Модернизация приемной коробки станка СТБ 2-250

Кинематическое исследование механизма укладчика прокладчика аналитическим методом. Синтез механизма и анализ закона движения, обеспечивающего "безударное" взаимодействие с прокладчиком. Методики эксперимента и оценочных расчетов деталей приемной коробки.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 21.02.2011
Размер файла 4,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Цель экспериментальных исследований - оценка конструкторских разработок по модернизации механизмов приемной коробки, обеспечивающих ее работу на повышенных скоростных режимах, выполненных в настоящем дипломном проекте. Экспериментально исследовались нагрузки, возникающие в механизме возвратчика прокладчика. Как отмечалось ранее - это шарнирно-рычажный механизм, имеющий привод от пазового кулака. В этом механизме разработана усовершенствованная конструкция выталкивателя с вибродемпфирующими втулками для гашения ударных усилий.

Для определения характера нагружения механизма и последующего расчета на прочность его деталей проводилось измерение нагрузок в рычаге и шпинделе.

Тензодатчики с базой 20 мм и сопротивлением решетки 200 ом наклеивались на обработанные боковые поверхности рычага и на две боковые плоскости шпинделя, параллельно отшлифованные на 1мм с каждой стороны (Рис 20, 21). При установке шпинделя на станок плоские поверхности с наклеенными датчиками должны располагаться перпендикулярно направлению движения выталкивателя. Тензодатчики на рычаге наклеивались на расстоянии 100 мм от оси отверстия, сопрягаемого через звено с выталкивателем, а на шпинделе - на расстоянии 10 мм от плоскости контакта с рычагом. Для установки на шпиндель рычага шайба специальная (дет. СТД216.9-192) дополнительно обрабатывалась по двум боковым плоскостям до размера 13 мм.

Это необходимо для вывода проводов с тензодатчиков. Крепление рычага во время эксперимента осуществлялось гайкой, уменьшенных размеров. Схема установки, расположения и включения датчиков приведена на рис. 21. Датчики соединяются по схеме полумоста. Подбор датчиков с одинаковыми параметрами осуществлялся с использованием моста сопротивлений типа МО-62. Для усиления сигналов с датчиков и последующей их регистрации применены усилитель УТ-4-С и шлейфовый осциллограф Н700. Тарировка датчиков рычага и шпинделя проводилась при снятом выталкивателе в положении главного вала станка около 350 (ось рычага располагается перпендикулярно направлению движения выталкивателя) по динамометру с усилием до 100 кгс, который посредством жесткой или гибкой связи соединялся с отверстием на верхнем конце рычага. Нагрузки при тарировке датчиков прикладывались к рычагу в двух взаимно противоположных направлениях. Максимальная величина нагрузки - 60 кгс.

1.9 МЕТОДИКА ОЦЕНОЧНЫХ ПРОЧНОСТНЫХ РАСЧЕТОВ ДЕТАЛЕЙ МЕХАНИЗМА ВОЗВРАТЧИКА

1.9.1 РАСЧЕТ КОНТАКТНЫХ НАПРЯЖЕНИЯ В ПАРЕ ПАЗОВЫЙ КУЛАК - РОЛИК

Расчетные усилия для нахождения контактных напряжений в паре пазовый кулак - ролик вычислялись на основе нагрузок в рычаге и шпинделе, измеренных во время эксперимента. Для чего рычаг был представлен в виде балки, лежащей на двух опорах. Расчетная схема приведена ниже на рис. 22.

Контактные рабочие напряжения кр в паре пазовый кулак-ролик для пространственного механизма находятся:

где: N - нормальное усилие, действующее на паз кулачка, кг

Е - модуль упругости, (2,05 х 10 кг/см )

пр - приведенный радиус кривизны, см

n- табличный коэффициент, зависящий от r,R и являющийся функцией .

Зависимость между n и в табличной форме приведена в ( 6 ).

Приведенный радиус кривизны пр находится:

где:r - радиус ролика (r = 1,25 см),

R - радиус кривизны ролика в осевом сечении, см (при изготовлении ролика с цилиндрическим пояском),

- радиус кривизны центрового профиля паза, определяемый по формуле:

где: R1 - расчетный радиус паза цилиндрического кулачка (R1 = 5,15см). - угол поворота водилки, соответствующий максимальной нагрузке, устанавливается по осциллограмме нагрузок в рычаге,

l1 - расстояние от оси шпинделя до оси ролика.

