Побудова економетричної моделі на основі макроекономічних показників Австрії
Перевірка макроекономічних показників Австрії на стаціонарність даних. Побудова економетричної моделі впливу показників інфляції, кількості зайнятих та безробітних на приріст валового внутрішнього продукту. Аналіз скоригованого коефіцієнту детермінації.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | украинский |
Дата добавления | 05.01.2014 |
Размер файла | 35,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Київський національний університет імені Тараса Шевченка
Економічний факультет
Кафедра екологічного менеджменту і підприємництва
Самостійна робота
з курсу прикладна економетрика
на тему: Побудова економетричної моделі на основі макроекономічних показників Австрії
Студента 1 курсу магістратури
Спеціальності «Екологічне підприємництво»
Нестеренка Олега Анатолійовича
Київ 2013
Для побудови економетричної моделі використаємо наступні макроекономічні показники Австрії:
1). ВВП;
2). Рівень інфляції;
3). Кількість населення;
4). Чисельність безробітних;
5). Чисельність зайнятих
Дані макроекономічні показники беремо періодом 20 років з 1992 р. до 2012р.
Для побудови економетричної моделі дані показники та їх кількісні параметри необхідно імпортувати дані в Eviews.
Перш ніж побудувати економетричну модель перевіряємо наші показники на стаціонарність даних.
ADF Test Statistic |
0.614449 |
1% Critical Value* |
-3.8304 |
||
5% Critical Value |
-3.0294 |
||||
10% Critical Value |
-2.6552 |
||||
*MacKinnon critical values for rejection of hypothesis of a unit root. |
|||||
Augmented Dickey-Fuller Test Equation |
|||||
Dependent Variable: D(EMLP) |
|||||
Method: Least Squares |
|||||
Date: 12/12/13 Time: 18:58 |
|||||
Sample(adjusted): 1994 2012 |
|||||
Included observations: 19 after adjusting endpoints |
|||||
Variable |
Coefficient |
Std. Error |
t-Statistic |
Prob. |
|
EMLP(-1) |
0.026262 |
0.042740 |
0.614449 |
0.5476 |
|
D(EMLP(-1)) |
0.745940 |
0.191176 |
3.901858 |
0.0013 |
|
C |
-0.073097 |
0.133089 |
-0.549236 |
0.5904 |
|
R-squared |
0.491538 |
Mean dependent var |
0.029421 |
||
Adjusted R-squared |
0.427980 |
S.D. dependent var |
0.027671 |
||
S.E. of regression |
0.020928 |
Akaike info criterion |
-4.751483 |
||
Sum squared resid |
0.007008 |
Schwarz criterion |
-4.602361 |
||
Log likelihood |
48.13909 |
F-statistic |
7.733720 |
||
Durbin-Watson stat |
1.870029 |
Prob(F-statistic) |
0.004468 |
Першим показником візьмемо чисельність зайнятих. Значення ADF Test Statistic дорівнює 0.614449 і воно є більшим ніж критичне значення (при 5% -3.0294). Отже, даний ряд даних є нестаціонарним. Тому потрібно ввести новий показник, який дорівнюватиме різниці другого порядку.
