Разработка модели оптимальной структуры производства продукции на основании критерия максимизации прибыли

Модели, применяемые в производстве, их классификация, возможности и влияние информации на их сложность. Определение минимизации затрат и максимизации прибыли от реализации продукции с помощью "Excel" и оптимальных значений производственных процессов.

Рубрика Экономико-математическое моделирование
Вид курсовая работа
Язык русский
Дата добавления 29.11.2014
Размер файла 2,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План

Введение

1. Моделирование производственных процессов

1.1 Модели и их классификация

1.2 Моделирование производственных показателей

2. Определение оптимального ассортимента продукции

3. Анализ исходной информации

3.1 Модель производства продукции

Вывод

Введение

Одним из показателей улучшения экономической деятельности хозяйств является создание моделей ориентированных на минимизацию затрат или на максимизацию доходов от производства и реализации продукции.

На протяжении многолетнего периода на кафедре «Информатики и математического моделирования» решались задачи, связанные с оптимизацией структуры производства. Внедрение ряда разработок в хозяйствах позволили улучшить экономическое состояние предприятий, при условии их реальных ресурсных возможностей.

Целью работы является разработка модели оптимальной структуры производства продукции на основании критерия максимизации прибыли.

Для достижения поставленной цели решены следующие задачи:

1) анализ экономического состояния отрасли на предприятии;

2) определение тенденции развития предприятия;

3) построение структуры модели и анализ информации;

4) реализация линейной модели.

На основе поставленных задач определена структура курсовой работы, которая состоит из 3 глав.

В первой главе представлены модели, применяемые в производстве, их классификация, возможности и влияние информации на сложность моделей.

Во второй главе Оценено экономическое состояние предприятия. Основное внимание уделено динамике производства продукции.

В последней главе осуществляется выбор вида модели, выявляется ее структура, анализируется исходная информация. В результате построения линейной модели решена задача оптимизации структуры производства с применением критерия максимизации прибыли.

В работе использованы следующие методы: монографический, экономико-статистические и методы математического программирования.

1. Моделирование производственных процессов

1.1 Модели и их классификация

Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

В экономике широко применяются экономико-статистические и экономико-математические модели.

Экономико-статистическая модель представляет корреляционное уравнение связи зависимого и нескольких независимых факторов, определяющих количественное значение зависимого фактора.

Корреляционно-регрессионный анализ является одним из значимых методов построения математических моделей в экономике. Его цель определить общий вид математической модели в виде уравнения регрессии, рассчитать статистические оценки неизвестных параметров, входящих в это уравнение, и проверить статистические гипотезы о зависимости функции от ее аргументов.

Одним из наиболее распространенных способов моделирования тенденции временного ряда является построение аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда.

Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией, количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

В экономико-математической модели параметры обычно даются в виде таблицы чисел, связанных в систему функциональных уравнений различного типа.

Экономико-математические модели подразделяют на детерминистические и стохастические.

К детерминистическим относят модели, в которых результат полностью и однозначно определяется набором независимых переменных. Эти модели строят на основе правил линейной алгебры, они представляют собой системы уравнений, совместно решаемых для получения результатов.

Детерминистические модели подразделяют на балансовые и оптимизационные. Балансовые модели, выражающие требование соответствия наличия ресурсов и их использования, как правило, характеризуются системой балансовых таблиц, которые обычно имеют форму шахматного баланса и могут быть записаны в виде квадратных матриц.

Наиболее обширный класс моделей, применяющихся на практике, - оптимизационные, которые основаны на методах математического программирования. Оптимизационные модели отличаются от балансовых тем, что целью их построения является не столько описание структуры экономической системы, сколько описание условий ее функционирования. Данные модели предназначены для выбора наилучшего варианта из определенного числа вариантов производства, распределения или потребления. Примером построения таких моделей в производстве является оптимизационная модель структуры производства продукции, которая направлена на достижение максимальной прибыли при оптимальной структуре производства.

Оптимизационные модели бывают линейные и нелинейные. Линейные оптимизационные модели базируются на теории линейного программирования. Они обладают простой структурой, математический аппарат для их реализации на компьютере хорошо разработан, а результаты моделирования легко интерпретируются традиционными экономическими терминами.

В то же время нередко встречаются условия, когда зависимости между объемами видов деятельности или в целевой функции не линейны.

Стохастические модели описывают случайные процессы, подчиняющиеся законам теории вероятности. В этих моделях либо исходные данные, либо искомый результат выражаются не определенными величинами, а виде некоторой статистической функции распределения этих величин. Изучаемый процесс условно рассматривается как детерминистический, и с моделью математически оперируют как с детерминистической, но в нее входят элементы оценки вероятностей получения результатов.

Экономико-математические модели могут классифицироваться также по характеристике математических объектов, включенных в модель, другими словами по типу математического аппарата, используемого в модели. По этому признаку могут быть выделены матричные модели, модели линейного и нелинейного программирования, корреляционно-регрессионные модели, модели теории массового обслуживания, модели сетевого планирования и управления, модели теории игр и т.д.

Наконец, по типу подхода к изучаемым социально-экономическим системам выделяют дескриптивные и нормативные модели. При дескриптивном (описательном) подходе получаются модели, предназначенные для описания и объяснения фактически наблюдаемых явлений или для прогноза этих явлений; в качестве примера дескриптивных моделей можно привести названные ранее балансовые и трендовые модели. При нормативном подходе интересуются не тем, каким образом устроена и развивается экономическая система, а как она должна быть устроена и как должна действовать в смысле определенных критериев. В частности, все оптимизационные модели относятся к типу нормативных; другим примером могут служить нормативные модели уровня жизни.

Все описанные выше виды моделей применимы к описанию структуры производства продукции. Динамика производства продукции может быть описана с помощью трендовой модели. Трендовые модели позволяют прогнозировать многолетнее развитие отрасли, поскольку ряд показателей производства несет в себе неопределенность, широкое распространение получили стохастические модели.

Наиболее разработанными для моделирования производства продукции являются линейные модели, с помощью которых возможен выбор наилучшего варианта из множества. Кроме того, данный вид модели легко можно обработать на компьютере при использовании программ, разработанных на основе симплекс-метода.

