Производство черных и цветных металлов

Современные способы повышения качества металлов и сплавов. Подготовка руд к доменной плавке. Устройство и работа доменной печи. Сущность технологического процесса изготовления деталей и заготовок порошковой металлургией. Производство цветных металлов.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 16.11.2011
Размер файла 6,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Из 107 элементов Периодической системы элементов Д. И. Менделеева промышленность использует 74 элемента - металлов и несколько неметаллов, получаемых на предприятиях металлургии.

Металлургия - область науки или отрасль промышленности, охватывающая различные процессы получения металлов из руд и других материалов, а также процессы, способствующие улучшению свойств металлов и сплавов. Металлы являются основой экономики страны. В природе очень редко металлы встречаются в чистом виде. К ним относятся золото, серебро, медь. Остальные металлы находятся в виде соединений - руд, которые принято называть полезными ископаемыми. На заре развития человеческого общества люди научились получать и обрабатывать такие металлы, как медь, железо, серебро, золото, олово и свинец. По мере развития культуры число используемых человеком металлов увеличивалось. Металлы и сплавы условно принято подразделять на две основные группы - черные и цветные. Такая классификация сложилась исторически. К черным металлам относят железо и его сплавы (чугун, сталь, ферросплавы). Остальные металлы составляют группу цветных.

Объем производства черных металлов в значительной степени определяет уровень технического развития той или иной страны. Современное машиностроение является основным потребителем производимых металлургической промышленностью металлов. В любой отрасли машиностроения - тяжелом машиностроении, станкостроении, судостроении, автомобильной и авиационной промышленности, электронике и радиотехнике из черных металлов изготовляют огромное число деталей машин и приборов. Значительная доля черных металлов потребляется современным промышленным и гражданским строительством.

Большое значение в современной технике имеют и цветные металлы, которые широко применяют во всех отраслях народного хозяйства: в машиностроении, самолетостроении, радиомеханике и электронике. Все большее производство и применение цветных металлов в технике объясняется их физико-механическими и другими свойствами, которыми не обладают черные металлы и сплавы. Металлы в чистом виде применяются очень редко, за исключением меди и алюминия. Эти металлы используются в основном в электротехнической промышленности, как проводники электрического тока. Чистые металлы широко используются как компоненты (легирующие элементы) для получения сплавов. К таким металлам относятся медь, алюминий, магний, никель, титан, вольфрам, а также бериллий, германий, кремний. Наша страна имеет мощную черную и цветную металлургию, обеспечивающие потребности промышленности в металле в виде прокатной продукции. Развитие металлургии идет по пути совершенствования методов плавки и разливки металла, механизации и автоматизации производства, внедрения новых перспективных технологических процессов, обеспечивающих улучшение технико-экономических показателей и качества выпускаемой продукции.

Современное металлургическое производство представляет собой сложный комплекс различных производств, базирующийся на месторождениях руд, коксующихся углей, энергетических мощностях. Оно включает следующие комбинаты, заводы, цехи шахты и карьеры по добыче руд и каменных углей;

горно-обогатительные комбинаты, где подготовляют руды
к плавке, т. е. обогащают их;

коксохимические заводы или цехи, где осуществляют подготовку углей, их коксование и извлечение из них полезных химических продуктов:

энергетические цехи для получения сжатого воздуха (для дутья доменных печей), кислорода, а также очистки газов металлургических производств;

доменные цехи для выплавки чугуна и ферросплавов;

заводы для производства ферросплавов;

сталеплавильные цехи (конвертерные, мартеновские, электросталеплавильные) для производства стали;

прокатные цехи, в которых слитки стали перерабатывают в сортовой прокат - балки, рельсы, прутки, проволоку, а также лист и т. д.

Основой современной металлургии стали является двухступенчатая схема, которая состоит из доменной выплавки чугуна и различных способов его передела в сталь. При доменной плавке, осуществляемой в доменных печах, происходит избирательное восстановление железа из руды, но одновременно из руды восстанавливаются также фосфор и в небольших количествах марганец и кремний; железо науглероживается и частично насыщается серой. В результате из руды получают чугун - сплав железа с углеродом, кремнием, марганцем, серой и фосфором.

Передел чугуна в сталь производят в конвертерах, мартеновских и электрических печах. В этих агрегатах происходит избирательное окисление примесей чугуна таким образом, что в процессе плавки они переходят в шлак и газы. В результате получают сталь заданного химического состава.

Основной продукцией черной металлургии являются: 1) чугуны - передельный, используемый для передела на сталь, и литейный для производства фасонных чугунных отливок на машиностроительных заводах; основное количество (до 60 %) выплавляемого чугуна - передельный; 2) ферросплавы (сплавы железа с повышенным, содержанием марганца, кремния, ванадия, титана) для производства легированных сталей; 3) стальные слитки для производства сортового проката (рельсов, балок, прутков, полос, проволоки), а также листа, труб и т, д.; 4) стальные слитки для производства крупных кованых деталей машин (валок, роторов, турбин, дисков и т. д.), называемые кузнечными слитками.

Рис. 1: Схема современного металлургического производства

Основной продукцией цветной металлургии являются: 1) слитки цветных металлов для сортового проката (уголков, голос, прутков и т. д.); 2) слитки, (чушки) цветных металлов для фасонных отливок на машиностроительных заводах; 3) лигатуры - сплавы цветных металлов с легирующими элементами для производства сложных легированных сплавов для фасонных отливок; 4) слитки чистых и особо чистых металлов для нужд приборостроения, электронной техники и других специальных отраслей машиностроения.

1. Производство стали и чугуна

Производство стали.

Стали -- железоуглеродистые сплавы, содержащие практически до 1,5 % углерода. Кроме углерода, сталь всегда содержит в небольших количествах постоянные примеси: марганец (до 0,8 %), кремний (до 0,4 %), фосфор (до 0,07 %), серу (до 0,06 %), что связано с особенностями технологии ее выплавки. В технике широко применяют также легированные стали, в состав которых для улучшения качества дополнительно вводят хром, никель и другие элементы. Существует свыше 1500 марок углеродистых и легированных сталей -- конструкционных, инструментальных, нержавеющих и т. д.

Для массового производства стали в современной металлургии основными исходными материалами являются передельный чугун и стальной скрап (лом). По химическому составу сталь отличается от передельного чугуна меньшим содержанием углерода, марганца, кремния и других элементов. Поэтому выплавка стали -- передел чугуна (или же чугуна и скрапа) в сталь -- сводится к проведению окислительной плавки для удаления избытка углерода, марганца и других примесей. При выплавке легированных сталей в их состав вводят соответствующие элементы.

