Эргономические основы безопасности жизнедеятельности

Предмет и задачи эргономики; адаптация условий труда к человеку, обеспечение наилучшего соответствия возможностей и потребностей работника с информационной, биофизической, пространственно-антропометрической, энергетической и технико-эстетической средой.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид курс лекций
Язык русский
Дата добавления 12.11.2012
Размер файла 157,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Речь идет об острых отравлениях наркотиками (даже смертельных) и о быстроразвивающихся нарушениях физического здоровья, грубых изменениях личности.

Действие наркотика на организм связано с нарушениями функции центральной нервной системы (головного мозга) и периферической нервной системы.

После принятия наркотика кратковременное состояние мнимого благополучия сменяется глубокой депрессией, состоянием оглушенности, искажением восприятия, нарушением мышления. В этот период у больных зачастую наблюдаются судорожные припадки, острый психоз подобно "белой горячке" при алкоголизме, во время которого возникает угроза для жизни больного и опасность для окружающих. Но и при благоприятном исходе еще долгое время остается подавленное настроение, чувство усталости, разбитости, поверхностный сон.

У людей, принимающих наркотические вещества, снижается память, способность к обучению и восприятию. Употребление наркотиков в подростковом и юношеском возрасте ведет к задержке развития социальных и трудовых навыков.

Наркотик, воздействуя на нервную систему и нарушая ее функции, вызывает настоящую цепную реакцию, изменения в других системах организма. Употребление наркотиков ведет к воспалительным изменениям в почках, вызывает серьезные нарушения со стороны желудочно-кишечного тракта, приводит к тяжелым заболеваниям сердца и сосудов. Угнетаются функции печени, в легких развиваются застойные явления, подавляется иммунитет.

При непосредственном обеспечении безопасности труда учитывают, что больных алкоголизмом и в особенности людей, склонных к употреблению наркотиков, нельзя допускать к ответственным работам и работам с повышенной опасностью, а также к трудовым процессам, связанным с применением различных видов спиртов и препаратов наркотического действия.

4. Негативные факторы производственной среды

Производственная среда -- это часть техносферы, обладающая повышенной совокупностью негативных факторов. Основными носителями травмирующих и вредных факторов в производственной среде являются машины и другие технические устройства, химически и биологически активные предметы труда, источники энергии, нерегламентированные действия работающих, нарушения режимов и организации деятельности, а также отклонения от допустимых параметров микроклимата рабочей зоны.

4.1 Классификация условий трудовой деятельности

Условия труда -- это совокупность факторов производственной среды и трудового процесса, оказывающих влияние на здоровье и работоспособность человека в процессе труда.

В соответствии с ГОСТ 12.0.002-80 различают четыре группы факторов трудовой деятельности:

· физические факторы, включающие микроклиматические параметры и запыленность воздушной среды, все виды излучений, виброакустические характеристики рабочего места и качество освещения;

· химические факторы, включающие некоторые вещества биологической природы;

· биологические факторы, куда отнесены патогенные микроорганизмы, белковые препараты, а также препараты, содержащие живые клетки и споры микроорганизмов;

· факторы трудового процесса.

Условия труда, при которых воздействие на работающего вредных и опасных производственных факторов исключено или их уровень не превышает гигиенических нормативов (Р.2.2.2006-05 «Гигиенические критерии оценки условий труда по показателям вредности и опасности факторов производственной среды, тяжести и напряженности трудового процесса»), называют безопасными условиями труда.

Условия труда в целом оцениваются по четырем классам, которые представлены схемой на рис. 2. Безопасные условия труда -- это оптимальные (1-й класс) и допустимые (2-й класс) условия.

Оптимальные (комфортные) условия труда (1-й класс) обеспечивают максимальную производительность труда и минимальную напряженность организма человека. Этот класс установлен только для оценки параметров микроклимата и факторов трудового процесса. Для остальных факторов условно оптимальными считаются такие условия труда, при которых неблагоприятные факторы не превышают безопасных пределов для населения.

Допустимые условия труда (2-й класс) характеризуются такими уровнями факторов среды и трудового процесса, которые не превышают установленных гигиеническими нормативами для рабочих мест. Возможные изменения функционального состояния организма восстанавливаются во время регламентированного отдыха или к началу следующей смены и не должны оказывать неблагоприятное воздействие в ближайшем и отдаленном периоде на состояние здоровья работающего и его потомство. Оптимальный и допустимый классы соответствуют безопасным условиям труда.

Размещено на http://www.allbest.ru/

27143662717234

Рис. 2. Классы условий труда

Вредные условия труда (3-й класс) характеризуются наличием вредных производственных факторов, превышающих гигиенические нормативы и оказывающих неблагоприятное воздействие на организм работающего и/или его потомства. В зависимости от уровня превышения нормативов факторы этого класса подразделяются на четыре степени вредности:

3.1 -- вызывающие обратимые функциональные изменения организма;

3.2 -- приводящие к стойким функциональным нарушениям и росту заболеваемости;

3.3 -- приводящие к развитию профессиональной патологии в легкой форме и росту хронических заболеваний;

3.4 -- приводящие к возникновению выраженных форм профессиональных заболеваний, значительному росту хронических и высокому уровню заболеваемости с временной утратой трудоспособности.

Травмоопасные (экстремальные) условия труда (4-й класс). Уровни производственных факторов этого класса таковы, что их воздействие на протяжении рабочей смены или ее части создает угрозу для жизни и/или высокий риск возникновения тяжелых форм острых профессиональных заболеваний.

Работа в условиях несоответствия нормативным требованиям возможна только с сокращением времени воздействия вредных производственных факторов, т. е. сокращением рабочей смены -- защита временем.

При оценке воздействия негативных факторов на человека следует учитывать степень влияния их на здоровье и жизнь человека, уровень и характер изменений функционального состояния и возможностей организма, его потенциальных резервов, адаптивных способностей и возможности развития последних.

При оценке допустимости воздействия вредных факторов на организм человека исходят из биологического закона субъективной количественной оценки раздражителя Вебера-Фехнера. Он выражает связь между изменением интенсивности раздражителя и силой вызванного ощущения: реакция организма прямо пропорциональна относительному приращению раздражителя

где dL - элементарное ощущение организма; а -- коэффициент пропорциональности; dR - элементарное приращение раздражителя.

Интегрируя данное выражение и принимая а = 10 lg, получают уровень ощущения раздражителя

где R0 - пороговое значение ощущений, т. е. минимальная энергия раздражителя, характеризующая натаяв ощущения.

