (III)образует с НС1 комплексные ионы BiCl52- (в 1 - 8 М НСl) и BiCle3- (в 8 - 11 М НС1). Замороженные растворы, содержащие ионы висмута (III), в НСl обладают собственной низкотемпературной люминесценцией голубого цвета. Это свечение обусловлено электронной структурой ртутьподобного иона Bi(III). Обнаружение висмута можно проводить капельным методом на фильтровальной бумаге. Предел обнаружения висмута - 0,03 мкг. Не мешают ионы щелочных и щелочноземельных металлов, а также 1000-кратные количества Mg(II), Ni(II), Co(ll),Sn(II), Cd(ll), Cu(II), A1(III), CrQII), Fe(III), As(III).

Дьюара с жидким азотом на 20 - 30 с. В присутствии висмута замороженное пятно на фильтровальной бумаге люминесцирует голубовато-синим светом.

5.Иодид цезия или рубидия (микрокристаллоскопическая реакция). Комплексные ионы BiI32- С Ионами Cs(I) и Rb(I) образуют оранжево-красные шестиугольные кристаллы.

Состав соединений М2ВiI5 * 2,5Н2О. Предел обнаружения висмута - 0,13 мкг. Аналогичное кристаллы образуют ионы Sb(III).

Марганец (II)

Марганец. Понижение концентрации ионов марганца в природных водах происходит в результате окисления Мn(II) до МnO2 и других высоковалентных оксидов, выпадающих в осадок. Основные параметры, определяющие реакцию окисления, -- концентрация растворенного кислорода, величина рН и температура. Концентрация растворенных соединений марганца понижается вследствие утилизации их водорослями.

Главная форма миграции соединений марганца в поверхностных водах -- взвеси, состав которых определяется в свою очередь составом пород, дренируемых водами, а также коллоидные гидроксиды тяжелых металлов и сорбированные соединения марганца. Существенное значение в миграции марганца в растворенной и коллоидной формах имеют органические вещества и процессы комплексообразования марганца с неорганическими и органическими лигандами. Мn(II) образует растворимые комплексы с бикарбонатами и сульфатами. Комплексы марганца с ионом хлора встречаются редко. Комплексные соединения Мn(II) с органическими веществами (аминами, органическими кислотами, аминокислотами и гумусовыми веществами) обычно менее прочны, чем аналогичные соединения с другими переходными металлами. Мn(III) в повышенных концентрациях может находиться в растворенном состоянии только в присутствии сильных комплексообразователей, Мn(VII) в природных водах не встречается.

В морских водах содержание марганца колеблется составляет 2 мкг/дм

Концентрация марганца в поверхностных водах подвержена сезонным колебаниям.

Факторами, определяющими изменения концентраций марганца, являются соотношение между поверхностным и подземным стоком, интенсивность потребления его при фотосинтезе, разложение фитопланктона, микроорганизмов и высшей водной растительности, а также процессы осаждения его на дно водных объектов.

Роль марганца в жизни высших растений и водорослей водоемов весьма велика. Марганец способствует утилизации С02 растениями, чем повышает интенсивность фотосинтеза, участвует в процессах восстановления нитратов и ассимиляции азота растениями. Марганец способствует переходу активного Fе(II) в Fе(III), что предохраняет клетку от отравления, ускоряет рост организмов и т.д. Важная экологическая и физиологическая роль марганца вызывает необходимость изучения марганца и его распределения в природных водах.

Для марганца ПДКВ (по иону марганца) установлена 0,1 мг/дм (лимитирующий показатель вредности - органолептический), ПДКвр - 0,01 мг/дм3 (лимитирующий показатель вредности - токсикологический).

Марганец содержится в организмах всех растений и животных, хотя его содержание обычно очень мало, порядка тысячных долей процента, он оказывает значительное влияние на жизнедеятельность, то есть является микроэлементом. Марганец оказывает влияние на рост, образование крови и функции половых желез. Особо богаты марганцем листья свеклы - до 0,03%, а также большие его количества содержатся в организмах рыжих муравьев - до 0,05%. Некоторые бактерии содержат до нескольких процентов марганца.