В настоящее время в мировом производстве около 40 % стали выплавляют кислородно-конверторным способом и около 40 % мартеновским способом; при этом за последнее время доля кислородно-конверторной стали непрерывно возрастает, а доля мартеновской стали сокращается.

Выплавка качественных сталей в электрических дуговых и индукционных печах началась в конце XIX- начале XX вв. Электросталь стоит дороже, но превосходит по качеству кислородно-конверторную и мартеновскую сталь; ее производство - около 20 % от всей массы стали - непрерывно возрастает. В связи с возрастающими требованиями к стали все большее применение получает внепечное ваккумирование, рафинирование синтетическими шлаками в ковше и другие новые прогрессивные технологические способы.

Сталь особо высокого качества выплавляют в вакуумных электрических печах, а также путем электрошлакового, плазменного переплава и других новейших методов.

Сущность процесса получения стали. Основными исходными материалами для производства стали являются передельный чугун и стальной лом (скрап). Сравнения химических составов передельного чугуна и стали показывает, что содержание углерода и примесей в стали существенно ниже, чем в чугуне.

Таким образом, для передела чугуна в сталь необходимо снизить содержание углерода и примесей. Поэтому сущностью любого металлургического передела чугуна в сталь является снижение содержания углерода и примесей путем их избирательного окисления и перевода в шлак и газы в процессе плавки. В результате окислительных реакций, осуществляемых на первом этапе передела чугуна в сталь, углерод соединяется с кислородом, образуя СО, который удаляется в атмосферу печи. Кремний, марганец, фосфор, сера образуют окислы или другие соединения, нерастворимые или малорастворимые в металле (SiO2, МnО, СаS и др.), которые в процессе плавки частично удаляются в шлак.

Однако в полной мере окислить примеси не удается, так как, несмотря на их значительно большее сродство к кислороду, чем у железа, по мере снижения содержания примесей в соответствии с законом действующих масс начинает окисляться железо. Окислы железа растворяются в железе, насыщая металл кислородом. Сталь, содержащая кислород, непригодна для обработки давлением - ковки, прокатки, так как в ней образуются трещины при деформации в нагретом состоянии.

Для уменьшения содержания кислорода в стали в процессе плавки ее раскисляют, т. е. вводят в нее элементы с большим сродством к кислороду, чем у железа. Взаимодействуя с кислородом стали, эти элементы образуют нерастворимые окислы, частично всплывающие в шлак. Для раскисления стали используют ферросплавы - ферросилиций, ферромарганец, а также алюминий. Раскисление является завершающим этапом выплавки стали.

Чугун переделывают в сталь в различных по принципу действия металлургических агрегатах. Основными их них являются кислородные конвертеры, мартеновские печи и другие электропечи. Соотношение между способами производства стали непрерывно изменяется. Объем производства стали, выплавляемой в высокопроизводительных агрегатах, кислородных конвертерах и крупных электропечах, возрастает. А стали, выплавляемой в мартеновских печах, постепенно уменьшается.

Производство стали в кислородных конвертерах.

Сущность кислородно-конверторного процесса заключается в том, что налитый в плавильный агрегат (конвертор) расплавленный чугун продувают струей кислорода сверху. Углерод, кремний и другие примеси окисляются и тем самым чугун переделывается в сталь.

Кислородно-конвертерный процесс. Это выплавка стали из жидкого чугуна в конвертере с основной футеровкой и продувкой кислородом сверху через водоохлаждаемую фурму.

Кислородный конвертер. Устройство кислородного конвертора показано на рис.2. Его грушевидный корпус (кожух) сварен из листовой стали толщиной до 110 мм; внутри он футерован основными огнеупорными материалами общей толщиной до 1000 мм, емкостью 130 - 350 т жидкого чугуна.

Рис. 2. Схема устройства кислородного конвертера

1 - водоохлаждаемая фурма, 2 - горловина, 3 - грушевидный корпус (кожух), 4 - огнеупорные материалы, 5 - цапфа

В процессе работы конвертер можно поворачивать на цапфах вокруг горизонтальной оси на 360° для завалки скрапа, заливки чугуна, слива стали, шлака и т.д. Во время продувки чугуна кислородом конвертер находится в вертикальном положении. Кислород в конвертер (9 - 44 ат) подают с помощью водоохлаждаемой фурмы, которую вводят в конвертер через его горловину. Фурму устанавливают строго вертикально по оси конвертера. Ее поднимают специальным механизмом, сблокированным с механизмом вращения конвертера так, что конвертер нельзя повернуть, пока из него не удалена фурма.

Шихтовые материалы. Такими материалами для кислородно-конвертерного процесса являются жидкий передельный чугун, стальной лом, известь, железная руда , боксит, плавиковый шпат. Чугун для переработки в кислородных конвертерах должен содержать 3,7 - 4,4 % С; 0,7 - 1,1 % Mn; 0,4 - 0,8 % Si; 0,03 - 0,08 % S; <0,15 - 0,3 % Р. Известь необходима для наводки шлака. Она должна содержать более 90 % СаО и минимальное количество SiO2 и серы. Боксит и плавиковый шпат применяют для разжижения шлака.

Технология плавки. После выпуска очередной плавки конвертер наклоняют и через горловину с помощью завалочных машин загружают скрапом. Затем в конвертер заливают чугун при температуре 1250 - 1400 °С из чугуновозных ковшей. После этого конвертер в вертикальное положение, внутрь его вводят кислородную фурму и подают кислород. Одновременно с началом продувки в конвертер загружают шлакооборазующиеся материалы (известь, боксит, железную руду).

Расстояние головки фурмы от уровня металла в конвертере 0,7 - 0,3 м, в зависимости от емкости конвертера. Струи кислорода, поступающие под большим давлением в конвертер, проникают в металл, вызывают его циркуляцию в конвертере и перемешивание со шлаком. Благодаря интенсивному окислению примесей чугуна при взаимодействии с кислородом в зоне под фурмой температура достигает 2400 °С.

Окислительный период. В кислородном конвертере составляющие чугуна окисляются газообразным кислородом закиси железа (FeO), растворяющимся в металле и шлаке при продувке. В зоне контакта кислородной струи с чугуном в первую очередь окисляется железо, так как его концентрация во много раз выше концентрации примесей

Fe+1/2O2 =FeO

Закись железа растворяется в шлаке и металле, обогащая металл кислородом

FeO=Fe + O.

Окисление примесей чугуна кислородом, растворенным в металле, происходит по реакциям

Si+2O=SiO2;

Mn+O=MnO;

C+O=CO.