1.2 Моделирование производственных показателей

Оптимизационная задача - это экономико-математическая задача, которая состоит в нахождении оптимального (максимального или минимального) значения целевой функции. Причем значения переменных должны принадлежать некоторой области допустимых значений.

В самом общем виде задача математически записывается так

U = f (X) > max; XW, (1)

X = (x1, x2… x n).

где W - область допустимых значений переменных x1, x2, …. x n,

f (x) - целевая функция.

Для того чтобы решить задачу оптимизации, достаточно найти ее оптимальное решение, т.е. указать такое X0 W, при котором f(x0) f(x) для любого XW. В случае поиска минимума f(x0) ? f(x) при любом XW [1].

В результате решения оптимизационной задачи отыскивается такой вариант, который при заданных условиях обеспечивает достижение экстремального значения выбранного показателя, отражающего реализацию поставленной цели. Этот показатель называют критерием оптимальности. Математический критерий оптимальности формируется в виде некоторой целевой функции.

При оптимизации сложных динамических систем, используются многокритериальные задачи, т.е. выбор такого варианта, который был бы относительно одинаково эффективным для ряда наиболее предпочтительных критериев. На практике редко встречаются задачи, когда необходимо одновременно рассматривать более 3 - 4 критериев. Для решения планово-экономических задач обычно достаточно 2 - 3 критериев.

С помощью моделирования экономическую проблему выбора наилучшего варианта удается свести к более или менее соответствующей математической задаче поиска оптимума. Математическая модель оптимизационной задачи включает в себя следующие основные элементы:

1) переменные, или управляемые параметры процесса - набор неизвестных величин, численные значения которых определяются в ходе решения и дают достаточно конкретные и детализированные указания по рациональной организации процесса;

2) ограничения задачи, представляющие собой символическую запись обязательных условий организации данного процесса. Как правило, ограничения имеют вид линейных неравенств или уравнений. Экономический смысл ограничений разнообразен и зависит от содержания задач. Наиболее характерные из ограничений:

3) задания по объему производства;

4) ограничения на объем используемых ресурсов.

Ограничений первого и второго типов в задаче может быть множество: по каждому виду материалов, топлива, энергии, оборудования, численности работников, финансового ресурса, мощности предприятий и т.д.

При решении экономико-математических задач по планированию и организации производства методами линейного программирования обычно исходят из допущения, что все параметры экономико-математической модели (ресурсы, технико-экономические коэффициенты и коэффициенты целевой функции) являются детерминированными, заранее известными величинами. Это допущение во многих случаях оказывается недостаточно строгим, так как некоторые из параметров задачи могут носить вероятностный (стохастический) характер.

В моделях, описывающих структуру производства продукции, в качестве детерминированных величин принимаются объемы производственных ресурсов хозяйства, а также другие технико-экономические коэффициенты. Оценка детерминированных и стохастических величин производится при помощи статистических методов, наиболее точным из которых является автокорреляционный анализ, определяющий корреляционную зависимость между последовательными уровнями временного ряда.

Таким образом, при разработке оптимизационной модели, описывающей структуру производства продукции, используются детерминированные и стохастические величины. В результате проведенной оценки этих величин может быть построена модель с усредненными данными или модель на основе тенденций развития производства или стохастическая с множеством вариантов.

Оптимизационные задачи с линейной зависимостью между переменными

Пусть: b i количество ресурса вида i ( i = 1, 2, ..., m ); a i , j норма расхода i -того ресурса на единицу j -того вида продукции; x j количество продукции вида j ( j = 1, 2, ..., n ); c j прибыль (доход) от единицы этой продукции (в задачах на минимум себестоимость продукции).

Тогда ОЗ линейного программирования (ЛП) в общем виде может быть сформулирована и записана следующим образом:

Найти переменные x j ( j = 1, 2, ..., n ), при которых целевая функция

была бы максимальной (минимальной), не нарушая следующих ограничений:

Все три случая можно привести к так называемой канонической форме, введя дополнительные переменные

где k количество дополнительных переменных, и условие неотрицательности искомых переменных: x j ? 0.

В результате решения задачи находится некий план (программа) работы некоторого предприятия. Отсюда и появилось слово программирование. Слово линейное указывает на линейный характер зависимости как в целевой функции, так и в системе ограничений. Следует еще раз подчеркнуть, что задача обязательно носит экстремальный характер, т.е. состоит в отыскании максимума или минимума (экстремума) целевой функции.

Симплексный метод решения ОЗЛП

Симплексный метод это вычислительная процедура, основанная на принципе последовательного улучшения решений при переходе от одной базисной точки (базисного решения) к другой. При этом значение целевой функции улучшается.

Базисным решением является одно из допустимых решений, находящихся в вершинах области допустимых значений. Проверяя на оптимальность вершину за вершиной, приходят к искомому оптимуму. На этом принципе основан симплекс - метод.

Симплекс это выпуклый многогранник в n -мерном пространстве с n + 1 вершинами, не лежащими в одной гиперплоскости (гиперплоскость делит пространство на два полупространства).

Доказано, что если оптимальное решение существует, то оно обязательно будет найдено через конечное число итераций (шагов), кроме случаев зацикливания.

Алгоритм симплексного метода состоит из ряда этапов.

Первый этап.

Строится исходная ОМ. Далее исходная матрица условий преобразуется в приведенную каноническую форму, которая среди всех других канонических форм выделяется тем, что:

а) правые части условий (свободные члены b i ) являются величинами неотрицательными;

б) сами условия являются равенствами;

в) матрица условий содержит полную единичную подматрицу.

Если свободные члены отрицательные, то обе части неравенства умножаются на - 1, а знак неравенства меняется на противоположный. Для преобразования неравенств в равенства вводятся дополнительные переменные, которые обычно обозначают объем недоиспользованных ресурсов. В этом их экономический смысл.

Наконец, если после добавления дополнительных переменных матрица условий не содержит полную единичную подматрицу, то вводятся искусственные переменные, которые не имеют никакого экономического смысла. Они вводятся исключительно для того, чтобы получить единичную подматрицу и начать процесс решения задачи при помощи симплексного метода.