ADF Test Statistic |
-3.678474 |
1% Critical Value* |
-4.6712 |
||
5% Critical Value |
-3.7347 |
||||
10% Critical Value |
-3.3086 |
||||
*MacKinnon critical values for rejection of hypothesis of a unit root. |
|||||
Augmented Dickey-Fuller Test Equation |
|||||
Dependent Variable: D(EMLP2,2) |
|||||
Method: Least Squares |
|||||
Date: 12/12/13 Time: 19:04 |
|||||
Sample(adjusted): 1997 2012 |
|||||
Included observations: 16 after adjusting endpoints |
|||||
Variable |
Coefficient |
Std. Error |
t-Statistic |
Prob. |
|
D(EMLP2(-1)) |
-1.105270 |
0.300470 |
-3.678474 |
0.0032 |
|
D(EMLP2(-1),2) |
0.384605 |
0.236322 |
1.627464 |
0.1296 |
|
C |
-0.051330 |
0.021416 |
-2.396756 |
0.0337 |
|
@TREND(1988) |
0.004128 |
0.001624 |
2.542345 |
0.0258 |
|
R-squared |
0.536879 |
Mean dependent var |
0.002125 |
||
Adjusted R-squared |
0.421099 |
S.D. dependent var |
0.031001 |
||
S.E. of regression |
0.023587 |
Akaike info criterion |
-4.443913 |
||
Sum squared resid |
0.006676 |
Schwarz criterion |
-4.250766 |
||
Log likelihood |
39.55130 |
F-statistic |
4.637054 |
||
Durbin-Watson stat |
1.656118 |
Prob(F-statistic) |
0.022445 |
Значення ADF Test Statistic дорівнює -3.678474 і воно є меншим ніж критичне значення (при 10% -3.3086). Отже, даний ряд даних є стаціонарним
Наступний показник - валовий внутрішній продукт:
ADF Test Statistic |
0.653267 |
1% Critical Value* |
-3.8304 |
||
5% Critical Value |
-3.0294 |
||||
10% Critical Value |
-2.6552 |
||||
*MacKinnon critical values for rejection of hypothesis of a unit root. |
|||||
Augmented Dickey-Fuller Test Equation |
|||||
Dependent Variable: D(GDP) |
|||||
Method: Least Squares |
|||||
Date: 12/12/13 Time: 19:07 |
|||||
Sample(adjusted): 1994 2012 |
|||||
Included observations: 19 after adjusting endpoints |
|||||
Variable |
Coefficient |
Std. Error |
t-Statistic |
Prob. |
|
GDP(-1) |
0.013586 |
0.020797 |
0.653267 |
0.5229 |
|
D(GDP(-1)) |
0.306578 |
0.240134 |
1.276693 |
0.2199 |
|
C |
0.636204 |
3.910736 |
0.162681 |
0.8728 |
|
R-squared |
0.147478 |
Mean dependent var |
4.750579 |
||
Adjusted R-squared |
0.040912 |
S.D. dependent var |
2.177531 |
||
S.E. of regression |
2.132522 |
Akaike info criterion |
4.496427 |
||
Sum squared resid |
72.76238 |
Schwarz criterion |
4.645549 |
||
Log likelihood |
-39.71605 |
F-statistic |
1.383917 |
||
Durbin-Watson stat |
1.940042 |
Prob(F-statistic) |
0.279027 |
Значення ADF Test Statistic дорівнює 0.653267 і воно є більшим ніж критичне значення (-3.0294 при 5%). Отже, даний ряд даних є нестаціонарним. Тому варто використовувати різницю другого порядку.
ADF Test Statistic |
-4.260963 |
1% Critical Value* |
-3.8877 |
||
5% Critical Value |
-3.0521 |
||||
10% Critical Value |
-2.6672 |
||||
*MacKinnon critical values for rejection of hypothesis of a unit root. |
|||||
Augmented Dickey-Fuller Test Equation |
|||||
Dependent Variable: D(GDP2) |
|||||
Method: Least Squares |
|||||
Date: 12/12/13 Time: 19:09 |
|||||
Sample(adjusted): 1996 2012 |
|||||
Included observations: 17 after adjusting endpoints |
|||||
Variable |
Coefficient |
Std. Error |
t-Statistic |
Prob. |
|
GDP2(-1) |
-0.680381 |
0.159678 |
-4.260963 |
0.0008 |
|
D(GDP2(-1)) |
0.831069 |
0.196912 |
4.220509 |
0.0009 |
|
C |
6.125244 |
1.519137 |
4.032055 |
0.0012 |
|
R-squared |
0.628189 |
Mean dependent var |
0.076176 |
||
Adjusted R-squared |
0.575073 |
S.D. dependent var |
3.030602 |
||
S.E. of regression |
1.975541 |
Akaike info criterion |
4.358346 |
||
Sum squared resid |
54.63864 |
Schwarz criterion |
4.505384 |
||
Log likelihood |
-34.04594 |
F-statistic |
11.82677 |
||
Durbin-Watson stat |
1.915949 |
Prob(F-statistic) |
0.000982 |
Значення ADF Test Statistic дорівнює -4.260963 і воно є меншим, ніж критичне значення (-3.0521 при 5%). Отже, даний ряд даних є стаціонарним.