Марганец присутствует в природных водах в формах, зависящих от величины рН, окисляемости и содержания кислорода. Растворенные формы марганца в воде представлены двухвалентными катионами или входят в состав органических и неорганических комплексов. Так, в глубоких местах океана его концентрация возрастает до 0,3% вследствие окисления растворенным в воде кислородом с образованием нерастворимого в воде оксида марганца, который в гидратированной форме (MnO2 •H2O) и опускается в нижние слои океана, формируя так называемые железо-марганцевые концентрации на дне, в которых количество марганца может достигать 45% (также в них имеются примеси меди, никеля, кобальта). В окрашенных поверхностных водах преобладают комплексы с гумусовыми веществами. Так как изменение концентрации растворенных форм марганца обуславливается переходом Mn(2+) в Mn(3+) и Mn(4+), точнее в нерастворимые оксиды Mn2О3 и MnО2. Поэтому обычно взвешенные формы марганца в водах являются доминирующими.


Подобные документы

  • Проблема качества поверхностных вод. Показатели и содержание вредных химических веществ, наиболее часто встречающихся в природных водах на территории РФ. Технология очистки воды г. Вологды, методы ее дезинфекции. Состав водопроводных очистных сооружений.

    дипломная работа [992,7 K], добавлен 14.11.2017

  • Анализ содержания алюминия в окружающей среде и характеристика основных путей проникновения в природные воды. Способы определения алюминия в сточных водах: фотометрический метод с экстракцией гидроксихинолята алюминия и с применением эриохромцианина Р.

    курсовая работа [120,2 K], добавлен 27.01.2011

  • Характеристика спектроскопических методов анализа. Сущность экстракционно-фотометрических методов. Примеры использования метода для определения тяжелых металлов в природных водах. Методика выявления бромид-ионов, нитрат–ионов. Современное оборудование.

    курсовая работа [452,5 K], добавлен 04.01.2010

  • Анализ содержания загрязняющих веществ в снежном покрове придорожной территории. Расчет коэффициента концентрации загрязняющих веществ и показателя загрязнения атмосферных осадков. Источники загрязнения, экологические нагрузки загрязняющих веществ.

    курсовая работа [188,5 K], добавлен 05.12.2012

  • Рассмотрение особенностей стронция и его поведения в подземных водах мира, России и области. Изучение экологической гидрогеохимии элемента в подземных водах. Выбор природных сорбентов для очистки питьевой воды от стронция, выявление лучшего из них.

    дипломная работа [1,2 M], добавлен 14.11.2017

  • Качество питьевой воды, доступ к чистой воде городского и сельского населения. Основные пути и источники загрязнения гидросферы, поверхностных и подземных вод. Проникновение загрязняющих веществ в круговорот воды. Методы и способы очистки сточных вод.

    презентация [3,1 M], добавлен 18.05.2010

  • Поверхностные водные объекты Волгоградской области. Источники потребления и загрязнения вод. Мониторинг поверхностных вод за 2009-2011 года. Динамика загрязняющих веществ. Обзор федерального законодательства по использованию и охране водных объектов.

    курсовая работа [239,6 K], добавлен 09.04.2016

  • Изучение физических свойств олова. Его содержание в незагрязненных поверхностных водах в субмикрограммовых концентрациях. Определение самородных элементов, сплавов и интерметаллических соединений. Появление губчатых осадков олова в щелочных электролитах.

    практическая работа [753,1 K], добавлен 12.09.2021

  • Прогноз подпора грунтовых вод и подтопления территорий в зонах водохранилищ. Оценка зоны возможного затопления при разрушении ГТС и расчёт концентрации загрязняющих веществ в сточных водах. Аппаратура для выявления изменений, происходящих в сооружении.

    дипломная работа [392,7 K], добавлен 22.08.2016

  • Основные пути поступления загрязняющих веществ в водоемы и водотоки. Анализ факторов, определяющих степень накопления хрома в донных отложениях водоемов города Гомеля. Оценка миграционной способности хрома в различные компоненты водных экосистем.

    дипломная работа [191,4 K], добавлен 26.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.