В оптимальном решении задачи все искусственные переменные (ИП) должны быть равными нулю. Для этого вводят ИП в целевую функцию задачи с большими отрицательными коэффициентами (- М) при решении задачи на max, и с большими положительными коэффициентами (+ М), когда задача решается на min. В этом случае даже небольшое ненулевое значение ИП будет резко уменьшать (увеличивать) значение целевой функции. Обычно М в 1000 раз должно быть больше, чем значения коэффициентов при основных переменных.

Второй этап.

Строится исходная симплекс-таблица и отыскивается некоторое начальное базисное решение. Множество переменных, образующих единичную подматрицу, принимается за начальное базисное решение. Значения этих переменных равны свободным членам. Все остальные внебазисные переменные равны нулю.

Третий этап.

Проверка базисного решения на оптимальность осуществляется при помощи специальных оценок коэффициентов целевой функции. Если все оценки коэффициентов целевой функции отрицательны или равны нулю, то имеющееся базисное решение оптимальное. Если хотя бы одна оценка коэффициента целевой функции больше нуля, то имеющееся базисное решение не является оптимальным и должно быть улучшено.

Четвертый этап.

Переход к новому базисному решению. Очевидно, что в оптимальный план должна быть введена такая переменная, которая в наибольшей степени увеличивает целевую функцию. При решении задач на максимум прибыли в оптимальный план вводится продукция, производство которой наиболее выгодно. Это определяется по максимальному положительному значению оценки коэффициента целевой функции.

Столбец симплексной таблицы с этим номером на данной итерации называется генеральным столбцом.

Далее, если хотя бы один элемент генерального столбца а ij 0 строго положителен, то отыскивается генеральная строка (в противном случае задача не имеет оптимального решения).

Для отыскания генеральной строки все свободные члены (ресурсы) делятся на соответствующие элементы генерального столбца (норма расхода ресурса на единицу изделия). Из полученных результатов выбирается наименьший. Соответствующая ему строка на данной итерации называется генеральной. Она соответствует ресурсу, который лимитирует производство на данной итерации.

Элемент симплексной таблицы, находящийся на пересечении генеральных столбца и строки, называется генеральным элементом.

Затем все элементы генеральной строки (включая свободный член) делятся на генеральный элемент. В результате этой операции генеральный элемент становится равным единице. Далее необходимо, чтобы все другие элементы генерального столбца стали бы равны нулю, т.е. генеральный столбец должен стать единичным. Все строки (кроме генеральной) преобразуются следующим образом. Полученные элементы новой строки умножаются на соответствующий элемент генерального столбца и полученное произведение вычитается из элементов старой строки. Значения новых базисных переменных получим в соответствующих ячейках столбца свободных членов.

Пятый этап.

Полученное базисное решение проверяется на оптимальность (см. третий этап). Если оно оптимально, то вычисления прекращаются. В противном случае необходимо найти новое базисное решение (четвертый этап) и т.д.

Процесс построения математической модели для решения задачи начинается, как правило, с ответов на следующие вопросы:

Для определения каких величин должна быть построена модель, т.е. как идентифицировать переменные задачи?

Какие ограничения должны быть наложены на переменные, чтобы выполнялись условия, характерные для моделируемой системы?

В чем состоит цель задачи, для достижения которой из всех допустимых значений переменных нужно выбрать те, которые будут соответствовать оптимальному (наилучшему) решению задачи?

После ответа на данные вопросы для построения модели остается только идентифицировать переменные и представить цель и ограничения в виде математических функций этих переменных.

Надлежащий анализ вопросов подобного рода и корректная формулировка математической модели являются центральным звеном решения задач линейной (и не только линейной) оптимизации.

Эффективным средством решения задач линейной оптимизации является MS Excel. Входящий в состав данного программного продукта пакет Поиск решения (Solver) позволяет проводить решения задач подобного рода с большим (свыше 200) числом переменных и ограничений.

Отметим, что применительно к задачам оптимизации производственной программы предприятия наиболее типичными задачами линейной оптимизации являются оптимизация дохода, прибыли, себестоимости, номенклатуры производимой продукции, затрат станочного времени и т.п.

Нелинейные модели оптимизации в управлении

В качестве примера можно рассмотреть формирование оптимальной производственной программы предприятия. По критерию затрат учитывается себестоимость единицы продукции, которая уменьшается при увеличении объема выпускаемой продукции, что приводит к нелинейному критерию эффективности. Нелинейные зависимости возникают также в ограничениях задачи при точном учете норм расхода ресурсов на единицу производимой продукции.

Перечислим некоторые наиболее употребительные методы решения задач нелинейной оптимизации (нелинейного программирования):

Оптимизация нелинейной функции с ограничениями на неотрицательность значений переменных (наиболее широко используемыми моделями данного класса являются модели квадратичного программирования, в которых целевая функция является квадратичной функцией переменных ).

Модели выпуклого программирования; в моделях данного класса целевая функция является вогнутой (или выпуклой), а функции-ограничения являются выпуклыми функциями. При данных условиях локальный максимум (или минимум) функции является также глобальным. При решении таких задач используется метод множителей Лагранжа, а также теорема Куна-Таккера.

Сепарабельное программирование. В задачах данного класса целевая функция и функции-ограничения могут быть представлены в виде сумм отдельных компонент. Данные задачи могут быть сведены к задачам линейного программирования.

Дробно-нелинейное программирование. В этих задачах производится максимизация (минимизация) целевой функции вида

Если функции линейны (задача дробно-линейного программирования), то задача сводится к линейной.

Невыпуклое программирование. Задачи данного типа принадлежат к наименее изученным и наиболее сложным задачам нелинейной оптимизации. В данном случае целевая функция и (или) функции-ограничения не выпуклы. Надежных методов решения таких задач в настоящее время не существует.

Мы ограничимся рассмотрением лишь наиболее простых задач нелинейной оптимизации, не требующих использования сложных аналитических выкладок и анализа, - задач, которые могут эффективно решаться на базе табличного процессора Excel.

Задача нелинейной оптимизации в общем случае состоит в отыскании такого вектора неизвестных

который обращал бы в максимум (минимум) функцию

(2.6)

и удовлетворял бы системе ограничений:

, (2.7)

где на некоторые или на все переменные налагается условие неотрицательности.

2. Определение оптимального ассортимента продукции

затраты производственный прибыль

Предприятие изготавливает два вида продукции П1 и П2 , которая поступает в оптовую продажу. Для производства используются два вида сырья и . Максимально возможные запасы сырья в сутки составляют 9 и 13 единиц соответственно. Расход сырья на единицу продукции приведен в таблице.