где: С - расстояние от левой плоскости пазового кулака до оси шпинделя (С = 3,6см),

1 - минимальный радиус-вектор кулака (1 = 2,317 см),

i - радиус-вектор пазового кулака, соответствующий углу поворота главного вала, при котором в рычаге возникают наибольшие нагрузки, берется из расчетных таблиц на пазовый кулак,

- аналоги угловых скорости и ускорения рычага для максимальных значений нагрузки в нем, берутся из расчетных таблиц на пазовый кулак.

Исходная расчетная схема механизма возвратчика представлена на рис. 21

Величина силы N нормального давления найдется из эксперимента. Расчетная схема для ее определения представлена на рисунке

рис. 22

где: Р - максимальная нагрузка, действующая на конце рычага , принимается из осциллограммы нагрузок на рычаге.

R - сила реакции в паре ролик-кулак,

N - расчетная сила нормального давления в паре кулак-ролик,

- угол давления.

Используя известные формулы моментов сил получим:

N = Р * l / (l1 * cos )

Угол давления для пространственного кулачкового механизма находится

Подставляя найденные исходные данные: N, n, пр в формулу для кр получим расчетное значение рабочего контактного напряжения.

Допускаемое контактное напряжение []к для термообработанных сталей находится:

[]к = (230.... 300) HRCэ

Сравнивая кр и []к можно оценить долговечность рабочей пары пазовый кулачок-ролик.

1.9.2 РАСЧЕТ НА ПРОЧНОСТЬ РЫЧАГА

РЫЧАГ работает на усталость в условиях знакопеременного изгиба, поэтому расчет коэффициента запаса прочности целесообразно проводить по максимальным значениям изгибающих сил Р+, Р-, которые берутся из осциллограмм с соответствующим знаком. Для нашего случая изгибающее усилие, возникающее при движении рычага к правой кромке ( выталкивание прокладчика ) принимаем со знаком "+", т.е. Р+, а при движении в исходное положение со знаком "-" , т.е. Р-.

Коэффициент запаса прочности n для знакопеременного цикла нагружения находится:

где: -1 - предел выносливости при симметричном цикле нагружений,

В - предел прочности,

ср - среднее напряжение цикла от рабочих нагрузок,

К - коэффициент концентрации напряжений,

n - коэффициент учитывающий состояние поверхности,

m - масштабный фактор.

ср = (max i + min i) / 2

a i = (max i - min i) / 2, где:

max i , min i - максимальное (со знаком "+") и минимальное (со знаком "-") напряжения нагружения, возникающие в i сечении рычага.

max i = Pi+ * li / Wi min i = Pi- * li / Wi

где:li - расстояние от точки приложения силы Р+ или Р- до i сечения рычага. Так как датчики, регистрирующие изгиб рычага наклеиваются на расстоянии 100 мм от точки приложения силы Р+ или Р- то 0 < l < 80 (т.к. база датчика 20 мм), Wi - момент сопротивления i сечения.

Для рычага эллиптического сечения:

Wx = a2 b / 4

где:а - большая полуось эллипса, см (а =1,8 см),

b - малая полуось эллипса, см (b = 0,6 см ).

1.9.3 РАСЧЕТ НА ПРОЧНОСТЬ ШПИНДЕЛЯ

Шпиндель, также как и рычаг, подвергается воздействию знакопеременных нагрузок, поэтому расчетная формула имеет аналогичный вид:

где:ср - среднее напряжение цикла от рабочих нагрузок,

ср = (max + min) / 2

a = (max - min) / 2

При вычислении максимального max и минимального min напряжений шпиндель рассматривается как консольная балка с защемленным концом, на которую посередине наклеенных датчиков (на расстоянии l от заделки) действуют знакопеременные усилия, регистрируемые при экспериментальных исследованиях.

M+ = P+ * l max = P+ * l / W

M- = P- * l min = P- * l / W

где: W - момент сопротивления шпинделя, который для круга равен

W = 0,1 d , cм.

укладчик кинематический прокладчик движение

1.10 РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ МОДЕРНИЗИРОВАННОЙ ПРИЕМНОЙ КОРОБКИ

Экспериментальные исследования приемной коробки с серийными и вновь разработанными в настоящем дипломном проекте деталями проводился в ткацкой лаборатории ВНИИЛТЕКМАШ на макете станка СТБ-250 при частоте вращения главного вала 250 мин-1.

Для получения сравнительной оценки эффективности предложенных конструктивных усовершенствований механизмов и деталей регистрировались нагрузки в рычаге, приводящем в движение возвратчик прокладчика.