Часть примесей окисляется на границе металл - шлак окислами железа, содержащимися в шлаке:

Si+2FeO= SiO2+Fe;

Mn+Feo=MnO+Fe;

C+FeO=CO+Fe.

В кислородном конвертере благодаря присутствию шлаков с большим содержанием CaO и Fe, интенсивному перемешиванию металла и шлака легко удаляется из металла фосфор:

2P+5FeO+4CaO= (CaO)4P2O5+5Fe.

Образовавшийся фосфат кальция удаляется в шлак. В чугунах перерабатываемых в конвертерах, должно быть не более 0,15 % Р. При повышенном (до 0,3 %) содержании фосфора необходимо для более полного его удаления производить промежуточный слив шлака и наводить новый, что снижает производительность конвертера.

Рис. 3. Последовательность технологических операций при выплавке стали в кислородных конвертерах: а - загрузка скрапа; б- заливка жидкого чугуна; в- продувка кислородом; г- выпуск стали в ковш; д- слив шлака в шлаковую чашу

Раскиление стали. Прим выпуске стали из конвертера в ковш ее раскисляют вначале ферромарганцем, затем ферросилицием и алюминием. Затем из конвертера сливают шлак.

В кислородных конвертерах трудно выплавлять легированные стали, содержащие легкоокисляющие легирующие элементы. Поэтому в кислородных конвертерах выплавляют низколегированные стали, содержащие до 2 - 3 % легирующих элементов. Легирующие элементы вводят в ковш, предварительно расплавив их в электропечи, или легирующие ферросплавы вводят в ковш перед выпуском в него стали. Окисление примесей чугуна в кислородном конвертере протекает очень быстро: плавка в конвертерах емкостью 130 - 300 т заканчивается через 20 - 25 мин. Поэтому кислородно - конвертерный процесс производительнее плавки стали в мартеновских печах: производительность конвертера емкостью 300 т достигает 400 - 500 т/ч стали, а мартеновских печей и электропечей - не более 80 т/ч. Вследствие этого производство стали в нашей стране в основном увеличивается за счет ввода в строй новых кислородно - конвертерных цехов.

Производство стали в мартеновских печах.

Рис. 4. Схема мартеновской печи

Мартеновская печь -- это пламенная отражательная регенеративная печь. Она имеет рабочее плавильное пространство, ограниченное снизу подиной (12), сверху сводом (7), а с боков передней (5) и задней (10) стенками. Подина имеет форму ванны с откосами по направлению к стенкам печи. Футеровка печи может быть основной и кислой. Если в процессе плавки стали в шлаке преобладают кислотные окислы, процесс называется кислым мартеновским процессом, а если преобладают основные окислы -- основным. При высоких температурах шлаки могут взаимодействовать с футеровкой печи, разрушая ее. Для уменьшения этого взаимодействия необходимо, чтобы при кислом процессе футеровка печи была кислой, а при основном -- основной. Футеровку кислой мартеновской печи изготовляют из динасового кирпича, а верхний рабочий слой подины набивают из кварцевого песка. Футеровку основной мартеновской печи выполняют из магнезитового кирпича, на который набивают магнезитовый порошок. Свод мартеновской печи не соприкасается со шлаком, поэтому его делают из динасового или магнезитохромитового кирпича независимо от типа процесса, осуществляемого в печи. В передней стенке печи находятся загрузочные окна (4) для подачи шихтовых материалов (металлической шихты, флюса) в печь. В задней стенке печи расположено сталевыпускное отверстие (9) для выпуска готовой стали. Размеры плавильного пространства зависят от емкости печи. В нашей стране работают мартеновские печи емкостью 20 - 900 т жидкой стали. Важной характеристикой рабочего пространства является площадь пода печи, которую условно подсчитывают на уровне порогов загрузочных окон. Например, для печи емкостью 900 т площадь пода составляет 115 м2. С обоих торцов плавильного пространства расположены головки печи (2). Головки печи служат для смешивания топлива с воздухом и подачи этой смеси в плавильное пространство. В качестве топлива в мартеновских печах используют природный газ или мазут. Для подогрева воздуха при работе на газообразном топливе печь имеет два регенератора (1). Регенератор представляет собой камеру, в которой размещена насадка -- огнеупорный кирпич, выложенный в клетку. Температура отходящих из печи газов 1500 - 1000 °С. Попадая в регенераторы, они нагревают насадку до 1250 - 1280 °С, а охлажденные до 500 - 600 °С газы уходят из печи через дымовую трубу. Затем через один из регенераторов, например правый, в печь подают воздух, который, проходя через насадку, нагревается до 1100 - 1200 °С. Нагретый воздух поступает в головку печи, где смешивается с топливом; на выходе из головки образуется факел (7), направленный на шихту (6). Отходящие газы проходят через противоположную головку (правую), очистные устройства (шлаковики) для отделения мелких частиц шлака и пыли, уносимых из печи потоком газов, и направляются во второй (левый) регенератор, нагревая его насадку. Охлажденные газы покидают печь через дымовую трубу (8) высотой до 120 м. После охлаждения насадки правого регенератора до определенной температуры происходит автоматическое переключение клапанов, и поток газов в печи изменяет направление: через нагретый левый регенератор и головку в печь поступает воздух, а правый нагревается теплотой отходящих газов.

Температура факела пламени достигает 1750 - 1800 °С. Факел нагревает рабочее пространство печи и шихту. Факел имеет окислительный характер, что создает условия для окисления примесей шихты на протяжении всей плавки.

Разновидности мартеновского процесса.

При плавке в мартеновских печах составляющими металлической шихты могут быть стальной скрап, жидкий и твердый чугуны. В зависимости от состава металлической шихты, используемой при плавке, различают следующие разновидности мартеновского процесса:

скрап-процесс, при котором основной частью шихты является стальной скрап; применяют на металлургических заводах, где нет доменных печей, но расположенных в крупных промышленных центрах, где много металлолома; кроме скрапа в состав шихты входит 25 - 46 % чушкового пере дельного чугуна;

скрап-рудный процесс, при котором основная часть шихты состоит из жидкого чугуна (55 - 75 %), а твердая составляющая шихты -- скрап и железная руда; этот процесс чаще применяют на металлургических заводах, имеющих доменные печи.

Наибольшее количество стали получают в мартеновских печах с основной футеровкой, так как в этом случае возможно переделывать в сталь различные шихтовые материалы, в том числе и с повышенным содержанием фосфора и серы. При этом используют обычно скрап-рудный процесс, как наиболее экономичный.