Таблица 2.1

Сырье

Расход сырья на единицу продукции

Запас сырья, ед.

П1

П2

2

3

9

3

2

13

Маркетинговые исследования показали, что суточный спрос на продукцию П1 не превышает спрос на продукцию П2 более чем на 1 ед. Кроме того, известно, что спрос на продукцию П2 не превышает 2 единиц в сутки.

Оптовые цены единицы продукции равны для П1 3 д.е., для П2- 4 д.е. Какое количество продукции каждого вида должно производить предприятие, чтобы доход от реализации продукции был максимальным?

Решение

Очевидно, фирме требуется определить объемы производства каждого вида продукции в тоннах, максимизирующие доход в д.е. от реализации продукции, с учетом ограничений на спрос и расход исходных продуктов. Предположим, что предприятие изготовит единиц продукции П1 и единиц продукции П2. Поскольку производство продукции ограничено имеющимся в распоряжении предприятия сырьем каждого вида и спросом на данную продукцию, а также учитывая, что количество изготовляемых изделий не может быть отрицательным, получим следующую систему ограничений

Доход от реализации продукции (целевая функция) составит

Таким образом, данная простая задача сводится к максимизации целевой функции при учете вышеприведенных ограничений.

Проведем решение задачи в Excel.

Введем данные на рабочий лист так, как показано на Рис 2.1.

Искомые значения переменных будут располагаться в ячейках A10 и B10 соответственно, целевая функция - в ячейке E10.

Рис. 2.1

В ячейки A3, A4 введем левые части функций - ограничений: =2*A10+3*B10 и = 3*A10+2*B10 соответственно. В ячейку C10 введем левую часть третьей функции-ограничения: =A10-B10.

Далее, запускаем пакет Поиск решения (Сервис ® Поиск решения) и устанавливаем целевую и изменяемые ячейки, а также вводим необходимые ограничения (Рис.2.2)

Рис. 2.2 Окно диалога Поиск решения

Поиск решения дает ответ

Пример 2 .Использование мощностей оборудования

Предприятие имеет моделей машин различных мощностей. Задан план по времени и номенклатуре: - время работы каждой машины; продукции - го вида должно быть выпущено не менее единиц.

Необходимо составить такой план работы оборудования, чтобы обеспечить минимальные затраты на производство, если известны производительность каждой - машины по выпуску - го вида продукции и стоимость единицы времени, затрачиваемого -й машиной на выпуск - го вида продукции .

Другими словами, задача для предприятия состоит в следующем: требуется определить время работы - машины по выпуску - го вида продукции , обеспечивающее минимальные затраты на производство при соблюдении ограничений по общему времени работы машин и заданному количеству продукции .

Решение. По условию задачи машины работают заданное время , поэтому данное ограничение можно представить в следующем виде

Ограничение по заданному количеству продукции имеет вид

Задача решается на минимум затрат на производство

В данной постановке задачи предполагается, что количество выпускаемой продукции должно быть, по крайней мере, не менее . В некоторых случаях не допускается превышение плана по номенклатуре; очевидно в этом случае в ограничениях по количеству продукции необходимо использовать знак равенства.

Проведем решение задачи в Excel. Введем данные на рабочий лист так, как показано на Рис 2.3.

В ячейки B7:E7 введем формулы для ограничений по объему выпускаемой продукции

()

в диапазон ячеек F19:F21 - формулы для ограничений по времени работы машин

()

В качестве целевой ячейки выберем H11 и введем в нее формулу минимизируемой функции.

Информационный оптимизация линейный модель

Рис. 2.3. Данные для решения примера 2

С помощью Поиска решения получим следующий ответ:

Таблица 2.2

Время работы Xij

Машина

1

2

3

4

1

803,92

0

0

196,07

2

625

0

375

0

3

0

1000

0

0

Искомое значение минимальных затрат на производство составляет 725,32 д.е.

Следующие два рассматриваемых нами примера относятся к области целочисленной оптимизации.

Пример 3. Оптимизация производственной программы

Автомобилестроительный завод выпускает три модели автомобилей, которые изготавливаются последовательно в трех цехах. Мощность цехов составляет 300, 250 и 200 человеко-дней в декаду. В первом цехе для сборки одного автомобиля первой модели требуется 6 человеко-дней, второй модели 4 и третьей модели - 2 человеко-дня в неделю соответственно. Во втором цехе трудоемкость равна 3, 4 и 5 человеко-дней соответственно, в третьем - по 3 человеко-дня на каждую модель. Прибыль, получаемая от продажи автомобиля каждой модели, составляет соответственно 15, 13 и 10 тыс. д.е. Требуется построить модель оптимального плана и определить оптимальные количества моделей каждого типа, т.е. такие, при которых прибыль завода будет максимальной.

Решение. Пусть - количество выпускаемых автомобилей -й модели в течение декады (). Модель может быть описана следующей целевой функцией и системами ограничений

(2.5)

Введем данные на рабочий лист так, как показано на Рис. 2.4.

Искомые значения переменных будут размещаться в ячейках A10:B10, целевая функция - в ячейке E10.

В ячейки A3:A5 введем левые части функций - ограничений, соответствующих второму, третьему и четвертому соотношению из (2.5).

С помощью Поиска решения получим ответ

Рис. 2.4 Данные для решения примера 3

Пример 4. Размещение проектов на предприятиях

Имеется инвестиционных возможностей (вариантов проектов), которые можно реализовать на предприятиях. Эффективность реализации каждой инвестиции на каждом из объектов задана в таблице 2.3.

Таблица 2.3

Инвестиционные проекты ()

Объекты ()

I

II

III

IV

V

1

0.12

0.02

0.50

0.43

0.15

2

0.71

0.18

0.81

0.05

0.26

3

0.84

0.76

0.26

0.37

0.52

4

0.22

0.45

0.83

0.81

0.65

5

0.49

0.02

0.50

0.25

0.27

Целевой функцией, подлежащей оптимизации, является функция

где - искомые распределения инвестиций по объектам.