- показник інфляції:
ADF Test Statistic |
-1.939005 |
1% Critical Value* |
-3.8304 |
||
5% Critical Value |
-3.0294 |
||||
10% Critical Value |
-2.6552 |
||||
*MacKinnon critical values for rejection of hypothesis of a unit root. |
|||||
Augmented Dickey-Fuller Test Equation |
|||||
Dependent Variable: D(INF) |
|||||
Method: Least Squares |
|||||
Date: 12/12/13 Time: 19:12 |
|||||
Sample(adjusted): 1994 2012 |
|||||
Included observations: 19 after adjusting endpoints |
|||||
Variable |
Coefficient |
Std. Error |
t-Statistic |
Prob. |
|
INF(-1) |
-0.372382 |
0.192048 |
-1.939005 |
0.0703 |
|
D(INF(-1)) |
0.378959 |
0.254321 |
1.490082 |
0.1557 |
|
C |
0.800929 |
0.411835 |
1.944781 |
0.0696 |
|
R-squared |
0.216773 |
Mean dependent var |
0.051263 |
||
Adjusted R-squared |
0.118870 |
S.D. dependent var |
0.635957 |
||
S.E. of regression |
0.596964 |
Akaike info criterion |
1.950019 |
||
Sum squared resid |
5.701853 |
Schwarz criterion |
2.099141 |
||
Log likelihood |
-15.52518 |
F-statistic |
2.214153 |
||
Durbin-Watson stat |
1.821729 |
Prob(F-statistic) |
0.141612 |
Значення ADF Test Statistic дорівнює -1.939005 і воно є більшим ніж критичне значення (-3.0294 при 5%). Отже, даний ряд даних є нестаціонарним. Тому варто використовувати різницю першого порядку.
ADF Test Statistic |
-3.116447 |
1% Critical Value* |
-3.8572 |
||
5% Critical Value |
-3.0400 |
||||
10% Critical Value |
-2.6608 |
||||
*MacKinnon critical values for rejection of hypothesis of a unit root. |
|||||
Augmented Dickey-Fuller Test Equation |
|||||
Dependent Variable: D(INF1) |
|||||
Method: Least Squares |
|||||
Date: 12/12/13 Time: 19:15 |
|||||
Sample(adjusted): 1995 2012 |
|||||
Included observations: 18 after adjusting endpoints |
|||||
Variable |
Coefficient |
Std. Error |
t-Statistic |
Prob. |
|
INF1(-1) |
-1.088407 |
0.349246 |
-3.116447 |
0.0071 |
|
D(INF1(-1)) |
0.290481 |
0.264071 |
1.100010 |
0.2887 |
|
C |
0.023079 |
0.153516 |
0.150338 |
0.8825 |
|
R-squared |
0.433188 |
Mean dependent var |
0.028056 |
||
Adjusted R-squared |
0.357613 |
S.D. dependent var |
0.812506 |
||
S.E. of regression |
0.651216 |
Akaike info criterion |
2.131062 |
||
Sum squared resid |
6.361239 |
Schwarz criterion |
2.279457 |
||
Log likelihood |
-16.17956 |
F-statistic |
5.731898 |
||
Durbin-Watson stat |
1.934395 |
Prob(F-statistic) |
0.014151 |
Значення ADF Test Statistic дорівнює -3.116447 і воно є більшим ніж критичне значення (-3.0400 при 5%). Отже, даний ряд даних є стаціонарним.
- Чисельність безробітних:
ADF Test Statistic |
-2.946521 |
1% Critical Value* |
-3.8304 |
||
5% Critical Value |
-3.0294 |
||||
10% Critical Value |
-2.6552 |
||||
*MacKinnon critical values for rejection of hypothesis of a unit root. |
|||||
Augmented Dickey-Fuller Test Equation |
|||||
Dependent Variable: D(UNEM) |
|||||
Method: Least Squares |
|||||
Date: 12/12/13 Time: 19:17 |
|||||
Sample(adjusted): 1994 2012 |
|||||
Included observations: 19 after adjusting endpoints |
|||||
Variable |
Coefficient |
Std. Error |
t-Statistic |
Prob. |
|
UNEM(-1) |
-0.303544 |
0.103018 |
-2.946521 |
0.0095 |
|
D(UNEM(-1)) |
0.331180 |
0.202966 |
1.631699 |
0.1223 |
|
C |
1.254147 |
0.412667 |
3.039127 |
0.0078 |
|
R-squared |
0.393180 |
Mean dependent var |
0.081684 |
||
Adjusted R-squared |
0.317327 |
S.D. dependent var |
0.378437 |
||
S.E. of regression |
0.312680 |
Akaike info criterion |
0.656664 |
||
Sum squared resid |
1.564297 |
Schwarz criterion |
0.805786 |
||
Log likelihood |
-3.238309 |
F-statistic |
5.183472 |
||
Durbin-Watson stat |
2.119314 |
Prob(F-statistic) |
0.018386 |
Значення ADF Test Statistic дорівнює -2.946521 і воно є більшим ніж критичне значення (-2.6552 при 10%). Отже, даний ряд даних є стаціонарним. Проте для економетричної моделі варто ввести показник різниці першого порядку.