Кислым мартеновским процессом выплавляют качественные стали. Стали, выплавляемые в кислых мартеновских печах, содержат значительно меньшее количество растворенных газов (водорода и кислорода), неметаллических включений, чем сталь, выплавленная в основной печи. Поскольку в печах с кислой футеровкой нельзя навести основный шлак, способствующий удалению фосфора и серы, то при плавке в кислой печи применяют металлическую шихту с низким содержанием этих составляющих. Благодаря этому кислая сталь имеет более высокие показатели механических свойств, особенно ударной вязкости и пластичности, и ее используют для ответственных деталей: коленчатых валов крупных двигателей, роторов мощных турбин, шарикоподшипников, стволов орудий и т. д.

Плавка стали скрап-рудным процессом в основной мартеновской печи происходит следующим образом. После осмотра и ремонта пода печи с помощью завалочной машины загружают железную руду и известняк и после их прогрева подают скрап. По окончании прогрева скрапа в печь заливают жидкий чугун, который, проходя через слой скрапа, взаимодействует с железной рудой. В период плавления за счет окислов железа руды и скрапа интенсивно окисляются примеси чугуна:

2Fe2O3+3Si=3SiO2+4Fe;

2Fe2O3+3Mn=3MnO+2Fe;

5Fe2O3+6P=3Р2O5+10Fe;

Fe2O3+3C=3CO+2Fe

Окислы SiO2, MnO, Р2O5, а также CaO без извести образуют шлак с высоким содержанием MnO и FeO, а выделяющаяся окись углерода (СО) вспенивает шлак, который выпускают из печи в шлаковые чаши. Образование и спуск шлака продолжаются почти до полного расплавления шихты. В этот период плавления полностью окисляется кремний и почти полностью марганец и большая часть углерода, а также интенсивно удаляется фосфор.

По окончании расплавления шихты наступает период кипения ванны. Для этого после расплавления шихты в печь подают некоторое количество железной руды или продувают ванну кислородом, подаваемым по трубам (3) (см. рис. 4) Углерод, содержащийся в металле, начинает интенсивно окисляться, образуется окись углерода. В это время отключают подачу топлива и воздуха в печь, давление газов в плавильном пространстве печи падает и выделяющаяся окись углерода вспенивает шлак. Шлак начинает вытекать из печи через порог завалочного окна в шлаковые чаши. Эта операция называется скачиванием шлака. Вместе со шлаком удаляется значительное количество фосфора и серы. После этого вновь включают подачу топлива и воздуха, давление газов в печи возрастает, шлак перестает вспениваться, и его скачивание прекращается. Для более полного удаления из металла фосфора и серы в печи наводят новый шлак путем подачи на зеркало металла извести с добавлением боксита или плавикового шпата для уменьшения вязкости шлака.

Окислительная атмосфера в печи способствует образованию на поверхности шлак -- газ окиси железа (Fе203). Окись железа диффундирует через шлак и на поверхности шлак-металл реагирует с жидким железом, восстанавливаясь до FеО, который также отдает свой кислород металлу. Поступивший в металл кислород взаимодействует с углеродом металла с образованием окиси углерода, которая выделяется в виде пузырьков, вызывая кипение ванны. Поэтому для кипения ванны шихта должна содержать избыток углерода (на 0,5 - 0,6 %) сверхзаданного в выплавляемой стали. Эта реакция является главной в мартеновской плавке, так как в процессе кипения ванны металл обезуглероживается, выравнивается его температура по объему ванны, частично удаляются из него газы и неметаллические включения, увеличивается поверхность соприкосновения металла со шлаком и облегчается удаление фосфора и серы из металла.

Начиная с расплавления шихты, до выпуска металла из печи, регулярно отбирают пробы металла и шлака для анализа химического состава. Процесс кипения считают окончившимся, если содержание углерода в металле по результатам анализов соответствует заданному, а содержание серы и фосфора минимально.

После этого приступают к раскислению металла. Металл раскисляют в два этапа: в период кипения, путем прекращения подачи руды в печь, вследствие чего раскисление происходит за счет углерода металла и подачи в ванну раскислителей -- ферромарганца, ферросилиция, алюминия и окончательно раскисляют алюминием и ферросилицием в ковше при выпуске стали из печи. После отбора контрольных проб плавку выпускают из печи через сталевыпускное отверстие в задней стенке. По желобу сталь сливается в сталеразливочный ковш. При выплавке легированных сталей легкоокисляющиеся легирующие элементы вводят в ванну после раскисления перед выпуском металла из печи.

Основные технико-экономические показатели. Эти показатели производства стали в мартеновских печах следующие: производительность в сутки (т/м2-сутки), и расход топлива на тонну выплавленной стали (кг/т). Средний съем стали с 1 м2 площади пода в сутки составляет ~ 10 т/м2 в сутки, а расход условного топлива от 120 кг/т для обычной плавки до 80 кг/т для плавки с применением кислорода. Технико-экономические показатели работы мартеновских печей можно повысить путем применения печей повышенной емкости, улучшения их конструкции, интенсификации технологического процесса плавки. Увеличение емкости печей способствует более полному использованию их тепловой мощности. В нашей стране эксплуатируют экономически оптимальные мартеновские печи с ванной емкостью до 500 - 600 т.

Все более широкое применение находят двухванные мартеновские печи, позволяющие полнее использовать теплоту отходящих газов (рис. 5).

Рис. 5. Схема двухванной мартеновской печи

В этих печах имеются две ванны: в то время как в одной из них протекают процессы, требующие большой затраты теплоты (завалка, прогрев, плавление), в другой происходит продувка ванны кислородом; при этом возникающий избыток теплоты с отходящими газами используется в первой ванне. К моменту выпуска металла из одной ванны печи, в другой начинают продувку, а выделяющиеся газы направляют в первую ванну, в которой после выпуска начинают завалку шихты. Окись углерода, выделяющаяся при продувке ванны, догорает над шихтой другой ванны, благодаря чему шихта быстро нагревается и плавится. В таких печах топлива расходуется в 2 - 3 раза меньше, чем в обычных мартеновских печах, резко сокращается расход огнеупоров, повышается производительность печи.

Процесс плавки интенсифицируют широким применением кислорода, что повышает температуру в печи, ускоряет процесс окисления примесей, уменьшает продолжительность плавки и повышает производительность печи (на 20 - 25 %), снижает расход топлива. Широко применяют кислородный процесс, используя природный малосернистый высококалорийный газ, что снижает содержание серы в стали. Существенно повысить производительность мартеновских печей можно, применяя качественно подготовленные шихтовые материалы с минимальным содержанием вредных примесей, а также автоматизируя контроль и управление ходом мартеновской плавки.