Таким образом, по смыслу величина есть ожидаемый результат от осуществления всех инвестиционных проектов. Ограничениями в данном случае являются следующие соотношения

означающие, что на каждом объекте может быть реализован лишь один проект, и

означающие, что должны быть реализованы все проекты. Необходимо распределить проекты по объектам таким образом, чтобы суммарная эффективность от реализации всех проектов была максимальной.

Решение

Введем данные на рабочий лист (Рис.2.5.).

В ячейку B17 введем формулу =СУММ(B12:B16) и скопируем эту формулу в диапазон C17:F17. Аналогично, введем формулу =СУММ(B12:F12) в ячейку G12 и скопируем ее в диапазон G13:G16. Введем в ячейку для целевой функции (I13) формулу =СУММПРОИЗВ(B4:F8;B12:F16)

Рис. 2.5 Данные для решения примера 4

Для решения задачи с помощью Поиска решения необходимо ввести ограничения в соответствии с приведенным ниже рисунком.

Рис. 2.6

Поиск решения дает ответ

(остальные ), .

Нелинейные модели оптимизации в управлении

В настоящем разделе мы кратко рассмотрим задачи нелинейной оптимизации (называемые иначе оптимизационными задачами нелинейного программирования), математические модели которых содержат нелинейные зависимости от переменных. Источники нелинейности в задачах подобного типа могут относиться, в частности, к одной из двух категорий:

Реально существующие и эмпирически наблюдаемые нелинейные соотношения, например непропорциональные зависимости между объемом производства и затратами, между количеством используемого в производстве компонента и некоторыми показателями качества готовой продукции, между затратами сырья и физическими параметрами (давление, температура и т.п.) соответствующего производственного процесса, между выручкой и объемом реализации и т.п.

Установленные (постулируемые) руководством правила поведения или задаваемые зависимости, например, правила расчета с потребителями энергии или других видов услуг, правила определения страховых уровней запаса продукции, гипотезы о характере вероятностного распределения рассматриваемых в модели случайных величин, различного рода договорные условия взаимодействия между партнерами по бизнесу и др.

В качестве примера можно рассмотреть формирование оптимальной производственной программы предприятия. По критерию затрат учитывается себестоимость единицы продукции, которая уменьшается при увеличении объема выпускаемой продукции, что приводит к нелинейному критерию эффективности. Нелинейные зависимости возникают также в ограничениях задачи при точном учете норм расхода ресурсов на единицу производимой продукции.

Вообще говоря, решение нелинейных задач по сложности значительно превосходит решение рассмотренных ранее задач линейной оптимизации. В связи с этим долгое время в практике экономического управления модели линейной оптимизации успешно применялись даже при наличии нелинейности. В одних случаях нелинейность была несущественна и ею можно было пренебречь, в других - проводилась линеаризация нелинейных соотношений или применялись специальные приемы, например строились, так называемые, аппроксимационные модели, благодаря чему достигалась требуемая адекватность. Тем не менее, часто встречаются задачи, для которых нелинейность является существенной и упомянутые выше методы аппроксимации неэффективны, в связи с чем, нелинейность необходимо учитывать в явном виде.

В отличие от задачи линейной оптимизации (линейного программирования), не существует одного или нескольких алгоритмов, эффективных для решения любых нелинейных задач. Какой-то алгоритм может быть эффективен при решении задач одного типа и неприемлемым для задач другого типа. В связи с этим разработаны алгоритмы для решения каждого класса (типа) задач. Следует иметь в виду, что даже программы, ориентированные на решение определенного класса задач, не гарантируют правильность решения любых задач этого класса и оптимальность решения следует проверять в каждом конкретном случае.

Перечислим некоторые наиболее употребительные методы решения задач нелинейной оптимизации (нелинейного программирования):

Оптимизация нелинейной функции с ограничениями на неотрицательность значений переменных (наиболее широко используемыми моделями данного класса являются модели квадратичного программирования, в которых целевая функция является квадратичной функцией переменных ).

Модели выпуклого программирования; в моделях данного класса целевая функция является вогнутой (или выпуклой), а функции-ограничения являются выпуклыми функциями. При данных условиях локальный максимум (или минимум) функции является также глобальным. При решении таких задач используется метод множителей Лагранжа, а также теорема Куна-Таккера.

Сепарабельное программирование. В задачах данного класса целевая функция и функции-ограничения могут быть представлены в виде сумм отдельных компонент. Данные задачи могут быть сведены к задачам линейного программирования.

Дробно-нелинейное программирование. В этих задачах производится максимизация (минимизация) целевой функции вида

Если функции линейны (задача дробно-линейного программирования), то задача сводится к линейной.

Невыпуклое программирование. Задачи данного типа принадлежат к наименее изученным и наиболее сложным задачам нелинейной оптимизации. В данном случае целевая функция и (или) функции-ограничения не выпуклы. Надежных методов решения таких задач в настоящее время не существует.

Мы ограничимся рассмотрением лишь наиболее простых задач нелинейной оптимизации, не требующих использования сложных аналитических выкладок и анализа, - задач, которые могут эффективно решаться на базе табличного процессора Excel.

Задача нелинейной оптимизации в общем случае состоит в отыскании такого вектора неизвестных

который обращал бы в максимум (минимум) функцию

(2.6)

и удовлетворял бы системе ограничений:

, (2.7)

где на некоторые или на все переменные налагается условие неотрицательности.

Использование информационных технологий при решении задач нелинейной оптимизации

Процессор электронных таблиц Excel является мощным и достаточно эффективным средством решения задач нелинейной оптимизации. В качестве иллюстрации возможностей данного программного продукта рассмотрим решение нескольких задач, непосредственно связанных с процессом принятия (выработки) решений.

Пример 5

Рассмотрим следующую задачу. Предприятие располагает ресурсами двух видов сырья и рабочей силы, необходимыми для производства двух видов продукции. Затраты ресурсов на изготовление одной тонны каждого продукта, прибыль, получаемая предприятием от реализации тонны продукта, а также запасы ресурсов приведены в следующей таблице:

Таблица 2.4 Параметры задачи

Ресурс

Расход ресурса

Запас ресурса

На продукт 1

На продукт 2

Сырье 1, т

3

5

120

Сырье 2, т

4

6

150

Трудозатраты, ч

14

12

400

Прибыль единицы продукта, тыс. руб./т

72

103

Стоимость одной тонны каждого вида сырья определяется следующими зависимостями:

тыс. руб. для сырья 1 и тыс. руб. для сырья 2

где - затраты сырья на производство продукции. Стоимость одного часа трудозатрат определяется зависимостью , где - затраты времени на производство продукции.