На базе закона Вебера-Фехнера построено нормирование вредных факторов. Чтобы исключить необратимые биологические эффекты, воздействие факторов ограничивается предельно допустимыми уровнями или предельно допустимыми концентрациями.

Предельно допустимый уровень или предельно допустимая концентрация - это максимальное значение фактора, которое, воздействуя на человека (изолированно или в сочетании с другими факторами), не вызывает у него и у его потомства биологических изменений даже скрытых и временно компенсируемых, в том числе заболеваний, изменений реактивности, адаптационно-компенсаторных возможностей, иммунологических реакций, нарушений физиологических циклов, а также психологических нарушений (снижения интеллектуальных и эмоциональных способностей, умственной работоспособности). ПДК и ПДУ устанавливают для производственной и окружающей среды.

При их принятии руководствуются следующими принципами:

· приоритет медицинских и биологических показаний к установлению санитарных регламентов перед прочими подходами (технической достижимостью, экономическими требованиями);

· пороговость действия неблагоприятных факторов (в том числе действия, ионизирующего излучения);

· опережение разработки и внедрения профилактических мероприятий появления опасного и вредного фактора.

Ниже рассмотрено воздействие на организм человека и гигиеническое нормирование негативных факторов техносферы.

4.2 Механические опасности

Под механическими опасностями понимаются такие нежелательные воздействия на человека, происхождение которых обусловлено силами гравитации или кинетической энергией тел.

Механические опасности создаются падающими, движущимися, вращающимися объектами природного и искусственного происхождения.

Носителями механических опасностей искусственного происхождения являются машины и механизмы, различное оборудование, транспорт, здания и сооружения и многие другие объекты, воздействующие в силу разных обстоятельств на человека своей массой, кинетической энергией или другими свойствами.

Величину механических опасностей можно оценить по-разному. Например, количеством движения mv, кинетической энергией 0,5 mv2, запасенной энергией mgh (m,v - масса и скорость тела соответственно, h - высота, g - ускорение свободного падения).

Объекты, представляющие механическую опасность, можно разделить по наличию энергии на два класса: энергетические и потенциальные. Энергетические объекты воздействуют на человека, так как имеют тот или иной энергетический потенциал. Потенциальные механические опасности лишены энергии. Травмирование в этом случае может произойти за счет энергии самого человека. Например, колющие, режущие предметы (торчащие гвозди, заусенцы, лезвия и т. п.) представляют опасность при случайном контакте человека с ними. К потенциальным опасностям относятся и такие опасности, как неровные и скользкие поверхности, по которым передвигается человек, высота возможного падения, открытые люки и др. Перечисленные безэнергетические опасности являются причиной многочисленных травм (переломов, вывихов, сотрясений головного мозга, падений, ушибов).

Защита от механических опасностей осуществляется разными способами, характер которых зависит от конкретных условий деятельности. Хорошо разработаны также способы оказания доврачебной помощи и лечения последствий механических опасностей.

4.3 Механические колебания

К механическим колебаниям относятся: вибрация, шум, инфразвук, ультразвук.

Общим свойством этих физических процессов является то, что они связаны с переносом энергии, При определенной величине и частоте эта энергия может оказывать неблагоприятное воздействие на человека: вызывать различные заболевания, создавать дополнительные опасности.

4.3.1 Вибрация

Общая характеристика. Вибрацией называются механические колебания, испытываемые каким-то телом. Причиной вибрации являются неуравновешенные силовые воздействия. Вибрация находит полезное применение в медицине (вибромассаж) и в технике (вибраторы). Однако длительное воздействие вибрации на человека является опасным. Опасна вибрация при определенных условиях и для машин и механизмов, так как может вызвать их разрушение.

Различают общую и локальную (местную) вибрации.

Общая вибрация вызывает сотрясение всего организма, местная воздействует на отдельные части тела. Иногда работающий может одновременно подвергаться общей и местной вибрации (комбинированная вибрация). Вибрация нарушает деятельность сердечно-сосудистой и нервной систем, вызывает вибрационную болезнь. Особенно опасна вибрация на резонансных или околорезонансных частотах (6-9 Гц).

Основными параметрами, характеризующими вибрацию, являются: амплитуда смещения, то есть величина наибольшего отклонения колеблющейся точки от положения равновесия; амплитуда колебательной скорости и колебательного ускорения; период колебаний Т - время между двумя последовательным одинаковыми состояниями системы; частота f.

Нормирование. Различают санитарно-гигиеническое и техническое нормирование вибрации. Вибрация нормируется стандартами и другими правилами и нормами.

Защита. Существует несколько основных направлений борьбы с вибрацией.

Борьба с вибрацией в источнике ее возникновения предполагает конструирование и проектирование таких машин и технологических процессов, в которых исключены или снижены неуравновешенные силы, отсутствует ударное взаимодействие деталей, вместо подшипников качения используются подшипники скольжения. Применение специальных видов зацепления и чистоты поверхности шестерен позволяют снизить уровень вибрации на 3-4 дБ. Устранение дисбаланса вращающихся масс достигается балансировкой.

Отстройка от режима резонанса достигается либо изменением характеристик системы (массы и жесткости), либо изменением угловой скорости. Жесткостные характеристики системы изменяются введением в конструкцию ребер жесткости или изменением ее упругих характеристик.

Вибродемпфирование -- это снижение вибрации объекта путем превращения ее энергии в другие виды (в конечном счете -- в тепловую). Увеличения потерь энергии возможно достичь разными приемами: использованием материалов с большим внутренним трением; использованием пластмасс, дерева, резины; нанесением слоя упруго-вязких материалов, обладающих большими потерями на внутреннее трение (рубероид, фольга, мастики, пластические материалы и др.). Толщина покрытий берется равной 2-3 толщинам демпфируемого элемента конструкции. Хорошо демпфируют колебания смазочные масла.

Виброгашение -- это способ снижения вибрации путем введения в систему дополнительных реактивных импедансов (сопротивлений). Чаще всего для этого вибрирующие агрегаты устанавливают на массивные фундаменты. Одним из способов увеличения реактивного сопротивления является установка виброгасителей.

Примером виброзащиты могут служить также гибкие вставки в воздуховодах, «плавающие полы», виброизолирующие опоры (для изоляции машин с вертикальной возмущающей силой).