В результате обработки осциллограмм получено:

- наибольшие нагрузки возникают в момент контакта возвратчика прокладчика с прокладчиком; с учетом разброса пролета прокладчиков среднее значение угла поворота главного вала, соответствующее этому моменту, составляет 320 град.,

- величина нагрузки для механизмов с серийными деталями составила - 23,5 кгс, а с новыми деталями (тормозные пластины переднего и заднего тормозов из термообработанного полиуретана, возвратчик с вибродемпфирующими вкладышами) - 19,5 кгс, (Рис. 23, 24, 25)

- характер нагрузок с новыми деталями не носит явно выраженного удара за счет демпфирования,

- нагрузки при отходе возвратчика прокладчиков в исходное положение оказались одинаковыми для обоих механизмов и составили 10 кгс при угле поворота главного вала - 50 град.

На основе полученных экспериментальных данных выполним прочностные расчеты пары кулак - ролик, рычаг, шпиндель.

1.11 РАСЧЕТ КОНТАКТНЫХ НАПРЯЖЕНИЯ В ПАРЕ КУЛАК - РОЛИК

Из осциллограмм поучено максимальное усилие на рычаге с серийными деталями - 23,5 кгс, а с новыми деталями - 19,5 кгс при угле поворота главного вала 320 град. При движении рычага в исходное положение величина нагрузки составила - 10 кгс, а угол поворота главного вала - 50 град.

Проверку на контактную прочность проведем по максимальным усилиям.

1. Найдем угол поворота рычага, соответствующий положению главного вала - 320 град., радиус-вектор i кулака, соответствующий этому углу берем из таблиц на кулак = 28,36. Подставив в формулу, получим = 5,2 град.

2. Вычислим аналоги , используя формулы численного дифференцирования табличных данных, получим

3. Вычислим радиус кривизны центрового профиля паза

см

4. Вычислим пр и найдем и n по таблицам ( 9 ).

отсюда пр = 1,14 см, = 1, n = 0,8

5. Найдем угол давления

град

6. Найдем силу нормального давления N

N = 23,5 * 133 / (58 * cos 15,2) = 55,1 кгс

7. Вычислим контактные рабочие напряжения

отсюда: - для механизма с серийными деталями кр =13953 кг/см2

- для механизма с новыми деталями кр =13050 кг/см2

Для кулака и ролика, закаленных до твердости HRCэ = 55 имеем

[у]к = 250 * 55 = 13750 кг/см2

Сравнение рабочих и допустимых контактных напряжений показывает, что с серийными деталями рабочее напряжение несколько выше допустимого, а с новыми - напряжение ниже.

1.12 РАСЧЕТ НА УСТАЛОСТНУЮ ПРОЧНОСТЬ РЫЧАГА

Рычаг работает в условиях знакопеременного изгиба, поэтому вычисление коэффициента запаса прочности проводим по максимальным изгибающим моментам с учетом их направления по сечению, расположенному на расстоянии 10 см от верхнего конца рычага.

Тогда: М+мах = 235 кгсм, М-мах = 195 кгсм

Рычаг изготавливается из стали 40ХЛ, для которой:

В = 6500 кг / см2, -1 = ЗЗ00 кг/см2

С учетом условий изготовления и обработки можно принять:

К = 1,5, n = 1,35, м = 0,77

Рычаг имеет эллиптическое сечение а = 1,8 см, b = 0,6 см

Отсюда W = 1,53 см3, +мах = 154 кг/см2, -мах = 127 кг/см2

ср = 13,5 кг/см2, а = 135,5 кг/см2

Подставив найденные показатели, вычислим n, n = 20, что значительно превышает n допустимое.

РАСЧЕТ НА УСТАЛОСТНУЮ ПРОЧНОСТЬ ШПИНДЕЛЯ.

Шпиндель также как и рычаг подвергается воздействию знакопеременных нагрузок, изгибающих шпиндель, прикладываемых на расстоянии l = 2 см от основания:

P+max = 78 кгс, Р-max =46 кгс или M+max = 126 кгсм, М-max = 92 кгсм.

Шпиндель изготавливается из стали 40Х, закаливается до твердости HRCэ = 50 и шлифуется. Характеристики материала и значения коэффициентов, входящих в формулу для n , следующие:

В = 10000 кг/см2 , -1 = 4000 кг/см2 = 2, n = 1,05, м = 0,83,

W = 0,2d3 = 0,675 см3, +мах = 231 кг/см2, -мах = 136 кг/см2,

ср = 47 кг/см2, а = 184 кг/см2

Подставив в формулу для найденные показатели, получим n = 22, что значительно превышает n допустимое.

1.13 ВЫВОДЫ

1. Выполнен анализ литературных и патентных источников, который показал, что модернизация механизмов приемной коробки является в настоящее время актуальной проблемой.