Вопросы

Сколько продукта 1 и 2 следует производить для того, чтобы обеспечить максимальную прибыль?

Какова максимальная прибыль?

Решение: Пусть и - объемы выпуска продукции 1 и 2 в тоннах. Тогда задача может быть описана в виде следующей модели нелинейного программирования

Проведем решение данной задачи в Excel. На начальном этапе подготовим форму для решения задачи на рабочем листе следующего вида

Отведем для искомых значений объемов выпуска продукции ячейки B8, C8, для расхода соответствующих ресурсов (включая трудозатраты) - ячейки B3, B4, B5. В данные ячейки необходимо ввести функции

=3*B8+5*C8

=4*B8+6*C8 и

=14*B8+12*C8 соответственно.

Рис. 2.6. Данные для решения примера 5

Численные значения ограничений по ресурсам внесем в ячейки C3, C4, C5. В ячейку E10 введем формулу для целевой функции

=11*B8+16*C8+0,1*B8^2+0,12*C8^2+0,22*B8*C8.

Решение задачи производится с помощью Поиска решения Excel. Изменяемыми ячейками будут, очевидно, ячейки B8, C8; целевая ячейка устанавливается равной максимальному значению; используются следующие ограничения: $B$3<=$C$3, $B$4<=$C$4, $B$5<=$C$5. Следует иметь в виду, что в связи с нелинейностью данной задачи необходимо в окне Параметры поиска решения отключить опцию Линейная модель (это замечание относится к решению всех задач, приведенных в данном разделе). В результате запуска Поиска решения получим ответ

и значение максимальной прибыли 507.407 тыс. руб.

Пример 6

Рассмотрим следующую задачу. Предприятие может выпускать два вида продукции. На ее изготовление требуются ресурсы трех видов (). С учетом брака расход ресурсов на единицу производимой продукции - го вида () определяется выражением , а прибыль в зависимости от объемов производства равна , где - искомый объем производства продукции - го вида; - норма расхода - го ресурса на производство единицы продукции - го вида; - коэффициент изменения расхода соответствующего ресурса с учетом выпуска бракованных изделий; - прибыль от единицы продукции - го вида; - коэффициент изменения прибыли, влияющий на объем производства продукции.

Требуется найти такие объемы производства продукции, при которых прибыль максимальна.

Значения параметров задачи приводятся в нижеследующей таблице.

Таблица 2.5

Ресурс ()

Запас ресурса

Норма расхода ресурсов на продукцию вида ?

Коэффициент изменения норм расхода ресурсов на продукцию вида ?

1

2

1

2

1

1350

15

18

0,1

0,05

2

1400

12

16

0,2

0,2

3

1580

17

14

0,1

0,15

Прибыль (ден. ед.)

100

120

Коэффициент изменения прибыли

-0,08

-0,1

При заданных значениях параметров целевая функция имеет вид

,

или

.

Ограничения по ресурсам имеют вид

или

Как видно, в данной задаче как целевая функция, так и функции-ограничения являются нелинейными функциями. Требуется найти решение задачи в целых числах.

Решение

Заполним рабочий лист по аналогии с Рис 2.7

Рис. 2.7 Данные для решения примера 6

В ячейки B3?B5 введем формулы-ограничения, в ячейку E8 - формулу для целевой функции. Дополнительное ограничение - на целочисленность переменных . После запуска Поиска решения получим ответ

Пример 7

Рассмотрим задачу несколько иного рода. Пусть необходимо определить место расположения некоторого объекта, обслуживающего несколько других объектов (например, прачечная, обслуживающая нескольких крупных клиентов; нефтеперерабатывающий завод, на который должна поступать нефть с нескольких скважин, склад готовой продукции, обслуживающий ряд предприятий, производящих однотипную продукцию и т.п.), координаты которых известны. Цель - свести к минимуму транспортные расходы с учетом неравноценности клиентов (например, различные объемы заказов). В связи с этим возникает необходимость такого выбора координат объекта, чтобы транспортные расходы были минимальны.

В качестве целевой функции принимаем:

де - искомые координаты обслуживающего клиентов объекта, - координаты -го обслуживаемого объекта, - заданные коэффициенты, характеризующие, например, объемы заказов, или удельную (в расчете на 1 км.) стоимость доставки из соответствующих объектов. Отметим, что в данной задаче не используются ограничения положительности .

Решение проведем для трех случаев, соответствующих 1) отсутствию каких-либо ограничений на координаты , 2) необходимости размещения обслуживающего объекта на некотором прямолинейном отрезке (например, объект может быть расположен лишь на отдельном небольшом участке улицы), 3) расположению объекта в пределах некоторого круга заданного радиуса. Ограничимся случаем трех обслуживаемых объектов .

Первый случай. Отсутствуют какие-либо ограничения на координаты .

Решение

Введем данные на рабочий лист в соответствии с приводимым ниже рисунком.

В качестве изменяемых ячеек выберем B10, B11; в качестве целевой ячейки - ячейку E11 и введем в нее формулу

=J6*КОРЕНЬ((B10-A6)^2+(B11-B6)^2)+K6*КОРЕНЬ((B10-D6)^2+(B11-E6)^2)+L6*КОРЕНЬ((B10-G6)^2+(B11-H6)^2).

Рис. 2.8 Данные для решения задачи о расположении объекта (без ограничений)

Решение задачи с помощью Поиска решения при заданных координатах точек дает оптимальное значение целевой функции составляет 11,0746.

Второй случай. Координаты принадлежат некоторому отрезку прямой линии, задаваемой уравнением

(в данном примере мы используем значения ).

Решение

Рис. 2.9 Данные для решения задачи о расположении объекта (координаты объекта лежат на отрезке прямой линии)

Единственным отличием от предыдущего случая является необходимость ввода дополнительного ограничения в ячейку B13; в ячейку B13 вводится формула =B9-B15*B8 и в окне диалога Поиск решения вводится ограничение $B$13=$B$16.