В промышленности находит применение активная виброзащита, которая предусматривает введение дополнительного источника энергии (сервомеханизма), с помощью которого осуществляется обратная связь от -изолируемого объекта к системе виброизоляции. Для защиты от вибрации применяются специальные средства индивидуальной защиты (рукавицы, перчатки).

4.3.2 Шум

Всякий нежелательный звук принято называть шумом. Шум вреден для здоровья, снижает работоспособность, повышает уровень опасности.

Общая характеристика. Шум - это механические колебания, распространяющиеся в твердой, жидкой или газообразной среде. Частицы среды при этом колеблются относительно положения равновесия. Звук распространяется в воздухе со скоростью 344 м/с. Шум создается источником, который имеет определенную мощность Р. Мощность, приходящаяся на единицу площади, перпендикулярной к направлению распространения звука, называется интенсивностью звука I, Вт/м2. Давление Р, возникающее в среде при прохождении звука, называется акустическим. Оно измеряется в Н/м2 или Па.

Абсолютные значения интенсивности и давления меняются в широких пределах. Пользоваться абсолютными значениями этих характеристик шума неудобно. Кроме того, ощущения человека пропорциональны логарифму раздражителя (закон Вебера-Фехнера). Поэтому введены особые показатели, называемые уровнями, которые выражаются в децибелах (дБ). Уровень интенсивности шума определяется по формуле:

, дБ,

где I0 -- интенсивность, соответствующая порогу слышимости, I0 = 10-12 Вт/м2.

Уровень звукового давления равен:

, дБ,

где Р0 =2 Ч 10-5 Н/м2 = Па -- давление порога слышимости.

Слуховой аппарат человека наиболее чувствителен к звукам высокой частоты. Поэтому для оценки шума необходимо знать его частоту, которая измеряется в герцах (Гц), то есть числом колебаний в секунду. Ухо человека воспринимает звуковые колебания в пределах 16-20 000 Гц. Ниже 16 Гц и выше 20 000 Гц находятся соответственно области неслышимых человеком инфразвуков и ультразвуков. Зависимость уровней от частоты называется спектром шума.

Вредное воздействие шума зависит и от длительности нахождения человека в неблагоприятных в акустическом отношении условиях. Поэтому введено понятие дозы шума. Доза шума - Д в Па2 Ч ч - интегральная величина, учитывающая акустическую энергию, воздействующую на человека за определенный период времени.

Нормирование. Нормирование может осуществляться несколькими методами:

1) по предельному спектру (ПС). ПС - это восемь нормативных уровней звукового давления на частотах от 31,5 до 8000 Гц (в октавных полосах);

нормирование уровня звука в дБА;

по дозе шума.

Защита. Измерение шума проводят с целью определения уровней звуковых давлений на рабочих местах и соответствия их санитарным нормам, а также для разработки и оценки эффективности различных шумоглушащих мероприятий.

Основным прибором для измерения шума является шумомер. В шумомере звук, воспринимаемый микрофоном, преобразуется в электрические колебания, которые усиливаются и затем, пройдя через корректирующие фильтры и выпрямитель, регистрируются стрелочным прибором.

Для снижения шума могут быть применены следующие методы:

снижение шума в источнике;

изменение направленности излучения;

рациональная планировка предприятий и цехов, акустическая обработка помещений;

снижение шума на пути его распространения;

средства индивидуальной защиты от шума.

4.3.3 Инфразвук

Неслышимая человеком область колебаний. Обычно верхний границей инфразвуковой области считают частоты 16-25 Гц. Нижняя граница инфразвука не определена.

Для инфразвука характерно малое поглощение. Поэтому инфразвуковые волны могут распространяться на очень большие расстояния.

Защита от инфразвука представляет серьезную проблему.

4.3.4 Ультразвук

Общая характеристика. Ультразвук находит широкое применение в металлообрабатывающей промышленности, машиностроении, металлургии и т. д. Частота применяемого ультразвука от 20 кГц до 1 МГц, мощности -- до нескольких киловатт.

Ультразвук оказывает вредное воздействие на организм человека. У работающих с ультразвуковыми установками нередко наблюдаются функциональные нарушения нервной системы, изменения давления, состава и свойства крови. Часты жалобы на головные боли, быструю утомляемость, потерю слуховой чувствительности.

Ультразвук может действовать на человека как через воздушную среду, так и через жидкую или твердую (контактное действие на руки).

Уровни звуковых давлений в диапазоне частот от 11 до 20 кГц не должны превышать соответственно 75-110 дБ, а общий уровень звукового давления в диапазоне частот 20-100 кГц не должен превышать 110 дБ.

Защита. Защита от действия ультразвука при воздушном облучении может быть обеспечена:

путем использования в оборудовании более высоких рабочих частот, для которых допустимые уровни звукового давления выше;

путем выполнения оборудования, излучающего ультразвук, в звукоизолирующем исполнении (типа кожухов).

путем устройства экранов, в том числе прозрачных, между оборудованием и работающим;

размещение ультразвуковых установок в специальных помещениях, выгородках или кабинах, если перечисленными выше мероприятиями невозможно получить необходимый эффект.

Защита от действия ультразвука при контактном облучении состоит в полном исключении непосредственного соприкосновения работающих с инструментом, жидкостью и изделиями, поскольку такое воздействие наиболее вредно.

4.4 Электрический ток

Действие электрического тока на человека. Носит многообразный характер. Проходя через организм человека, электрический ток вызывает термическое, электролитическое, а также биологическое действия.

Термическое действие тока проявляется в ожогах некоторых отдельных участков тела, нагреве кровеносных сосудов, нервов, крови и т. п.

Электролитическое действие тока проявляется в разложении крови и других органических жидкостей организма и вызывает значительные нарушения их физико-химического состава.

Биологическое действие тока проявляется как раздражение и возбуждение живых тканей организма, что сопровождается непроизвольными судорожными сокращениями мышц, в том числе легких и сердца. В результате могут возникнуть различные нарушения и даже полное прекращение деятельности органов кровообращения и дыхания.

Это многообразие действий электрического тока может привести к двум видам поражения: электрическим травмам и электрическим ударам.

Электрические травмы представляют собой четко выраженные местные повреждения тканей организма, вызванные воздействием электрического тока или электрической дуги.

В большинстве случаев электротравмы излечиваются, но иногда при тяжелых ожогах травмы могут привести к гибели человека.

Различают следующие электрические травмы: электрические ожоги, электрические знаки, металлизация кожи, электроофтальмия и механические повреждения.