ADF Test Statistic |
-3.938451 |
1% Critical Value* |
-3.8877 |
||
5% Critical Value |
-3.0521 |
||||
10% Critical Value |
-2.6672 |
||||
*MacKinnon critical values for rejection of hypothesis of a unit root. |
|||||
Augmented Dickey-Fuller Test Equation |
|||||
Dependent Variable: D(UNEM1,2) |
|||||
Method: Least Squares |
|||||
Date: 12/12/13 Time: 19:20 |
|||||
Sample(adjusted): 1996 2012 |
|||||
Included observations: 17 after adjusting endpoints |
|||||
Variable |
Coefficient |
Std. Error |
t-Statistic |
Prob. |
|
D(UNEM1(-1)) |
-1.599940 |
0.406236 |
-3.938451 |
0.0015 |
|
D(UNEM1(-1),2) |
0.151374 |
0.238399 |
0.634964 |
0.5357 |
|
C |
-0.075679 |
0.105454 |
-0.717649 |
0.4848 |
|
R-squared |
0.705490 |
Mean dependent var |
-0.009000 |
||
Adjusted R-squared |
0.663417 |
S.D. dependent var |
0.744481 |
||
S.E. of regression |
0.431916 |
Akaike info criterion |
1.317615 |
||
Sum squared resid |
2.611723 |
Schwarz criterion |
1.464653 |
||
Log likelihood |
-8.199729 |
F-statistic |
16.76828 |
||
Durbin-Watson stat |
1.933845 |
Prob(F-statistic) |
0.000192 |
Значення ADF Test Statistic дорівнює -3.938451 і воно є меншим ніж критичне значення (-3.0521 при 5%). Отже, даний ряд даних є стаціонарним.
- чисельність населення:
ADF Test Statistic |
-2.023093 |
1% Critical Value* |
-3.8304 |
||
5% Critical Value |
-3.0294 |
||||
10% Critical Value |
-2.6552 |
||||
*MacKinnon critical values for rejection of hypothesis of a unit root. |
|||||
Augmented Dickey-Fuller Test Equation |
|||||
Dependent Variable: D(PPL) |
|||||
Method: Least Squares |
|||||
Date: 12/12/13 Time: 19:24 |
|||||
Sample(adjusted): 1994 2012 |
|||||
Included observations: 19 after adjusting endpoints |
|||||
Variable |
Coefficient |
Std. Error |
t-Statistic |
Prob. |
|
PPL(-1) |
-0.040098 |
0.019820 |
-2.023093 |
0.0601 |
|
D(PPL(-1)) |
0.706807 |
0.151043 |
4.679523 |
0.0003 |
|
C |
0.329847 |
0.159994 |
2.061618 |
0.0559 |
|
R-squared |
0.679503 |
Mean dependent var |
0.035263 |
||
Adjusted R-squared |
0.639441 |
S.D. dependent var |
0.024626 |
||
S.E. of regression |
0.014787 |
Akaike info criterion |
-5.446209 |
||
Sum squared resid |
0.003498 |
Schwarz criterion |
-5.297087 |
||
Log likelihood |
54.73898 |
F-statistic |
16.96121 |
||
Durbin-Watson stat |
0.933762 |
Prob(F-statistic) |
0.000111 |
Значення ADF Test Statistic дорівнює -2.023093 і воно є більшим ніж критичне значення (-3.0294 при 5%). Отже, даний ряд даних є нестаціонарним. Тому варто ввести показник різниці першого порядку.