Ответ

оптимальное значение целевой функции составляет 13,6843

Третий случай. Координаты лежат внутри некоторой окружности радиуса (мы полагаем ). Данный случай может соответствовать, например, ситуации, когда необходимо разместить объект вблизи некоторого населенного пункта.

Решение

Введем данные на рабочий лист в соответствии с приводимым ниже рисунком.

Рис. 2.10 Данные для решения задачи о расположении объекта (координаты объекта локализованы в пределах круга определенного радиуса)

Целевая функция располагается в ячейке E11, искомые координаты объекта будут располагаться в ячейках B7, B8. В ячейку B12 введем функцию = B7^2+B8^2. Введем ограничение $B$12<=$C$11, учитывающее то обстоятельство, что объект не должен располагаться вне круга заданного радиуса. Поиск решения дает ответ целевая функция .

Пример 8. Формирование оптимального портфеля ценных бумаг

Требуется сформировать портфель минимального риска из двух видов ценных бумаг - “АРТ” с эффективностью 12% и риском 21,1 и “ВЕРМ” с эффективностью 5,1% и риском 8,3 при условии, что обеспечивается доходность портфеля не менее 8,9%. Коэффициент корреляции равен 0,18.

Вводные замечания. Портфель ценных бумаг представляет собой совокупность различных инвестиционных инструментов, собранных воедино для достижения конкретной инвестиционной цели вкладчика. В портфель могут входить ценные бумаги только одного типа, например акции или облигации, или различные инвестиционные ценности, такие как акции, облигации, депозитные и сберегательные сертификаты, недвижимость и т.д.

Главная цель в формировании портфеля состоит в достижении оптимального сочетания между риском и доходом для инвестора. Уменьшение риска достигается за счет того, что возможные невысокие доходы по одной бумаге будут компенсироваться высокой прибылью по другим бумагам.

Минимизация риска достигается за счет включения в портфель бумаг широкого круга отраслей, не связанных тесно между собой, чтобы избежать синхронности циклических колебаний их деловой активности.

Для получения количественных характеристик портфеля могут использоваться следующие характеристики:

- доходность (эффективность) портфеля ценных бумаг, рассчитываемая по формуле

где - доли инвестиций, помещенных в каждый из видов активов; - ожидаемая ставка дохода по каждому виду активов. Риск портфеля (стандартное отклонение ставок дохода по портфелю) представляет собой квадратный корень из дисперсии портфельного дохода (дисперсию доходности портфеля называют его вариацией ), которая определяется по формуле

где - коэффициент корреляции доходов между i-м и j-м активом; риски отдельных видов ценных бумаг.

Задача оптимизации заключается в том, чтобы определить, какая доля портфеля должна быть отведена для каждой из инвестиций так, чтобы величина ожидаемого дохода и уровень риска соответствовали целям инвесторов. Целевой функцией может быть минимизация риска при заданной доходности, или максимизация дохода при риске не выше заданного.

Решение. В случае всего двух видов активов формула для расчета риска упрощается и приобретает вид

Введем данные на рабочий лист в соответствии с Рис. 2.11.

Рис. 2.11.Данные для решения задачи о минимизации риска портфеля ценных бумаг

Формулу для расчета введем в ячейку С6; формулу для значения доходности портфеля - в ячейку С7 (=СУММ(12*A3+5,1*B3)). Формула для минимизируемой целевой функции

=КОРЕНЬ((A5*A3)^2+2*A3*B3*A5*B5*C5+(B5*B3)^2)

- в ячейку E5.

Используемые ограничения

· Значение (ячейка C6) должно равняться единице.

· Значение доходности портфеля ценных бумаг

(ячейка C7) должно быть не менее 8,9.

Ответ

Минимальный риск при этом составляет

3. Анализ исходной информации

Сбор и обработка исходной информации является весьма ответственным этапом при построении структуры производства. Источниками информации служат годовые и производственные отчеты, различные нормативные справочники .

Целью обработки исходной информации является разработка и обоснование системы технико-экономических характеристик объекта или процесса. Для модели оптимизации структуры производства продукции эти характеристики формируются в виде технико-экономических коэффициентов aij, коэффициентов целевой функции cj и констант или объемных показателей ресурсов или продуктов bi.

Основным источником данных для формирования исходной информации являются тщательно разработанные нормативы.

Кроме нормативов, для построения модели оптимальной структуры производства продукции необходимо изучить такие показатели, как :

- Виды изготавливаемой продукции в цехе - пружины;

- Виды ресурсов , сырья;

- Расход ресурса на единицу продукции;

- Максимальная (или мин.)норма расхода за период; - Трудозатраты , ч.; - Прибыль един. продукта , или себестоимость , или оптовая цена един. прод.;

- Виды моделей машин разных мощностей(2-3);

- Время работы машин потраченное на изготовление един.;

- производительность і-той машины...(или что-то в этом роде);

- стоимость един. времени затрачиваемого на выпуск(затраты);

- норма мин.(или макс)количества выпускаемой продукции за период;

- норма времени ;

- и т.п.

3.1 Модель производства продукции

Математическое моделирование процессов в области планирования и организации производства состоит из следующих последовательных этапов:

- постановка экономической задачи, выбор базовой математической модели и математического метода решения;

- разработка развернутой экономико-математической модели в виде системы неравенств и уравнений;

- создание структурной экономико-математической модели по разработанной системе неравенств и уравнений, моделирующей данный экономический процесс.

В данной курсовой работе мы рассмотрим несколько оптимизационных линейных задач на примере производства 2-х видов продукции запорожской компании «Мотор Сич», которая поступает в оптовую продажу :

- пружина;

- нержавеющая пружина;

Используем такие данные:

- расход пружинной стали на нержавеющую пружину (П1) составляет 0,5 г.;

- расход нержавеющей стали на нержавеющую пружину (П1) составит 72 г.;

- расход пружинной стали на обыкновенную пружину (П2) составляет 75 г.;

- расход нержавеющей стали на обыкновенную пружину (П2) составит 0,2 г.;

- спрос на нержавеющую пружину в 2 раза больше спроса на обыкновенную;

- максимальная норма расхода на кол. 1000 шт.составляет 75,5 кг. и 72,2 кг. соответственно;

- оптовая цена за шт.: (П1) - 1грн.2062 коп. , (П2) - 2 грн.4630 коп.