Электрический ожог -- самая распространенная электротравма. Ожоги бывают двух видов: токовый (или контактный) и дуговой.

Токовый ожог обусловлен прохождением тока через тело человека в результате контакта с токоведущей частью и является следствием преобразования электрической энергии в тепловую.

Различают четыре степени ожогов: I - покраснение кожи; II - образование пузырей; III - повреждение глубоких слоев кожи с образованием струпьев (если кожа омертвевает не на всю толщину и ее нижние слои сохраняются, это ожог 3-й А степени, если же гибнут все слои кожи, это - ожог 3-й Б степени; IV - обугливание тканей. Тяжесть поражения организма обуславливается не степенью ожога, а площадью обожженной поверхности тела.

Токовые ожоги возникают при напряжениях не выше 1-2 кВ и являются в большинстве случаев ожогами I и II степени; иногда бывают и тяжелые ожоги.

Дуговой ожог. При более высоких напряжениях между токоведущей частью и телом человека образуется электрическая дуга (температура дуги выше 3500°С и у нее весьма большая энергия), которая и причиняет дуговой ожог. Дуговые ожоги, как правило, тяжелые -- III или IV степени.

Электрические знаки -- четко очерченные пятна серого или бледно-желтого цвета на поверхности кожи человека, подвергшейся действию тока. Знаки бывают также в виде царапин, ран, порезов или ушибов, бородавок, кровоизлияний в кожу и мозолей.

В большинстве случаев электрические знаки безболезненны и лечение их заканчивается благополучно.

Металлизация кожи -- это проникновение в верхние слои кожи мельчайших частичек металла, расплавившегося под действием электрической дуги. Это может произойти при коротких замыканиях, отключениях рубильников под нагрузкой и т. п. Металлизация сопровождается ожогом кожи, вызываемым нагревшимся металлом.

Электроофтальмия -- поражение глаз, вызванное интенсивным излучением электрической дуги, спектр которой содержит вредные для глаз ультрафиолетовые и ультракрасные лучи. Кроме того, возможно попадание в глаза брызг расплавленного металла. Защита от электроофтальмии достигается ношением защитных очков, которые не пропускают ультрафиолетовых лучей и обеспечивают защиту глаз от брызг расплавленного металла.

Механические повреждения возникают в результате резких непроизвольных судорожных сокращений мышц под действием тока, проходящего через тело человека. В результате могут произойти разрывы кожи, кровеносных сосудов и нервной ткани, а также вывихи суставов и даже переломы костей. К этому же виду травм следует отнести ушибы, переломы, вызванные падением человека с высоты, ударами о предметы в результате непроизвольных движений или потери сознания при воздействии тока. Механические повреждения, являются, как правило, серьезными травмами, требующими длительного лечения.

Электрический удар -- это возбуждение живых тканей организма проходящим через него электрическим током, сопровождающееся непроизвольными судорожными сокращениями мышц. В зависимости от исхода воздействия тока на организм электрические удары условно делятся на следующие четыре степени: I -- судорожное сокращение мышц без потери сознания; II,--судорожное сокращение мышц, потеря сознания, но сохранение дыхания и работы сердца; III -- потеря сознания и нарушение сердечной деятельности или дыхания (либо того и другого вместе); IV -- клиническая смерть, т. е. отсутствие дыхания и кровообращения.

Причинами смерти в результате поражения электрическим током могут быть: прекращение работы сердца как следствие воздействия тока на мышцу сердца, прекращение дыхания в результате прямого или рефлекторного воздействием тока на мышцы грудной клетки, участвующие в процессе дыхания.и электрический шок -- своеобразная тяжелая нервно-рефлекторная реакция организма на сильное раздражение электрическим током, сопровождающаяся глубокими расстройствами кровообращения, дыхания, обмена веществ и т. п.

Факторы, определяющие опасность поражения электрическим током. Характер и последствия воздействия на человека электрического тока зависят от следующих факторов: значения тока, проходящего через тело человека; электрического сопротивления человека; уровня приложенного к человеку напряжения; продолжительности воздействия электрического тока; пути тока через тело человека; рода и частоты электрического тока; условий внешней среды и других факторов.

Величина тока и напряжение (см. ниже). Основным фактором, обусловливающим исход поражения электрическим током, является сила тока, проходящего через тело человека. Напряжение, приложенное к телу человека, также влияет на исход поражения, но лишь постольку, поскольку оно определяет значение тока, проходящего через человека.

Ощутимый ток -- электрический ток, вызывающий при прохождении через организм ощутимые раздражения. Ощутимые раздражения вызывает переменный ток силой 0,6-1,5 мА и постоянный -- силой 5-7 мА.

Неотпускающий ток - электрический ток, вызывающий при прохождении через человека непреодолимые судорожные сокращения мышц руки, в которой зажат проводник. Пороговый неотпускающий ток составляет 10-15 мА переменного тока и 50-60 мА постоянного. При таком токе человек уже не может самостоятельно разжать руку, в которой зажата токоведущая часть, и оказывается как бы прикованным к ней.

Фибрилляционный ток -- электрический ток, вызывающий при прохождении через организм фибрилляцию сердца. Пороговый фибрилляционный ток составляет 100 мА переменного тока и 300 мА постоянного при длительности действия 1-2 с по пути рука-рука или рука-ноги. Фибрилляционный ток может достичь 5 А.

Электрическое сопротивление тела человека. Тело человека является проводником электрического тока, правда, неоднородным по электрическому сопротивлению. Наибольшее сопротивление электрическому току оказывает кожа, поэтому сопротивление тела человека определяется главным образом сопротивлением кожи.

Сопротивление тела человека при сухой, чистой и неповрежденной коже (измеренное при напряжении 15-20 В) колеблется от 3 до 100 кОм и более, а сопротивление внутренних слоев тела составляет всего 300-500 Ом.

На сопротивление тела оказывает влияние площадь контактов, а также место касания, так как у одного и того же человека сопротивление кожи неодинаково на разных участках тела.

С увеличением тока и времени его прохождения сопротивление тела человека падает, так как при этом усиливается местный нагрев кожи, что приводит к расширению ее сосудов, к усилению снабжения этого участка кровью и увеличению потовыделения.

Продолжительность воздействия электрического тока. Существенное влияние на исход поражения оказывает длительность прохождения тока через тело человека. Продолжительное действие тока приводит к тяжелым, а иногда и смертельным поражениям.