ADF Test Statistic |
-3.053474 |
1% Critical Value* |
-3.8572 |
||
5% Critical Value |
-3.0400 |
||||
10% Critical Value |
-2.6608 |
||||
*MacKinnon critical values for rejection of hypothesis of a unit root. |
|||||
Augmented Dickey-Fuller Test Equation |
|||||
Dependent Variable: D(PPL1) |
|||||
Method: Least Squares |
|||||
Date: 12/12/13 Time: 19:26 |
|||||
Sample(adjusted): 1995 2012 |
|||||
Included observations: 18 after adjusting endpoints |
|||||
Variable |
Coefficient |
Std. Error |
t-Statistic |
Prob. |
|
PPL1(-1) |
-0.374069 |
0.122506 |
-3.053474 |
0.0080 |
|
D(PPL1(-1)) |
0.656492 |
0.179466 |
3.658028 |
0.0023 |
|
C |
0.011919 |
0.005308 |
2.245757 |
0.0402 |
|
R-squared |
0.525790 |
Mean dependent var |
-0.002500 |
||
Adjusted R-squared |
0.462562 |
S.D. dependent var |
0.015768 |
||
S.E. of regression |
0.011559 |
Akaike info criterion |
-5.931647 |
||
Sum squared resid |
0.002004 |
Schwarz criterion |
-5.783252 |
||
Log likelihood |
56.38482 |
F-statistic |
8.315768 |
||
Durbin-Watson stat |
2.099488 |
Prob(F-statistic) |
0.003713 |
Значення ADF Test Statistic дорівнює -3,0534 і воно є меншим ніж критичне значення (-3.0400 при 5%). Отже, даний ряд даних є стаціонарним.
На основі даних показників будуємо економетричну модель. Задамо наступну функцію:
gdp2= inf1+ emlp2 + unem1
Економічний зміст даної моделі - як зміниться приріст ВВП при зміні показників інфляції, кількості зайнятих та безробітних, тобто визначимо вплив даних факторів на кінцевий результат (ВВП).
Dependent Variable: GDP2 |
|||||
Method: Least Squares |
|||||
Date: 12/12/13 Time: 19:32 |
|||||
Sample(adjusted): 1994 2012 |
|||||
Included observations: 19 after adjusting endpoints |
|||||
Variable |
Coefficient |
Std. Error |
t-Statistic |
Prob. |
|
INF1 |
1.621511 |
1.078301 |
1.503765 |
0.1534 |
|
EMLP2 |
20.32083 |
14.15757 |
1.435333 |
0.1717 |
|
UNEM1 |
-4.856945 |
1.556974 |
-3.119476 |
0.0070 |
|
C |
8.681209 |
0.991770 |
8.753247 |
0.0000 |
|
R-squared |
0.616607 |
Mean dependent var |
9.536579 |
||
Adjusted R-squared |
0.539928 |
S.D. dependent var |
3.589248 |
||
S.E. of regression |
2.434537 |
Akaike info criterion |
4.802054 |
||
Sum squared resid |
88.90457 |
Schwarz criterion |
5.000883 |
||
Log likelihood |
-41.61952 |
F-statistic |
8.041437 |
||
Durbin-Watson stat |
1.309724 |
Prob(F-statistic) |
0.001987 |
В моделі залежною змінною виступає внутрішній валовий продукт, а незалежними змінними інфляція та чисельність населення. Аналіз отриманих результатів показав, що коефіцієнт детермінації та скоригований коефіцієнт детермінації є дуже високими 0,61 та 0,53, що свідчить високий ступінь впливу незалежних змінних на залежну. Значення статистики Фішера, яке розраховане за нашою моделлю становить 36,53 що є значно більшим за теоретичне 8,04, отже модель є статистично значущою. Також значення імовірності для статистики Фішера прямує до нуля, що також підтверджує даний факт. Аналіз статистики Стьюдента показав, що всі коефіцієнти є статистично значимими, оскільки не попадають в діапазон від -2,67 до -8,54 і значення імовірності менше за 0.05.