Производство стали в электропечах.

Эти печи имеют преимущества по сравнению с другими плавильными агрегатами. В электропечах можно получить высокую температуру, создавать окислительную, восстановительную, нейтральную атмосферу или вакуум. В этих печах можно выплавлять сталь и сплавы любого состава, более полно раскислить металл с образованием минимального количества неметаллических включений -- продуктов раскисления. Поэтому электропечи используют для выплавки конструкционных сталей ответственного назначения, высоколегированных, инструментальных, коррозионно-стойких (нержавеющих) и других специальных сталей и сплавов. Для плавки стали используются дуговыми и индукционные электропечи.

Дуговая электросталеплавильная печь. В этих печах в качестве источника теплоты используют электрическую дугу, возникающую между электродами и металлической шихтой. Дуговая электросталеплавильная печь (рис. 6.) питается трехфазным переменным током и имеет три цилиндрических электрода (9), изготовленных из графитированной массы. Электрический ток от трансформатора гибкими кабелями (7) и медными шинами подводится к электрододержателям (8), а через них к электродам (9). Между электродами и металлической шихтой (4) возникает электрическая дуга, электроэнергия превращается в теплоту, которая передается металлу и шлаку излучением. Рабочее напряжение 180 - 600 В, сила тока 1 - 10 кА. Во время работы печи длина дуги регулируется автоматически путем вертикального перемещения электродов. Печь имеет стальной сварной кожух (3). Кожух печи изнутри футерован теплоизоляционным и огнеупорным кирпичом (7), который может быть основным (магнезитовый, магнезитохромитовый) или кислым (динасовый). Подина (12) печи набивается огнеупорной массой. Плавильное пространство ограничено стенками (5), подиной (12) и сводом (6), изготовляемым также из огнеупорного кирпича и имеющим отверстия для прохода электродов. В стенках печи имеются рабочее окно (10) для управления ходом плавки и летка для выпуска готовой стали по желобу (2) в ковш.

Рис. 6. Схема дуговой электрической плавильной печи

Печь загружают при снятом своде. Механизмом (11) печь может наклоняться в сторону загрузочного окна и летки. Емкость дуговых электропечей 0,5 -- 400 т. В металлургических цехах обычно используют дуговые электропечи с основной футеровкой, а в литейных цехах -- с кислой.

Основная дуговая печь. Применяют два вида технологии плавки в дуговой основной печи: на шихте из легированных отходов (методом переплава) и на углеродистой шихте (с окислением примесей).

Плавку на шихте из легированных отходов с низким содержанием фосфора проводят без окисления примесей. Шихта для такой плавки, кроме пониженного содержания фосфора, должна иметь меньшее, чем в выплавляемой стали, количество марганца и кремния. По сути это переплав. Однако в процессе плавки за счет кислорода некоторые примеси (алюминия, титана, кремния, марганца, хрома) окисляются. Кроме того, шихта может содержать окислы. Поэтому после расплавления шихты металл раскисляют, удаляют серу, наводят основный шлак, при необходимости науглероживают и доводят металл до заданного химического состава. Раскисляют ферросилицием, алюминием, молотым коксом. При этом окислы легирующих элементов восстанавливаются и переходят из шлака в металл. Таким способом плавки получают легированные стали из отходов машиностроительных заводов.

Плавку на углеродистой шихте чаще применяют для производства конструкционных углеродистых сталей. Эту плавку проводят за два периода: окислительный и восстановительный. После заправки печи, удаления остатков металла и шлака предыдущей плавки, исправления поврежденных мест футеровки в печь загружают шихту: стальной лом (до 90 %), чушковый передельный чугун (до 10 %), электродный бой или кокс для науглероживания металла и 2 - 3 % извести. По окончании завалки шихты электроды опускают вниз и включают ток; шихта под электродами плавится, металл накапливается на подине печи. Во время плавления шихты начинается окислительный период плавки: за счет кислорода, окислов шихты и окалины окисляется кремний, марганец, углерод, железо. Вместе с окисью кальция, содержащейся в извести, окислы этих элементов образуют основный железистый шлак, способствующий удалению фосфора из металла.

После нагрева металла и шлака до 1500 - 1540 °С в печь загружают руду и известь. Содержащийся в руде кислород интенсивно окисляет углерод и вызывает кипение ванны жидкого металла за счет выделяющихся пузырьков окиси углерода. Шлак вспенивается, уровень его повышается; для выпуска шлака печь наклоняют в сторону рабочего окна и он стекает в шлаковую чашу. Кипение металла ускоряет нагрев ванны, удаление из металла газов, неметаллических включений, способствует удалению фосфора. Шлак удаляют, руду и известь добавляют 2 - 3 раза. В результате содержание фосфора в металле снижается до 0,01 % и одновременно за счет образования окиси углерода при кипении уменьшается и содержание углерода. Когда содержание углерода становится меньше заданного на 0,1 %, кипение прекращают и полностью удаляют из печи шлак. Этим заканчивается окислительный период плавки.

Восстановительный период плавки включает раскисление металла, удаление серы и доведение химического состава до заданного. После удаления окислительного шлака в печь подают ферромарганец в количестве, обеспечивающем заданное содержание марганца в стали, а также производят науглероживание, если выплавляют высокоуглеродистые стали (до 1,5 % С). Затем в печь загружают флюс, состоящий из извести, плавикового шпата и шамотного боя. После расплавления флюсов и образования шлака в печь вводят раскислительную смесь, состоящую из извести, плавикового шпата, молотого кокса и ферросилиция. Молотый кокс и ферросилиций вводят в порошкообразном виде. Они очень медленно проникают через слой шлака. В шлаке восстанавливается закись железа:

FeO+C=Fe+CO;

2FeO+Si=Fe+SiO2

При этом содержание закиси железа в шлаке снижается и она из металла согласно закону распределения начинает переходить в шлак. Этот процесс называют диффузионным раскислением стали. Раскислительную смесь вводят в печь несколько раз. По мере раскисления и понижения содержания FеО цвет шлака изменяется и он становится почти белым. Раскисление под белым шлаком длится 30 - 60 мин.

По ходу восстановительного периода берут пробы для определения химического состава металла. При необходимости в печь вводят ферросплавы для достижения заданного химического состава металла. Когда достигнуты заданные состав металла и температура, выполняют конечное раскисление стали алюминием и силикокальцием. После этого следует выпуск металла из печи в ковш.