Путь тока через тело человека. Путь прохождения тока через тело человека играет существенную роль в исходе поражения, так как ток может пройти через жизненно важные органы: сердце, легкие, головной мозг и др. Влияние пути тока на исход поражения определяется также сопротивлением кожи на различных участках тела.

Наиболее опасны петли голова-руки и голова-ноги, но эти петли возникают относительно редко.

Род и частота электрического тока. Постоянный ток примерно в 4-5 раз безопаснее переменного.

Это положение справедливо лишь для напряжений до 250-300 В. При более высоких напряжениях постоянный ток более опасен, чем переменный (с частотой 50 Гц). Для переменного тока играет роль также и его частота. С увеличением частоты переменного тока полное сопротивление тела уменьшается, что приводит к увеличению тока, проходящего через человека, а следовательно повышается опасность поражения.

Наибольшую опасность представляет ток с частотой от 50 до 100 Гц; при дальнейшем повышении частоты опасность поражения уменьшается и полностью исчезает при частоте 45-50 кГц. Эти токи сохраняют опасность ожогов. Снижение опасности поражения током с ростом частоты становится практически заметным при 1-2 кГц.

Индивидуальные свойства человека. Установлено, что физически здоровые и крепкие люди легче переносят электрические удары.

Повышенной восприимчивостью к электрическому току отличаются лица, страдающие болезнями кожи, сердечно-сосудистой системы, органов внутренней секреции, легких, нервными болезнями и др. Поэтому лица с такими болезнями не допускаются к работе с действующими электроустановками.

Условия внешней среды. Состояние окружающей воздушной среды, а также окружающая обстановка могут существенным образом влиять на опасность поражения током.

Сырость, токопроводящая пыль, едкие пары и газы, разрушающе действующие на изоляцию электроустановок, а также высокая температура окружающего воздуха понижают электрическое сопротивление тела человека, что еще больше увеличивает опасность поражения его током.

Критерии безопасности электрического тока. При проектировании, расчете и эксплуатационном контроле защитных систем руководствуются допустимыми значениями тока при данном пути его протекания и длительности воздействия в соответствии с ГОСТ 12.1.038-82.

При длительном воздействии допустимый ток принят в 1 мА. При продолжительности воздействия до 30 с - 6 мА. При воздействии 1 с и менее величины токов приведены ниже, однако они не могут рассматриваться как обеспечивающие полную безопасность и принимаются в качестве практически допустимых с достаточно малой вероятностью поражения (см. табл. 4).

Эти токи считаются допустимыми для наиболее вероятных путей их протекания в теле человека: рука-рука, рука-ноги и нога-нога.

Таблица 4

Практически допустимые величины тока

Длительность воздействия, с

Ток, мА

1,0

50

0,7

90

0,5

125

0,2

190

Условия поражения электрическим током. Напряжение между двумя точками цепи тока, которых одновременно касается человек, называется напряжением прикосновения. Опасность такого прикосновения, оцениваемая значением тока, проходящего через тело человека, или же напряжением прикосновения, зависит от ряда факторов: схемы замыкания цепи тока через тело человека, напряжением сети, схемы самой сети, режима ее нейтрали (т. е. заземлена или изолирована нейтраль), степени изоляции токоведущих частей от земли, а также от значения емкости токоведущих частей относительно земли и т. п.

Основные причины поражения электрическим током. Выделяют следующие основные причины поражения электрическим током.

Случайное прикосновение к токоведущим частям, находящимся под напряжением в результате: ошибочных действий при проведении работ; неисправности защитных средств, которыми пострадавший касался токоведущих частей и др.

Появление напряжения на металлических конструктивных частях электрооборудования в результате: повреждения изоляции токоведущих частей; замыкания фазы сети на землю; падения провода (находящегося под напряжением) на конструктивные части электрооборудования и др.

Появление напряжения на отключенных токоведущих частях в результате: ошибочного включения отключенной установки; замыкания между отключенными и находящимися под напряжением токоведущими частями; разряда молнии в электроустановку и др.

Возникновение напряжения шага на участке земли, где находится человек, в результате: замыкания фазы на землю; выноса потенциала протяженным токопроводящим предметом (трубопроводом, железнодорожными рельсами); неисправностей в устройстве защитного заземления и др.

Напряжением шага называется напряжение между точками земли, обусловленное растеканием тока замыкания на землю при одновременном касании их ногами человека.

Если человек будет находиться в зоне растекания тока, например, при повреждении воздушной линии электропередачи, или нарушении изоляции силового кабеля, проложенного в земле, или при отекании тока через заземлитель и стоять при этом на поверхности земли, имеющей разные потенциалы в местах, где расположены ступни ног, то на длине шага возникает напряжение.

Напряжение шага всегда меньше напряжения прикосновения. Кроме того, протекание тока по нижней петле «нога-нога» менее опасно, чем по пути «рука-нога».

Технические способы и средства защиты. Для обеспечения электробезопасности применяют отдельно или в сочетании один с другим следующие технические способы и средства защиты: недоступность токоведущих частей, находящихся под напряжением, электрическое разделение сети, малые напряжения, двойная изоляция, выравнивание потенциалов, защитное заземление, зануление, защитное отключение и др. К техническим способам и средствам также относятся предупредительная сигнализация, знаки безопасности, средства индивидуальной и коллективной защиты, предохранительные приспособления и др.

Недоступность токоведущих частей электроустановок для случайного прикосновения может быть обеспечена рядом способов: изоляцией токоведущих частей, ограждением, различными блокировками, размещением токоведущих частей на недоступном расстоянии.

4.5 Электромагнитные поля

Электромагнитное поле (ЭМП) представляет особую форму материи. Всякая электрически заряженная частица окружена электромагнитным полем, составляющим с ней единое целое. Но электромагнитное поле может существовать и в свободном, отделенном от заряженных частиц, состоянии в виде движущихся со скоростью, близкой к 3Ч108 м/с, фотонов или вообще в виде излученного движущегося с этой скоростью электромагнитного поля (электромагнитных волн). Спектр электромагнитных колебаний по частоте достигает 1021 Гц. В зависимости от энергии фотонов (квантов) его подразделяют на область неионизирующих и ионизирующих излучений. В гигиенической практике к неионизирующим излучениям относят также электрические и магнитные поля.

