Классический метод наименьших квадратов

Метод наименьших квадратов; регрессионный анализ для оценки неизвестных величин по результатам измерений. Приближённое представление заданной функции другими; обработка количественных результатов естественнонаучных опытов, технических данных, наблюдений.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 16.03.2011
Размер файла 382,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Алтайский институт труда и права (филиал)

Академии труда и социальных отношений

Финансово-экономический факультет

КОНТРОЛЬНАЯ РАБОТА

по дисциплине Эконометрика

на тему

Классический метод наименьших квадратов

Студента 3 курса 681 группы

Бахтеевой Татьяны Михайловны

2010

Метод наименьших квадратов (МНК) - один из наиболее широко используемых методов при решении многих задач восстановления регрессионных зависимостей Крянев А.В. Применение современных методов математической статистики при восстановлении регрессионных зависимостей на ЭВМ. Учебное пособие. М.: 1988. 4 с. . Впервые МНК был использован Лежандром в 1806 г. для решения задач небесной механики на основе экспериментальных данных астрономических наблюдений. В 1809 г. Гаусс изложил статистическую интерпретацию МНК и тем самым дал начало широкого применения статистических методов при решении задач восстановления регрессионных зависимостей. Строгое математическое обоснование и установление границ содержательной применимости метода наименьших квадратов даны А.А. Марковым и А.Н. Колмогоровым. Ныне способ представляет собой один из важнейших разделов математической статистики и широко используется для статистических выводов в различных областях науки и техники.

Приведу краткое описание данного метода. Метод наименьших квадратов -- один из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащих случайные ошибки. Применяется также для приближённого представления заданной функции другими (более простыми) функциями и часто оказывается полезным при обработке наблюдений. В настоящее время широко применяется при обработке количественных результатов естественнонаучных опытов, технических данных, астрономических и геодезических наблюдений и измерений.

Можно выделить следующие достоинства метода:

а) расчеты сводятся к механической процедуре нахождения коэффициентов;

б) доступность полученных математических выводов.

Основным недостатком МНК является чувствительность оценок к резким выбросам, которые встречаются в исходных данных.

Рассмотрю применение классического метода наименьших квадратов для нахождения неизвестных параметров уравнения регрессии на примере модели линейной парной регрессии. Пусть подобрана эмпирическая линия, по виду которой можно судить о том, что связь между независимой переменной и зависимой переменной линейна и описывается равенством:

(1)

Необходимо найти такие значения параметров и , которые бы доставляли минимум функции (1), т. е. минимизировали бы сумму квадратов отклонений наблюдаемых значений результативного признака от теоретических значений (значений, рассчитанных на основании уравнения регрессии):

(2)

При минимизации функции (1) неизвестными являются значения коэффициентов регрессии и Значения зависимой и независимой переменных известны из наблюдений.

Для того чтобы найти минимум функции двух переменных, нужно вычислить частные производные этой функции по каждой из оцениваемых параметров и приравнять их к нулю. В результате получаем стационарную систему уравнений для функции (2):

регрессивный оценка обработка результат

Если разделить обе части каждого уравнения системы на (-2), раскрыть скобки и привести подобные члены, то получим систему:

Эта система нормальных уравнений относительно коэффициентов и для зависимости

Решением системы нормальных уравнений являются оценки неизвестных параметров уравнения регрессии и :

Где - среднее значение зависимого признака;

- среднее значение независимого признака;

- среднее арифметическое значение произведения зависимого и независимого признаков;

- дисперсия независимого признака;

- ковариация между зависимым и независимым признаками.

Рассмотрим применение МНК на конкретном примере.

Имеются данные о цене на нефть (долларов за баррель) и индексе акций нефтяной компании (в процентных пунктах). Требуется найти эмпирическую формулу, отражающую связь между ценой на нефть и индексом акций нефтяной компании исходя из предположения, что связь между указанными переменными линейна и описывается функцией вида

Зависимой переменной в данной регрессионной модели будет являться индекс акций нефтяной компании, а независимой - цена на нефть.

Для нахождения коэффициентов и построим вспомогательную таблицу (1).

Таблица 1.