Перевіряємо нашу модель за допомогою наступних критеріїв:
1). Перевірка на відсутність гетероскедастичності:
White Heteroskedasticity Test: |
|||||
F-statistic |
0.363580 |
Probability |
0.926082 |
||
Obs*R-squared |
5.066091 |
Probability |
0.828509 |
||
Test Equation: |
|||||
Dependent Variable: RESID^2 |
|||||
Method: Least Squares |
|||||
Date: 12/12/13 Time: 19:33 |
|||||
Sample: 1994 2012 |
|||||
Included observations: 19 |
|||||
Variable |
Coefficient |
Std. Error |
t-Statistic |
Prob. |
|
C |
7.115255 |
3.628614 |
1.960874 |
0.0815 |
|
INF1 |
-2.038883 |
4.242548 |
-0.480580 |
0.6423 |
|
INF1^2 |
-5.488163 |
3.954719 |
-1.387751 |
0.1986 |
|
INF1*EMLP2 |
58.21519 |
97.33955 |
0.598063 |
0.5645 |
|
INF1*UNEM1 |
-4.257903 |
9.318227 |
-0.456943 |
0.6585 |
|
EMLP2 |
50.26476 |
97.65399 |
0.514723 |
0.6191 |
|
EMLP2^2 |
-496.5563 |
764.4887 |
-0.649527 |
0.5322 |
|
EMLP2*UNEM1 |
10.54212 |
113.1264 |
0.093189 |
0.9278 |
|
UNEM1 |
-0.639751 |
9.420806 |
-0.067908 |
0.9473 |
|
UNEM1^2 |
-10.65058 |
11.85260 |
-0.898586 |
0.3923 |
|
R-squared |
0.266636 |
Mean dependent var |
4.679188 |
||
Adjusted R-squared |
-0.466727 |
S.D. dependent var |
4.217199 |
||
S.E. of regression |
5.107387 |
Akaike info criterion |
6.404670 |
||
Sum squared resid |
234.7686 |
Schwarz criterion |
6.901743 |
||
Log likelihood |
-50.84437 |
F-statistic |
0.363580 |
||
Durbin-Watson stat |
1.767154 |
Prob(F-statistic) |
0.926082 |
Для перевірки присутності гетероскедастичність був використаний критерій Вайта. Побудована допоміжна регресійна модель виявилась адекватною, так як значення ймовірностей для F - статистики є більшим за 0,05 і становить 0,926082, що свідчить про відсутність в моделі гетероскедастичності.
2). Перевіряємо модель на відсутність автокореляції та ковзаючого середнього:
2.1. Для перевірки присутності автокореляції використаємо критерій множників Лагранжа:
Breach-Godfrey Serial Correlation LM Test: |
|||||
F-statistic |
1.405505 |
Probability |
0.280152 |
||
Obs*R-squared |
3.377975 |
Probability |
0.184706 |
||
Test Equation: |
|||||
Dependent Variable: RESID |
|||||
Method: Least Squares |
|||||
Date: 12/12/13 Time: 19:35 |
|||||
Presample missing value lagged residuals set to zero. |
|||||
Variable |
Coefficient |
Std. Error |
t-Statistic |
Prob. |
|
INF1 |
-0.205024 |
1.076923 |
-0.190380 |
0.8520 |
|
EMLP2 |
-1.839907 |
14.75289 |
-0.124715 |
0.9027 |
|
UNEM1 |
1.184212 |
1.768016 |
0.669797 |
0.5147 |
|
C |
-0.047853 |
0.996599 |
-0.048016 |
0.9624 |
|
RESID(-1) |
0.543716 |
0.337747 |
1.609830 |
0.1314 |
|
RESID(-2) |
-0.215110 |
0.319782 |
-0.672677 |
0.5129 |
|
R-squared |
0.177788 |
Mean dependent var |
1.36E-15 |
||
Adjusted R-squared |
-0.138447 |
S.D. dependent var |
2.222418 |
||
S.E. of regression |
2.371277 |
Akaike info criterion |
4.816823 |
||
Sum squared resid |
73.09839 |
Schwarz criterion |
5.115067 |
||
Log likelihood |
-39.75982 |
F-statistic |
0.562202 |
||
Durbin-Watson stat |
1.967891 |
Prob(F-statistic) |
0.727429 |
Значення показника R-squared є 0,184706 і воно є більшим за значення 0,05, тобто у даній моделі відсутні автокореляція і процес не можливо описати за допомогою автокореляції та ковзаючого середнього.