4.5.1 Электромагнитное поле промышленной частоты

К ЭМП промышленной частоты относятся линии электропередач (ЛЭП) напряжением до 1150 кВ, открытые распределительные устройства, включающие коммутационные аппараты, устройства защиты и автоматики, измерительные приборы. Они являются источниками электрических и магнитных полей промышленной частоты (50 Гц). Длительное действие таких полей приводит к расстройствам, которые субъективно выражаются жалобами на головную боль в височной и затылочной области, вялость, расстройство сна, снижение памяти, повышенную раздражительность, апатию, боли в области сердца. Для хронического воздействия ЭМП промышленной частоты характерны нарушения ритма и замедление частоты сердечных сокращений. У работающих с ЭМП промышленной частоты могут наблюдаться функциональные нарушения в ЦНС и сердечно-сосудистой системе, в составе крови. Поэтому необходимо ограничивать время пребывания человека в зоне действия электрического поля, создаваемого токами промышленной частоты напряжением выше 400 кВ.

Нормирование. Нормирование ЭМП промышленной частоты осуществляют по предельно допустимым уровням напряженности электрического поля E (кВ/м), напряженности магнитного поля Н (А/м) или индукции магнитного поля В (мкТл) частотой 50 Гц в зависимости от времени пребывания в электромагнитном поле на рабочих местах персонала и регламентируются Санитарно-эпидемиологическими правилами и нормативами СанПиН 2.2.4.1191-03.

Пребывание в ЭП напряженностью до 5 кВ/м включительно допускается в течение всего рабочего дня. Допустимое время (ч) пребывания в ЭП напряженностью 5...20 кВ/м определяется следующим образом:

где Е -- напряженность воздействующего ЭП в контролируемой зоне, кВ/м.

Допустимое время пребывания в ЭП может быть реализовано одноразово или дробно в течение рабочего дня. В остальное рабочее время напряженность ЭП не должна превышать 5 кВ/м. При напряженности ЭП 20...25 кВ/м время пребывания персонала в ЭП не должно превышать 10 мин. Предельно допустимый уровень напряженности ЭП устанавливается равным 25 кВ/м.

Влияние электрических полей переменного тока промышленной частоты в условиях населенных мест (внутри жилых зданий, на территории жилой застройки и на участках пересечения воздушных линий с автомобильными дорогами) ограничивается «Санитарными нормами и правилами защиты населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты» №2971--84. В качестве предельно допустимых уровней приняты следующие значения напряженности электрического поля:

· внутри жилых зданий 0,5 кВ/м;

· на территории жилой застройки 1 кВ/м;

· в населенной местности, вне зоны жилой застройки (земли городов в пределах городской черты в границах их перспективного развития на 10 лет, пригородные и зеленые зоны, курорты, земли поселков городского типа, в пределах поселковой черты этих пунктов), а также на территории огородов и садов 5 кВ/м;

· на участках пересечения воздушных линий (ВЛ) с автомобильными дорогами I--IV категории 10 кВ/м;

· в ненаселенной местности (незастроенные местности, хотя бы и частично посещаемые людьми, доступные для транспорта, и сельскохозяйственные угодья) 15 кВ/м;

· в труднодоступной местности (не доступной для транспорта и сельскохозяйственных машин) и на участках, специально выгороженных для исключения доступа населения 20 кВ/м.

4.5.2 Электростатическое поле (ЭСП)

Общая характеристика. Под статическим электричеством понимают совокупность явлений, связанных с возникновением и релаксацией свободного электрического заряда на поверхности, или в объеме диэлектриков, или на изолированных проводниках.

Образование и накопление зарядов на перерабатываемом материале связано с двумя условиями. Во-первых, должен произойти контакт поверхностей, в результате которого образуется двойной электрический слой. Во-вторых, хотя бы одна из контактирующих поверхностей должна быть из диэлектрического материала. Заряды будут оставаться на поверхностях после их разделения только в том случае, если время разрушения контакта меньше времени релаксации зарядов. Последнее в значительной степени определяет величину зарядов на разделенных поверхностях.

Двойной электрический слой -- это пространственное распределение электрических зарядов на границах соприкосновения двух фаз. Такое распределение зарядов наблюдается на границе металл - металл, металл - вакуум, металл - газ, металл - полупроводник, металл - диэлектрик, диэлектрик - диэлектрик, жидкость - твердое тело, жидкость - жидкость, жидкость - газ. Толщина двойного электрического слоя на границе раздела двух фаз соответствует диаметру иона (10-10 м).

Основная опасность, создаваемая электризацией различных материалов, состоит в возможности искрового разряда как с диэлектрической наэлектризованной поверхности, так и с изолированного проводящего объекта. труд потребность человек среда

Разряд статического электричества возникает тогда, когда напряженность электрического поля над поверхностью диэлектрика или проводника, обусловленная накоплением на них зарядов, достигает критической (пробивной) величины. Для воздуха эта величина составляет примерно 30 кВ/м.

Воспламенение горючих смесей искровыми разрядами статического электричества произойдет, если выделяющаяся в разряде энергия будет больше энергии, воспламеняющей горючую смесь, или, в общем случае, выше минимальной энергии зажигания горючей смеси.

Воздействие электростатического поля (ЭСП) -- статического электричества -- на человека связано с протеканием через него слабого тока (несколько микроампер). При этом электротравм никогда не наблюдается. Однако вследствие рефлекторной реакции на ток (резкое отстранение от заряженного тела) возможна механическая травма при ударе о рядом расположенные элементы конструкций, падении с высоты и т. д.

Исследование биологических эффектов показало, что наиболее чувствительны к электростатическому полю ЦНС, сердечно-сосудистая система, анализаторы. Люди, работающие в зоне воздействия ЭСП, жалуются на раздражительность, головную боль, нарушение сна и др. Характерны своеобразные «фобии», обусловленные страхом ожидаемого разряда, склонность к психосоматическим расстройствам с повышенной эмоциональной возбудимостью и быстрой истощаемостью, неустойчивость показателей пульса и артериального давления.

Нормирование. Осуществляют в соответствии с СанПиН 2.2.4.1191-03 и ГОСТ 12.1.045-84 в зависимости от времени пребывания персонала на рабочих местах. Предельно допустимый уровень напряженности ЭСП равен 60 кВ/м в течение 1 ч. При напряженности менее 20 кВ/м время пребывания в ЭСП не регламентируется. В диапазоне напряженности 20...60 кВ/м допустимое время -пребывания персонала в ЭСП без средств защиты (ч)

tдоп = Е2пред / Е2факт ,

где Ефакт -- фактическое значение напряженности ЭСП, кВ/м.