При выплавке легированных сталей в дуговых печах в сталь вводят легирующие элементы в виде ферросплавов. Порядок ввода определяется сродством легирующих элементов к кислороду. Никель, молибден обладают меньшим сродством к кислороду, чем железо, и их вводят в период плавления или в окислительный период. Хром легко окисляется и его вводят в восстановительный период; кремний, ванадий, титан -- перед выпуском металла из печи в ковш, так как они легко окисляются.

Технико-экономические показатели. Эти показатели плавки в дуговых печах зависят от емкости печи и технологии плавки. Расход электроэнергии на 1 т стали зависит от емкости печи. С увеличением емкости печи расход электроэнергии на 1 т выплавленной стали уменьшается. Например, для печи емкостью 25 т он составляет 750 кВт - ч, а для печи емкостью 100 т -- 575 кВт-ч. Расход графитированных электродов составляет 6 -- 9 кг/т выплавленной стали.

Электроиндукционные печи.

Индукционная тигельная сталеплавильная печь (рис. 7.) состоит из водоохлаждаемого индуктора (5), внутри которого находится тигель (4) с металлической шихтой. Через индуктор проходит однофазный переменный ток повышенной частоты (500 - 1000 кГц). Ток создает переменный магнитный поток, пронизывая куски металла в тигле, наводит в них мощные вихревые токи, нагревающие металл (1) до расплавления и необходимых температур перегрева. Тигель может быть изготовлен из кислых (кварцит) или основных (магнезитовый порошок) огнеупорных материалов. Емкость тигля от 60 до 25 т. Ток к индуктору подводится от генератора высокой частоты - лампового (лабораторные печи) или машинного. Для уменьшения потерь теплоты при плавке можно применить съемный свод (2).

Рис. 7. Схема индукционной тигельной электрической плавильной печи

Индукционные печи имеют преимущества перед дуговыми:

1) в них отсутствует электрическая дуга, что позволяет выплавлять металлы с низким содержанием углерода, газов и малым угаром элементов, это особенно важно при выплавке высококачественных сталей и сплавов;

2) при плавке в металле возникают электродинамические силы, которые перемешивают металл в печи и способствуют выравниванию химического состава, всплыванию неметаллических включений;

3) индукционные печи имеют небольшие габаритные размеры, что позволяет помещать их в закрытые камеры, в которых можно создавать любую атмосферу, а также вакуум. Однако эти печи имеют малую стойкость футеровки, шлак в них нагревается теплотой металла и температура его недостаточна для интенсивного протекания металлургических процессов между металлом и шлаком.

При загрузке тщательно подбирают химический состав шихты в соответствии с заданным, так как плавка протекает быстро, и полного анализа металла по ходу плавки не делают. Поэтому необходимое количество ферросплавов (ферровольфрам, ферромолибден, феррохром, никель) для получения заданного химического состава металла загружают на дно тигля вместе с остальной шихтой. После расплавления шихты на поверхность металла загружают шлаковую смесь. Основное назначение шлака при индукционной плавке -- уменьшить тепловые потери металла, защитить его от насыщения газами, уменьшить угар легирующих элементов. При плавке в кислой печи после расплавления и удаления плавильного шлака наводят шлак из боя стекла (SiO2). Металл раскисляют ферросилицием, ферромарганцем и алюминием перед выпуском его из печи. Продолжительность плавки в индукционной печи емкостью 1 т около 45 мин. Расход электроэнергии на 1 т стали составляет 600 - 700 кВт.ч.

Рафирование стали в ковше жидкими синтетическими шлаками. Сущность этого метода состоит в том, что очистка стали от серы, кислорода и неметаллических включений производится при интенсивном перемешивании стали в ковше с предварительно слитым в него шлаком, приготовленном в специальной шлакоплавильной печи. Сталь после обработки жидкими шлаками обладает высокими механическими свойствами. За счет сокращения периода рафинирования в дуговых печах, производительность которых может быть увеличена на 10 - 15%. Мартеновская печь, обработанная синтетическими шлаками, по качеству близка к качеству стали, выплавляемой в электрических печах.

Разливка стали.

Выплавленную сталь выпускают из плавильной печи в разливочный ковш, из которого ее разливают в изложницы или кристаллизаторы установок для непрерывной разливки стали.

В изложницах или кристаллизаторах сталь затвердевает, и получаются слитки, которые затем подвергают обработке давлением -- прокатке, ковке.

Сталеразливочный ковш (рис.8.) имеет стальной сварной кожух (1), выложенный изнутри огнеупорным кирпичом (2). В дне ковша имеется керамический стакан (3) с отверстием (4) для выпуска стали. Отверстие в стакане закрывается и открывается стопорным устройством. Стопорное устройство имеет стальную штангу (6), на конце которой укреплена пробка (5) из огнеупорного материала. На штангу надеты трубки (7) из огнеупора, предохраняющие ее от расплавления жидкой сталью. Стопор поднимают и опускают рычажным механизмом (11) вручную или с помощью гидравлического привода с дистанционным управлением. Ковш за две цапфы (8) поднимается краном. Емкость ковша выбирают в зависимости от емкости плавильной печи с учетом слоя шлака (9) (100 - 200 мм), предохраняющего зеркало металла (10) в ковше от охлаждения при разливке. Обычно емкость ковшей 5 - 260 т. Для крупных плавильных агрегатов применяют ковши емкостью 350 - 480 т.

Рис. 8. Сталеразливочный ковш

1 - кожух, 2 - огнеупорная футеровка, 3 - керамический стакан, 4 - выпускное отверстие, 5 - пробка, 6 - стальная штанга, 7 - огнеупорная трубка, 8 - цапфы, 9 - шлак, 10 - поверхность (зеркало) металла, 11 - рычажный механизм

Изложницы -- чугунные формы для изготовления слитков. Конфигурация изложниц характеризуется формой поперечного и продольного сечений и зависит от сорта заливаемой стали и назначения слитка. Изложницы выполняют с квадратным, прямоугольным, круглым и многогранным поперечными сечениями (рис. 9.).Слитки квадратного сечения прокатывают на сортовой прокат (двутавровые балки, швеллеры, уголки и т. д.); слитки прямоугольного сечения с отношением ширины к толщине 1,5 - 3,0 - на лист; из слитков круглого сечения изготовляют трубы, колеса. Многогранные слитки используют для поковок.

Рис. 9. Виды изложниц

Для разливки спокойной стали, применяют изложницы, расширяющиеся кверху (рис. 10, б), для разливки кипящей стали -- изложницы, расширяющиеся книзу (рис. 10, а).