- используем 2 машины: “HIT - 16 CNC”(М1) и “FUL - 25”(М2);

- производительность машин: (М1) - 500 шт/час , (М2) - 900 шт/час;

- трудозатраты, ч.: (П2) - 6 грн/час , (П2) - 4,95 грн/час ,

- норма времени: (П1) - 0,1460 н/ч,(П2) - 0,1155 н/ч;

- норма минимального количества выпускаемой продукции за период - 1000 шт.

- время потраченное на изготовление 1 - й пружины : (П1) - 1,1 мин. , (П2) - 1,5 мин.;

- Запас сырья, на 1000 шт.продукции - 75500 г.,72200 г.;

Задача №1

Требуется определить объемы производства каждого вида продукции в тоннах, максимизирующие доход в д.е. от реализации продукции, с учетом ограничений на расход исходных продуктов.

Поскольку производство продукции ограничено имеющимся в распоряжении предприятия сырьем каждого вида и спросом на данную продукцию, а также учитывая, что количество изготовляемых изделий не может быть отрицательным, получим следующую систему ограничений

0,5x1 + 75x2 < 75500

72x1 + 0,2х2 < 72200

x 1 ,x 2 > 0

x2 > x1

Доход от реализации продукции (линейная целевая функция) составит:

f(x1x2) = 1.205x1 + 2.465x2 > max

Рис. 3.1

Через «Поиск решения» в Ехcеl находим оптимальное количество - 1001,387 - х1 единиц продукции П1 и 500,69 - х2 единиц продукции П2. А также полученную в результате производства максимальную прибыль - 2440грн.48.коп

Задача №2

Задача предприятия состоит в том , что - бы , с помощью линейной функции ,определить оптимальное время работы машин(HIT - 16,FUL - 25),обеспечивающее минимальные затраты на производство при соблюдении ограничений по общему времени работы машин (8-ми часовая смена) и заданному количеству продукции (1000 шт./см).

Используем сервис таблицы “Excel” - поиск решения , учитываем такие ограничения:

- по времени работы станка

- по заданному количеству изготавливаемой продукции за смену

Целевая функция , направленная на минимизацию затрат имеет вид:

Рис. 3.2

Искомое значение минимальных затрат на производство составляет 106,68 грн. за восьмичасовую смену.

Вывод

На основе производственных данных было построено две модели, которые основывались на методах линейного программирования. Недостаточность многолетних данных потребовала ориентацию моделирования на информацию за последний год. С помощью таблицы “Excel” определено минимизацию затрат и максимизацию прибыли а также найдены оптимальные значения производственных процессов, таких как ,оптимальное количество временных затрат работы машины, и оптимальное количество изготавливаемой продукции за указанный промежуток времени.

Промоделировавши производственную структуру и оценивши ресурсные возможности производства, можно определить слабые стороны организационной структуры производства. Согласно результатам реструктуризировать структуру предприятия в целом.

затраты оптимальный прибыль

Литература

1. Абчук В.А Экономико-математические методы. Элементарная математика и логика. Методы исследования операций. - СПб: Союз, 1999. - 320 с.

2. Анализ хозяйственной деятельности: Учебник для экон. спец. вузов/ М.Ф. Дьячков, И.П. Белобжецкий, А.Ш. Маргулис и др.; Под ред. В.П. Белобородовой. - М.: Финансы и статистика, 1985. - 352 с.


Подобные документы

  • Анализ экономического состояния и тенденции развития животноводческой отрасли на примере СХОАО "Белореченское". Разработка и реализация линейной модели оптимальной структуры производства продукции животноводства на основании критерия максимизации прибыли.

    дипломная работа [199,3 K], добавлен 30.08.2010

  • Составление математической модели производства продукции. Построение прямой прибыли. Нахождение оптимальной точки, соответствующей оптимальному плану производства продукции. Планирование объема продукции, которая обеспечивает максимальную сумму прибыли.

    контрольная работа [53,7 K], добавлен 19.08.2013

  • Определение оптимальных объемов производства по видам изделий за плановый период и построение их математической модели, обеспечивающей максимальную прибыль предприятию. Решение задачи по минимизации затрат на перевозку товаров средствами модели MS Excel.

    курсовая работа [3,4 M], добавлен 26.05.2013

  • Задача оптимизации производства в форме максимизации дополнительной прибыли предприятия при заданных ассортименте выпускаемой продукции и ограничениях на запасы. Определение размера максимального дополнительного дохода от вложения денежных средств.

    контрольная работа [591,3 K], добавлен 27.10.2013

  • Построение модели и индивидуального спроса в рамках стратегических рыночных игр. Построение модели и постановка игры, введение базовых понятий и переменных. Упрощение модели и постановка задачи максимизации. Ожидаемая полезность и проблемы максимизации.

    дипломная работа [2,3 M], добавлен 25.08.2017

  • Методика и этапы построения экономических моделей с помощью программы Microsoft Excel. Определение оптимальной структуры производства консервного завода на основании имеющихся статистических данных. Нахождение условного экстремума функции в Excel.

    контрольная работа [1,4 M], добавлен 01.06.2009

  • Непрерывное распределение прибыли. Центральный позиционный дизайн. Оценка координат экстремума. Нормальность распределения прибыли с продаж, генерируемых имитационной моделью. Неравенство дисперсий прибыли с продаж. Дискретное распределение прибыли.

    курсовая работа [2,2 M], добавлен 28.07.2012

  • Решение задачи об оптимальной работе предприятия электронной промышленности, выпускающего две модели радиоприемников. Определение интервала изменения прибыли от продажи двух радиоприемников. Нахождение пределов изменения коэффициентов целевой функции.

    курсовая работа [258,5 K], добавлен 17.12.2014

  • Программное определение оптимального сочетания зерновых культур и оптимальных рационов кормления с помощью программы Excel. Экономико-математические модели для расчета оптимального распределения минеральных удобрений, определение перечня переменных.

    контрольная работа [3,1 M], добавлен 06.12.2011

  • Характеристика ООО "Бизон", анализ его хозяйственной деятельности и порядок расчета эффективности деятельности. Разработка методики моделирования процесса получения прибыли коммерческим предприятием. Расчет оптимальных значений месячной прибыли.

    дипломная работа [324,9 K], добавлен 03.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.