Допустимые уровни напряженности ЭСП и плотности ионного потока для персонала подстанций и ВЛ постоянного тока ультравысокого напряжения установлены СН № 6032-91.

Защита. Устранение опасности возникновения электростатических зарядов достигается применением ряда мер: заземлением, повышением поверхностной проводимости диэлектриков, ионизацией воздушной среды, уменьшением электризации горючих жидкостей.

4.5.3 Магнитное поле

Магнитные поля могут быть постоянными (ПМП) от искусственных магнитных материалов и систем, импульсными (ИМП), инфра-низкочастотными (с частотой до 50 Гц), переменными (ПеМП). Действие магнитных полей может быть непрерывным и прерывистым.

Степень воздействия магнитного поля (МП) на работающих зависит от максимальной напряженности его в рабочем пространстве магнитного устройства или в зоне влияния искусственного магнита. Доза, полученная человеком, зависит от расположения рабочего места по отношению к МП и режима труда. Каких-либо субъективных воздействий ПМП не вызывают. При действии ПеМП наблюдаются характерные зрительные ощущения, так называемые фосфены, которые исчезают в момент прекращения воздействия.

При постоянной работе в условиях хронического воздействия МП, превышающих предельно допустимые уровни, развиваются нарушения функций нервной, сердечно-сосудистой и дыхательной систем, пищеварительного тракта, изменения в крови. При преимущественно локальном воздействии могут развиваться вегетативные и трофические нарушения, как правило, в областях тела, находящегося под непосредственным воздействием МП (чаще всего рук). Они проявляются ощущением зуда, бледностью или синюшностью кожных покровов, отечностью и уплотнением кожи, в некоторых случаях развивается гиперкератоз (ороговелость).

Периодические (синусоидальные) магнитные поля -- МП (50 Гц). МП образуется в электроустановках, работающих на токе любого напряжения. Его интенсивность выше вблизи выводов генераторов, токопроводов, силовых трансформаторов и т. д.

Оценку воздействия периодического МП на человека согласно СанПиН 2.2.4.1191--03 производят на основании двух параметров -- интенсивности и продолжительности воздействия.

Интенсивность воздействия МП определяется напряженностью (Н) или магнитной индукцией (В). Напряженность МП выражается в амперах на метр (А/м; кратная величина кА/м), магнитная индукция -- в теслах (тл; дольные величины мТл, мкТл, нТл).

Предельно допустимые уровни МП устанавливают в зависимости от длительности пребывания персонала для условий общего (на все тело) и локального (на конечности) воздействия (табл. 5).

Таблица 5

Предельно допустимые уровни периодического МП

Время пребывания, ч

Допустимые уровни МП, Н [А/м]/В [мкТл] при воздействии

общем

локальном

?1

2

4

8

1600/2000

800/1000

400/500

80/100

6400/8000

3200/4000

1600/2000

800/1000

При необходимости пребывания персонала в зонах с различной напряженностью МП общее время выполнения работ в этих зонах не должно превышать предельно допустимое для зоны с максимальной напряженностью. Допустимое время пребывания может быть реализовано за 1 раз или дробно в течение рабочего дня. Требования по защите персонала от воздействия импульсных электромагнитных полей даны в СанПиН 2.2.4.1329-03.

В соответствии с СанПиН 2.2.4.1191-03 напряженность МП на рабочем месте не должна превышать 8 кА/м. Напряженность МП линии электропередачи напряжением до 750 кВ обычно не превышает 20...25 А/м, что не представляет опасности для человека.

Представляется уместным привести рекомендации Международного комитета по неионизирующим излучениям от 1990 г. о ПДУ электрического и магнитного полей промышленной частоты для профессионалов (персонала) и населения (табл. 6).

Таблица 6

Рекомендации Международного комитета по неионизирующим излучениям от 1990 г. о ПДУ электрического и магнитного полей промышленной частоты

Время пребывания в поле

Е (кВ/м)

Н (мТл)

Профессионалы

В течение рабочего дня

10

0,5

Короткое время

30

5 (< 2 ч в день)

Для частей тела

-

25

Население

Вплоть до 24 ч в день

5

0,1(80А/м)

Несколько часов в день

10

1

4.5.4 Электромагнитные излучения

Большую часть спектра неионизирующих электромагнитных излучений (ЭМИ) составляют радиоволны (3 Гц...3000 ГГц), меньшую часть -- колебания оптического диапазона (инфракрасное, видимое, ультрафиолетовое излучение). В зависимости от частоты падающего электромагнитного излучения ткани организмов проявляют различные электрические свойства и ведут себя как проводник или как диэлектрик.

С учетом радиофизических характеристик условно выделяют пять диапазонов частот: от единиц до нескольких тысяч герц, от нескольких тысяч до 30 МГц, 30 МГц...10 ГГц, 10...200 ГГц и 200...3000 ГГц.

Действующим началом колебаний первого диапазона являются протекающие токи соответствующей частоты через тело как хороший проводник; для второго диапазона характерно быстрое убывание с уменьшением частоты поглощения энергии, а следовательно, и поглощенной мощности; особенностью третьего диапазона является «резонансное» поглощение. У человека такой характер поглощения возникает при действии ЭМИ с частотой, близкой к 70 МГц; для четвертого и пятого диапазонов характерно максимальное поглощение энергии поверхностными тканями, преимущественно кожей.

В целом по всему спектру поглощение энергии ЭМИ зависит от частоты колебаний, электрических и магнитных свойств среды. При одинаковых значениях напряженности поля коэффициент поглощения в тканях с высоким содержанием воды примерно в 60 раз выше, чем в тканях с низким содержанием. С увеличением длины волны глубина проникновения электромагнитных волн возрастает; различие диэлектрических свойств тканей приводит к неравномерности их нагрева, возникновению макро- и микротепловых эффектов со значительным перепадом температур.

В зависимости от места и условий воздействия ЭМИ различают четыре вида облучения: профессиональное, непрофессиональное, облучение в быту и облучение, осуществляемое в лечебных целях, а по характеру облучения -- общее и местное.