2.2.Для перевірки присутності автокореляції та ковзаючого середнього використаємо перевірку за допомогою критерію Correlogram Q-stat:
Date: 12/12/13 Time: 19:36 |
|||||||
Sample: 1994 2012 |
|||||||
Included observations: 19 |
|||||||
Autocorrelation |
Partial Correlation |
AC |
PAC |
Q-Stat |
Prob |
||
. |**. | |
. |**. | |
1 |
0.290 |
0.290 |
1.8645 |
0.172 |
|
. *|. | |
. **|. | |
2 |
-0.093 |
-0.194 |
2.0694 |
0.355 |
|
.***|. | |
.***|. | |
3 |
-0.444 |
-0.403 |
6.9803 |
0.073 |
|
.***|. | |
. **|. | |
4 |
-0.433 |
-0.275 |
11.979 |
0.018 |
|
. *|. | |
. *|. | |
5 |
-0.180 |
-0.137 |
12.905 |
0.024 |
|
. *|. | |
.***|. | |
6 |
-0.128 |
-0.433 |
13.408 |
0.037 |
|
. |*. | |
. *|. | |
7 |
0.174 |
-0.158 |
14.416 |
0.044 |
|
. |*. | |
. **|. | |
8 |
0.189 |
-0.279 |
15.709 |
0.047 |
|
. |*** | |
. |. | |
9 |
0.339 |
-0.037 |
20.285 |
0.016 |
|
. |*. | |
. *|. | |
10 |
0.161 |
-0.157 |
21.433 |
0.018 |
|
. |. | |
. *|. | |
11 |
-0.023 |
-0.065 |
21.459 |
0.029 |
|
. **|. | |
. **|. | |
12 |
-0.234 |
-0.219 |
24.581 |
0.017 |
Перевірка залишків моделі на присутність автокореляції за допомогою Q - статистики показала, що на всіх лагах значення ймовірностей є більшими за 0,05, що свідчить про відсутність в моделі автокореляції та ковзаючого середнього.
3) перевірка моделі за допомогою критерію Ramsey RESET Test:
Ramsey RESET Test: |
|||||
F-statistic |
0.295901 |
Probability |
0.595021 |
||
Log likelihood ratio |
0.397394 |
Probability |
0.528438 |
||
Test Equation: |
|||||
Dependent Variable: GDP2 |
|||||
Method: Least Squares |
|||||
Date: 12/12/13 Time: 19:37 |
|||||
Sample: 1994 2012 |
|||||
Included observations: 19 |
|||||
Variable |
Coefficient |
Std. Error |
t-Statistic |
Prob. |
|
INF1 |
3.038391 |
2.829229 |
1.073929 |
0.3010 |
|
EMLP2 |
35.72090 |
31.80883 |
1.122987 |
0.2803 |
|
UNEM1 |
-8.847354 |
7.507115 |
-1.178529 |
0.2582 |
|
C |
11.96013 |
6.112799 |
1.956572 |
0.0706 |
|
FITTED^2 |
-0.039722 |
0.073023 |
-0.543967 |
0.5950 |
|
R-squared |
0.624542 |
Mean dependent var |
9.536579 |
||
Adjusted R-squared |
0.517269 |
S.D. dependent var |
3.589248 |
||
S.E. of regression |
2.493769 |
Akaike info criterion |
4.886402 |
||
Sum squared resid |
87.06440 |
Schwarz criterion |
5.134938 |
||
Log likelihood |
-41.42082 |
F-statistic |
5.821954 |
||
Durbin-Watson stat |
1.467815 |
Prob(F-statistic) |
0.005650 |
Оцінюючи значення Log likelihood ratio, що дорівнює 0,528438 і воно є більшим за 0,05, робимо висновки, що функціональна форма вибрана вірно.
Estimation Command:
=====================
LS GDP2 INF1 EMLP2 UNEM1 C
Estimation Equation:
=====================
GDP2 = C(1)*INF1 + C(2)*EMLP2 + C(3)*UNEM1 + C(4)
Substituted Coefficients:
=====================
GDP2 = 1.621511065*INF1 + 20.32082605*EMLP2 - 4.856945173* UNEM1 + 8.681208645
Виходячи з даної моделі бачимо, що найбільший вплив на зміну показника ВВП має чисельність зайнятих та інфляція і зворотну залежність має показник безробітних.