Таблица для нахождения коэффициентов и

Запишем систему нормальных уравнений исходя из данных таблицы:

Решением данной системы будут следующие числа:

Таким образом, уровень регрессии, описывающее зависимость между ценой на нефть и индексом акций нефтяной компании, можно записать как:

На основании полученного уравнения регрессии можно сделать вывод о том, что с изменением цены на нефть на 1 денежную единицу за баррель индекс акций нефтяной компании изменяется примерно на 15, 317 процентных пункта.

Метод наименьших квадратов является наиболее распространенным методом оценивания параметров уровня регрессии, и применим только для линейных относительно параметров моделей или приводимых к линейным с помощью преобразования и замены переменных Мамаева З.М. Математические методы и модели в экономике. ч 2. Учебное пособие. Н.Новгород.: 2010. С 17.

Список использованной литературы:

1. Крянев А.В. Применение современных методов математической статистики при восстановлении регрессионных зависимостей на ЭВМ. Учебное пособие. М.: 1988. С. 4.

2. Мамаева З.М. Математические методы и модели в экономике. ч 2. Учебное пособие. Н. Новгород.: 2010. С 17

3. Эконометрика. Конспект лекций. Яковлева А.В. М.: Эксмо, 2008.С. 126.

Размещено на Allbest.ru


Подобные документы

  • Оценка коэффициентов парной линейной регрессии, авторегрессионное преобразование. Трехшаговый и двухшаговый метод наименьших квадратов, его гипотеза и предпосылки. Системы одновременных уравнений в статистическом моделировании экономических ситуаций.

    курсовая работа [477,2 K], добавлен 05.12.2009

  • Эффективность линейной несмещенной оценки вектора для обобщенной регрессионной модели, теорема Айткена. Обобщенный метод наименьших квадратов. Преобразования Фурье, их применение; разложение временного ряда. Ряды Фурье, многомерные преобразования.

    реферат [345,4 K], добавлен 09.05.2012

  • Эффективная оценка по методу наименьших квадратов. Корелляционно-регрессионный анализ в эконометрическом моделировании. Временные ряды в эконометрических исследованиях. Моделирование тенденции временного ряда. Расчет коэффициента автокорреляции.

    контрольная работа [163,7 K], добавлен 19.06.2015

  • Оценка влияния разных факторов на среднюю ожидаемую продолжительность жизни по методу наименьших квадратов. Анализ параметров линейной двухфакторной эконометрической модели с помощью метода наименьших квадратов. Графическое изображение данной зависимости.

    практическая работа [79,4 K], добавлен 20.10.2015

  • Эконометрика как наука, позволяющая анализировать связи между различными экономическими показателями на основании реальных статистических данных. Структурная форма эконометрической модели. Метод наименьших квадратов: общее понятие, главные функции.

    курсовая работа [135,1 K], добавлен 05.12.2014

  • Суть эконометрики как научной дисциплины, ее предмет и метод. Парная и множественная регрессия в экономических исследованиях. Регрессионные модели с переменной структурой. Обобщенный метод наименьших квадратов. Анализ систем экономических уравнений.

    реферат [279,2 K], добавлен 11.09.2013

  • Основные элементы эконометрического анализа временных рядов. Задачи анализа и их первоначальная обработка. Решение задач кратко- и среднесрочного прогноза значений временного ряда. Методы нахождения параметров уравнения тренда. Метод наименьших квадратов.

    контрольная работа [37,6 K], добавлен 03.06.2009

  • Общее понятие о прогнозировании, методы. Абсолютные, сравнительные и качественные показатели оценки качества прогноза. Метод наименьших квадратов. Модели линейного роста. Новшества программы Excel 5.0. Пример решения задачи по прогнозу объема кредита.

    курсовая работа [1,1 M], добавлен 07.08.2013

  • Основные проблемы эконометрического моделирования. Использование фиктивных переменных и гармонических трендов. Метод наименьших квадратов и выборочная дисперсия. Смысл коэффициента детерминации. Расчет функции эластичности. Свойства линейной модели.

    контрольная работа [18,6 K], добавлен 06.11.2009

  • Виды проявления количественных связей между признаками. Определения функциональной и корреляционной связи. Практическое значение установления, направление и сила корреляционной связи. Метод квадратов (метод Пирсона), ранговый метод (метод Спирмена).

    презентация [173,6 K], добавлен 19.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.