Изложницы, расширяющиеся кверху, обычно имеют дно, а расширяющиеся книзу делают сквозными, без дна. Для предупреждения транскристаллизации дно квадратных и прямоугольных изложниц закруглено. Изложницы для разливки спокойной стали имеют прибыльные надставки (8) (рис. 10, б), футерованные изнутри огнеупорной массой (9) с малой теплопроводностью. Сталь в прибыльной надставке дольше находится в жидком состоянии и питает затвердевающий слиток металлом, благодаря чему уменьшается глубина усадочной раковины, улучшается качество слитка, уменьшаются отходы при обрезке его головной части. Размеры изложниц зависят от массы слитка. Для прокатки отливают слитки от 200 кг до 25 т; для поковок -- массой до 250 т.

Экономически более целесообразна разливка стали в крупные слитки, так как при этом сокращаются затраты труда, на огнеупоры, потери металла, уменьшается продолжительность разливки. Однако масса слитка ограничивается мощностью прокатного оборудования и ухудшением качества слитка из-за неравномерности химического состава в различных его местах. Обычно углеродистые спокойные и кипящие стали разливают в слитки массой до 25 т, легированные и высококачественные стали - в слитки от 500 кг до 7 т, а некоторые сорта высоколегированных сталей в слитки массой несколько сот килограммов.

Способы разливки стали. Применяют три основных способа разливки стали: в изложницы сверху; в изложницы сифоном; на установках непрерывной разливки стали (УНРС).

Рис. 10. Разливка стали в изложницы

В изложницы сверху (рис. 10, а) сталь заливают непосредственно из ковша (1). При разливке сверху исключается расход металла на литники, проста подготовка оборудования к разливке, температура заливаемой стали может быть ниже, чем при сифонной заливке. Однако при разливке сверху сталь падает в изложницу с большой высоты, брызги металла застывают на стенках изложницы и ухудшают поверхность слитка, образуя окисные плены. Окисные плены не свариваются с телом слитка даже при прокатке, после которой необходимо зачищать поверхность заготовки для улучшения ее качества, что является очень трудоемкой операцией. При сифонной разливке (рис. 10, б) сталью заполняют одновременно несколько изложниц (от 4 до 60). Изложницы устанавливают на поддоне (6), в центре которого находится центровой литник (3), футерованный огнеупорными трубками (4), соединенный каналами, выполненными из огнеупорных пустотелых кирпичей (7), с нижними частями изложниц. Сифонная разливка основана на принципе сообщающихся сосудов: жидкая сталь (2) из ковша (1) поступает в центровой литник и через каналы заполняет изложницы (5) снизу. Этот способ разливки обеспечивает плавное, без разбрызгивания заполнение изложниц, поверхность слитка получается чистой, сокращается продолжительность разливки, можно разливать большую массу металла одновременно на несколько мелких слитков. Однако при сифонной разливке повышается трудоемкость подготовки оборудования, увеличивается расход огнеупоров, появляется необходимость в расходовании металла на литники (до 1,5 % от массы заливаемой стали), в перегреве металла в печи до более высокой температуры, так как при течении по каналам он охлаждается.

Оба способа разливки широко применяют. Для обычных углеродистых сталей используют разливку сверху; для легированных и высококачественных сталей - разливку сифоном.

Непрерывная разливка стали (НРС) (рис. 11) состоит в том, что жидкую сталь из ковша (1) через промежуточное разливочное устройство (2) непрерывно подают в водоохлаждаемую изложницу без дна - кристаллизатор (3), из нижней части которого вытягивается затвердевающий слиток (4).

Рис. 11. Схема разливки стали на машинах непрерывного литья

Перед заливкой металла в кристаллизатор вводят затравку, образующую его дно. Затравка имеет головку в форме ласточкина хвоста. Жидкий металл, попадая в кристаллизатор и на затравку, охлаждается, затвердевает, образуя корку. Затравка тянущими валками (5) вытягивается из кристаллизатора вместе с затвердевающим слитком, сердцевина которого находится в жидком состоянии. Скорость вытягивания слитка из кристаллизатора зависит от сечения слитка. Например, скорость вытягивания прямоугольных слитков сечением 150?500 мм и 300?2000 мм ~1 м/мин.

На выходе из кристаллизатора слиток охлаждается водой, подаваемой через форсунки в зоне (6) вторичного охлаждения. Из зоны вторичного охлаждения слиток выходит полностью затвердевшим и попадает в зону (7) резки, где его разрезают газовым резаком (8) на куски заданной длины. Для предотвращения приваривания слитка к стенкам кристаллизатора последний совершает возвратно-поступательное движение с шагом 10 - 50мм и частотой 10 - 100 циклов в минуту, а рабочая поверхность кристаллизатора смазывается специальными смазками. Высота кристаллизатора 500 - 1500 мм. В них получают слитки прямоугольного поперечного сечения, круглые в виде толстостенных труб. Вследствие направленного затвердевания и непрерывного питания при усадке в слитках непрерывной разливки отсутствуют усадочные раковины, они имеют плотное строение и мелкозернистую структуру. Поверхность слитка получается хорошего качества. Выход годных заготовок может достигать 96 - 98 % от массы разливаемой стали.

Современные способы повышения качества металлов и сплавов.

Развитие специальных отраслей машиностроения и приборостроения предъявляет все более жесткие требования к качеству металла: показателям его прочности, пластичности, газосодержания, анизотропии механических свойств. Улучшить эти показатели можно уменьшением в металле неметаллических включений, газов, вредных примесей. Плавка в обычных плавильных агрегатах (мартеновских и электрических, кислородных конвертерах) не позволяет получить металл требуемого качества. Поэтому в последние годы разработаны новые технологические процессы, позволяющие повысить качество металла: обработка металла синтетическим шлаком, электрошлаковый переплав (ЭШП), вакуумирование металла при разливке, плавка в вакуумных печах, вакуумно-дуговой переплав (ВДП), вакуумно-индукционный переплав (ВИП), переплав металла в электронно-лучевых и плазменных печах. Количество металла, выплавляемого этими способами, постоянно увеличивается.

Обработка металла синтетическим шлаком. Сущность процесса, заключается в ускорении взаимодействия между сталью и шлаком за счет интенсивного их перемешивания при заполнении сталью ковша.