економетричний інфляція валовий детермінація
Висновки
Побудувавши економетричну модель на основі даних макроекономічних показників Австрії і припустивши, що дана функція матиме вигляд лінійної, а саме gdp2= inf1+ emlp2 + unem1 отримаємо наступні результати.
Дана модель є адекватною і значимість коефіцієнтів є високою. При перевірці моделі за обраними критеріями отримали наступні результати:
- дані показників є нестаціонарними рядами, тому необхідно використовувати стаціонарність першого порядку;
- у моделі відсутня гетероскедастичність;
- процес не описується за допомогою автокореляції та ковзаючим середнім, оскільки автокореляція відсутня є відсутніми;
- функціональна форма вибрана вірно.
Економічний зміст даної є наступним: зміна обсягів ВВП залежить від показників зміни інфляції та чисельності зайнятих та безробітних та має пряму залежність.
Размещено на Allbest.ru
Подобные документы
Побудова економетричної моделі парної регресії. На основі даних про витрати обігу (залежна змінна) і вантажообігу (незалежна змінна) побудувати економетричну модель. Рівняння регресії. Коефіцієнт парної детермінації та кореляції. Перевірка надійності.
задача [563,6 K], добавлен 28.12.2008Специфікація економетричної моделі парної регресії. Побудова лінійної, степеневої та показникової економетричної моделі, поняття коефіцієнта регресії та детермінації. Графічне зображення моделювання лінійного зв’язку, застосування F–критерію Фішера.
контрольная работа [5,1 M], добавлен 17.03.2010Теоретико-методологічні основи дослідження взаємозв’язку макроекономічних показників з податками. Аналіз робіт та напрямків економіко-математичного моделювання у сфері оподаткування. Моделювання впливу податкової політики на обсяг тіньової економіки.
дипломная работа [1,5 M], добавлен 21.06.2010Поняття та процес економічного прогнозування, процес формування прогнозу про розвиток об'єкта на основі вивчення тенденцій його розвитку. Сутність та побудова економетричних моделей. Зарубіжний досвід побудови та використання економетричної моделі.
реферат [43,5 K], добавлен 15.04.2013Поняття системи одночасних рівнянь. Структурна форма економетричної моделі. Побудова лінійної багатофакторної економіко-математичної моделі залежності фактору Y від факторів Xi. Аналіз на наявність мультиколінеарності згідно алгоритму Фаррара-Глобера.
курсовая работа [342,6 K], добавлен 18.07.2011Побудова, дослідження емпіричної лінійки економетричної моделі залежності обсягу виробництва фірми від витрат на заробітну платню персоналу й вартості основних фондів. Складання матриці вихідних даних. Прогноз середньорічного обсягу виробництва для фірми.
контрольная работа [167,5 K], добавлен 07.11.2010Виконання економетричної моделі, що визначає залежність товарообороту від торгової площі. Побудова діаграми розсіювання, обґрунтування можливості використання парної, нелінійної, багатофакторної лінійної регресії для розробки економічної інтерпретації.
контрольная работа [449,4 K], добавлен 09.02.2014Статистичний і економічний зміст коефіцієнтів кореляції і детермінації. Економічне тлумачення довірчих інтервалів коефіцієнтів моделі, точкового значення прогнозу. Форма відображення статистичних даних моделі. Параметри стандартного відхилення асиметрії.
контрольная работа [20,1 K], добавлен 03.08.2010Визначення оптимального плану графічним та симплексним методом. Побудова економетричної моделі залежності між витратами обігу та вантажообігом. Розрахунок детермінаціі, кореляції, еластичності. Виявлення мультиколінеарності між заданими факторами.
контрольная работа [451,8 K], добавлен 03.12.2013Визначення кореляційної залежності ціни і витрат від кількості реалізованої продукції; встановлення зв'язку між відповідними ознаками та обчислення коефіцієнту детермінації; перевірка адекватності значень параметрів параболічної однофакторної моделі.
практическая работа [613,4 K], добавлен 30.03.2013