Степень и характер воздействия ЭМИ на организм определяются плотностью потока энергии, частотой излучения, продолжительностью воздействия, режимом облучения (непрерывный, прерывистый, импульсный), размером облучаемой поверхности, индивидуальными особенностями организма, наличием сопутствующих факторов (повышенная температура окружающего воздуха, свыше 28°С, наличие рентгеновского излучения). Наряду с интенсивностно-временными параметрами воздействия имеют значение режимы модуляции (амплитудный, частотный или смешанный) и условия облучения. Установлено, что относительная биологическая активность импульсных излучений выше непрерывных.

Биологические эффекты от воздействия ЭМИ могут проявляться в различной форме: от незначительных функциональных сдвигов до нарушений, свидетельствующих о развитии явной патологии. Следствием поглощения энергии ЭМИ является тепловой эффект. Избыточная теплота, выделяющаяся в организме человека, отводится путем увеличения нагрузки на механизм терморегуляции; начиная с определенного предела организм не справляется с отводом теплоты от отдельных органов и температура их может повышаться. Воздействие ЭМИ особенно вредно для тканей со слаборазвитой сосудистой системой или недостаточным кровообращением (глаза, мозг, почки, желудок, желчный и мочевой пузырь). Облучение глаз может привести к помутнению хрусталика (катаракте), причем развитие катаракты является одним из немногих специфических поражений, вызываемых ЭМИ радиочастот в диапазоне 300 МГц...300 ГГц при плотности потока энергии (ППЭ) свыше 10 мВт/см2. Помимо катаракты при воздействии ЭМИ возможны ожоги роговицы.

Для длительного действия ЭМИ различных диапазонов длин волн при умеренной интенсивности (выше ПДУ) характерным считают развитие функциональных расстройств в ЦНС с нерезко выраженными сдвигами эндокринно-обменных процессов и состава крови. В связи с этим могут появиться головные боли, повышение или понижение давления, урежение пульса, изменение проводимости в сердечной мышце, нервно-психические расстройства, быстрое развитие утомления. Возможны трофические нарушения: выпадение волос, ломкость ногтей, снижение массы тела. Наблюдаются изменения возбудимости обонятельного, зрительного и вестибулярного анализаторов. На ранней стадии изменения носят обратимый характер, при продолжающемся воздействии ЭМИ происходит стойкое снижение работоспособности.

В пределах радиоволнового диапазона доказана наибольшая биологическая активность микроволнового СВЧ-поля в сравнении с ВЧ и УВЧ.

Острые нарушения при воздействии ЭМИ (аварийные ситуации) сопровождаются сердечно-сосудистыми расстройствами с обмороками, резким учащением пульса и снижением артериального давления. В последнее время особое беспокойство у специалистов в области электромагнитной безопасности человека вызывают сотовые телефоны и компьютеры, а также разнообразные радиоэлектронные и электрические изделия, широко используемые в быту: телевизоры, игровые приставки, микроволновые печи, электроплиты, электрочайники, холодильники, электроутюги, электрофены, электробритвы, электромассажеры, электрогрелки, электроодеяла, отопительные электрорадиаторы и другая бытовая техника.

Согласно определению стресса как общего адаптационного синдрома, вызывающего неспецифические реакции организма, ЭМИ, безусловно, могут быть определены как стрессирующий фактор. Уже при уровнях, превышающих фоновые, но не достигающих ПДУ для соответствующего диапазона частот, отмечаются значимые функциональные изменения состояния сердечно-сосудистой и нервной систем, гематологических, иммуноцитохимических показателей, свидетельствующие об адаптационно-компенсаторных процессах в организме, что является проявлением реакции напряжения. Субъективно человеком отмечаются повышенная раздражительность, утомляемость, головные боли, расстройства сна, памяти.


Подобные документы

  • Обеспечение информационной, биофизической, энергетической, пространственно-антропометрической и технико-эстетической совместимостей в системе "человек-машина". Расследование и учет несчастных случаев. Естественные и искусственные источники инфразвука.

    контрольная работа [45,7 K], добавлен 21.10.2014

  • Характеристика условий труда работника КЭО. Требования к производственным помещениям. Окраска и коэффициенты отражения. Освещение. Параметры микроклимата. Шум и вибрация. Электромагнитное и ионизирующее излучения. Эргономические требования к рабочему мест

    реферат [27,4 K], добавлен 28.05.2002

  • Проблемы условий жизнедеятельности. Системный анализ безопасности жизнедеятельности. Процесс взаимодействия человека с природой и антропогенной средой. Логическое дерево причин и опасностей недостатка питьевой воды. Принципы обеспечения безопасности.

    курсовая работа [86,5 K], добавлен 31.10.2011

  • Эргономика - наука о приспособлении орудий и условий труда к человеку. Особенности организации рабочего места инженера по стандартизации предприятия. Описание параметров рабочего помещения, его размерные характеристики. Связь эргономики и охраны труда.

    курсовая работа [1,4 M], добавлен 16.01.2011

  • Гарантии права работника на охрану труда. Государственное обеспечение по охране труда и финансирование мероприятий по охране труда. Нормативные акты по охране труда. Обязанности работодателя по обеспечению безопасных условий труда на производстве.

    курсовая работа [57,7 K], добавлен 03.07.2012

  • Понятие физиологии труда как раздела физиологии, изучающего закономерности физиологических процессов и их регуляцию при трудовой деятельности человека. Психофизиологические особенности человека. Эргономические основы безопасности жизнедеятельности.

    реферат [38,1 K], добавлен 22.03.2013

  • Обеспечение оптимальных условий работы, наибольших удобств обращения с машиной или прибором. Эргономика как научная дисциплина, комплексно изучающая человека в конкретных условиях деятельности в современном производстве. Основные цели эргономики.

    реферат [158,2 K], добавлен 19.03.2010

  • Влияние среды обитания и окружающей природной среды на жизнедеятельность человека. Основы физиологии труда. Воздействие на человека опасных и вредных факторов среды. Основы техники безопасности. Правовое обеспечение безопасности жизнедеятельности.

    методичка [160,0 K], добавлен 17.05.2012

  • Основные понятия и терминология безопасности труда. Классификация негативных факторов. Классификация условий труда по тяжести и напряженности трудового процесса. Эргономические основы безопасности труда. Метеорологические условия производственной среды.

    лекция [2,6 M], добавлен 22.08.2010

  • Защита человека в техносфере от негативных воздействий антропогенного и естественного происхождения и достижение комфортных условий жизнедеятельности как предмет изучения безопасности жизнедеятельности. Воздействие и нормирование негативных факторов.

    презентация [133,2 K], добавлен 03.09.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.