Процесс осуществляют так: синтетический шлак, состоящий из 55 % СаО, 40 % А12О3, небольших количеств SiO2, MgO и минимума FeO, выплавляют в специальной электропечи и заливают в ковш. В этот же ковш затем заливают с некоторой высоты (обычно из электропечи) сталь. В результате перемешивания стали и шлака поверхность их взаимодействия резко возрастает, и металлургические реакции между металлом и шлаком протекают в сотни раз быстрее, чем в обычной плавильной печи. Благодаря этому, а также низкому содержанию закиси железа в шлаке, сталь, обработанная таким способом, содержит меньше серы, кислорода и неметаллических включений, улучшаются ее пластические и прочностные характеристики.

Вакуумная дегазация стали. Этот способ (рис. 12) относится к внепечным способам обработки, осуществляемым в ковше или изложнице. Ее проводят для уменьшения содержания растворенных в металле газов и неметаллических включений. Вакуумной дегазации в ковше или изложнице подвергают сталь, выплавляемую в мартеновских и электропечах. Сущность процесса заключается в снижении растворимости в жидкой стали газов при понижении давления над зеркалом металла, благодаря чему газы выделяются из металла, что приводит к улучшению его качества. Процесс осуществляется различными способами: вакуумпрованием стали в ковше, при переливе из ковша в ковш, при заливке в изложницу и др.

Рис. 12. Схема вакуумной дегазации стали в ковше

Вакуумирование в ковше выполняют в стальных, футерованных изнутри камерах. Ковш (3) с жидкой сталью (4) помещается в камеру (2), закрывающуюся герметичной крышкой (1). Вакуумными насосами в камере создается разрежение до остаточного давления 267 - 667 Н/м2 (0,267 - 0,667 кПа). Продолжительность вакуумироваиия 12 - 15 мин. При понижении давления из жидкой стали выделяются водород и азот, а при большой окисленности металла уменьшается и содержание кислорода вследствие его взаимодействия с углеродом стали. Всплывающие пузырьки газа захватывают неметаллические включения, в результате чего содержание их в стали снижается. При снижении содержания газов и неметаллических включений улучшаются прочностные и пластические характеристики стали.

Электрошлаковый переплав. ЭШП переплаву подвергают выплавленный в электродуговой печи и прокатанный на круглые прутки металл. Источником тепла при ЭШП явялется шлаковая ванна, нагреваемая за счет прохождения через нее электрического тока. Электрический ток подводится к переплавляемому электроду (1), погруженному в шлаковую ванн (2), и к поддону (9), установленному внизу в водоохлаждаемой металлической изложнице (кристаллизаторе) (7), в которой находится затравка (8) (рис. 13). Выделяющаяся теплота нагревает шлаковую ванну (2) до 1700 °С и более и вызывает оплавление конца электрода. Капли жидкого металла (3) проходят через шлак, собираются, образуя под шлаковым слоем металлическую ванн (4).

Рис. 13 Схема электрошлакового переплава.

а - кристаллизатор, б - включение установки, 1 - расходуемый электрод, 2 - шлаковая ванна, 3 - капли электродного металла, 4 - металлическая ванна, 5 - шлаковый гарнисаж, 6 - слиток, 7 - стенка кристаллизатора, 8 - затравка, 9 - поддон

Перенос капель металла через шлак, интенсивное перемешивание их со шлаком способствуют их активному взаимодействию, в результате чего происходит удаление из металла неметаллических включений и растворенных газов. Металлическая ванна, непрерывно пополняемая за счет расплавления электрода, под воздействием водоохлаждаемого кристаллизатора постепенно формируется в слиток 6. Кристаллизация металла, последовательная и направленная снизу вверх, происходит за счет теплоотвода через поддон кристаллизатора. Последовательная и направленная кристаллизация способствует удалению из металла неметаллических включений и пузырьков газа, получению плотного однородного слитка. После полного застывания слитка опускают поддон и извлекают его из кристаллизатора.


Подобные документы

  • Электродинамическая сепарация, методы интенсификации технологического процесса. Извлечение из цветных металлов без разделения потока на две фракции. Извлечение черных и цветных металлов в самостоятельные продукты. Удаление части балластных компонентов.

    курсовая работа [95,7 K], добавлен 18.01.2015

  • Классификация металлов по основному компоненту, по температуре плавления. Характерные признаки, отличающие металлы от неметаллов: внешний блеск, высокая прочность. Характерные особенности черных и цветных металлов. Анализ сплавов цветных металлов.

    контрольная работа [374,3 K], добавлен 04.08.2012

  • Основные понятия литейного производства. Особенности плавки сплавов черных и цветных металлов. Формовочные материалы, смеси и краски. Технология изготовления отливок. Виды и направления обработки металлов давлением. Механизмы пластической деформации.

    презентация [4,7 M], добавлен 25.09.2013

  • Общие сведения о трубопроводах. Технологические трубопроводы. Сложность изготовления и монтажа технологических трубопроводов. Трубы и детали трубопроводов из цветных металлов и их сплавов, их конфигурация, техническая характеристика, области применения.

    курсовая работа [17,6 K], добавлен 19.09.2008

  • Понятие металла, электронное строение и физико-химические свойства цветных и черных металлов. Характеристика железных, тугоплавких и урановых металлов. Описание редкоземельных, щелочных, легких, благородных и легкоплавких металлов, их использование.

    реферат [25,4 K], добавлен 25.10.2014

  • Промышленное значение цветных металлов: алюминий, медь, магний, свинец, цинк, олово, титан. Технологические процессы производства и обработки металлов, механизация и автоматизация процессов. Производство меди, алюминия, магния, титана и их сплавов.

    реферат [40,4 K], добавлен 25.12.2009

  • Первые свидетельства того, что человек занимался металлургией, и основные ее разновидности. Классификация цветных металлов по физическим свойствам. Наиболее часто используемые сплавы. Суть процесса получения, характерные свойства и применение металлов.

    презентация [1,7 M], добавлен 12.05.2011

  • Роль в процессе кристаллизации, которую играет число центров и скорость роста кристаллов. Изменение свободной энергии в зависимости от температуры. Классификация чугунов по строению металлической основы. Основные применения цветных металлов и их сплавов.

    контрольная работа [878,0 K], добавлен 06.03.2013

  • Товароведная характеристика цветных металлов и изделий из них. Требования к цветным металлам и сплавам в соответствии с ГОСТом. Физические свойства основных (медь, свинец, цинк, олово, никель, титан, магний), легирующих, благородных и рассеянных металлов.

    курсовая работа [47,5 K], добавлен 21.04.2011

  • Распространенность металлов в природе. Содержание металлов в земной коре в свободном состоянии и в виде сплавов. Классификация областей современной металлургии в зависимости от методов выделения металлов. Характеристика металлургических процессов.

    презентация [2,4 M], добавлен 19.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.