2. Рассмотрены работа механизмов ткацкого станка СТБ при выработке ткани и образовании кромок и установлены факторы, в работе механизмов приемной коробки, негативно влияющие на эти процессы.

3. Сформулированы требования, обеспечивающие надежную работу механизмов приемной коробки, и дано обоснование работ по ее модернизации.

4. Разработаны алгоритмы и выполнено аналитическим методом кинематическое исследование механизма укладки прокладчиков на транспортер с использованием ЭВМ.

5. Проанализирована расчетная конструкторская документация на узкие и широкие станки СТБ двух заводов-изготовителей: Чебоксарского и Новосибирского.

6. Анализ графиков аналогов скоростей и ускорений конечного звена механизма - толкателя - указывает на необходимость точной настройки механизма, что достаточно сложно выполнить, учитывая допуски на изготовление звеньев, имеющиеся зазоры (до 0,5 мм) в кулачковой паре и отсутствие инструментальных методов регулировки.

7. Выполнен синтез механизма укладчика, при котором на 100 град. расширена его циклограмма, снижены в 3 - 4 раза величины скоростей и ускорений толкателя, увеличена до 10 град. зона взаимодействия толкателя с прокладчиком, что существенно расширило пределы регулировки механизма.

8. Разработана конструкторская документация на механизмы торможения и возвратчика прокладчиков. За счет применения современных полимерных материалов снижены контактные и ударные нагрузки.

9. Разработаны методики экспериментального исследования механизмов приемной коробки и расчетной оценки контактной и усталостной прочности деталей.

10. Выполнены оценочные прочностные расчеты кулачковой пары, шпинделя и рычага и показано, что при использовании разработок настоящего дипломного проекта контактные напряжения в паре кулак-ролик будут находится в пределах допустимых.

2. ОХРАНА ТРУДА И БЕЗОПАСНОСТЬ ПРОИЗВОДСТВЕННОЙ ДЕЯТЕЛЬНОСТИ

Под охраной труда понимают систему законодательных актов, социально-экономических, организационных, технических, гигиенических и лечебно-профилактических мероприятий и средств, обеспечивающих безопасность, сохранение здоровья, работоспособности человека в процессе труда.

Техника безопасности -- это система организационных мероприятий и технических средств, предотвращающих воздействие на работающих опасных производственных факторов, а производственная санитария - это система организационных мероприятий и технических средств, предотвращающих или уменьшающих воздействие на работающих вредных производственных факторов.

2.1 АНАЛИЗ ТРУДА ПРИ ЭКСПЛУАТАЦИИ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ НА ПРОИЗВОДСТВЕ

Анализ эксплуатации технологического оборудования показывает, что отдельные виды машин, станков и механизмов ткацкого производства не в полной мере отвечают требованиям безопасности человека, В целом ряде случаев неправильное расположение рабочей плоскости вынуждает работниц длительное время находиться в неестественной рабочей позе. Наличие протяженного маршрута обслуживания вынуждает ткачих совершать за смену путь 10 -15 км, что вызывает развитие признаков плоскостопия. Необходимость работать в положении стоя с частыми наклонами туловищ, способствует возникновению узелкового расширения вен.

Анализ условий труда на текстильном предприятии показывает, что к числу опасных и вредных относятся следующие производственные факторы: незащищенные подвижные элементы производственного оборудования; движущиеся вспомогательные механизмы; повышенная запыленность воздуха рабочей зоны пылью; повышенная загазованность воздуха в рабочей зоне; повышенная температура поверхности нагреваемого оборудования и материалов; повышенная влажность воздуха в рабочей зоне; высокий уровень шума и вибраций; опасный уровень напряжения в электрических цепях, недостаточная освещенность; брызги кислот, щелочей и концентрированных растворов; действие статического электричества.

Обслуживание оборудования, в котором есть незащищенные подвижные элементы, сопряжено с возможностью попадания человека в опасную зону. Согласно ГОСТ 12.0.002-80 опасной зоной называется пространство, в котором возможно воздействие на работающего опасного или вредного производственного фактора. При эксплуатации оборудования необходимо принимать во внимание наличие опасных зон, их размеры, специфику и правильно выбирать способы нейтрализации данных опасностей.

Основные опасные зоны механизмов: валы, цепная передача, ременная передача, зубчатая рейка, зубчатые колеса и т. д. Все эти механизмы опасны для персонала, работающего на них, потому что могут быть причиной увечья.

Случаи поражения человека электрическим током на текстильных предприятиях происходят относительно редко.

Они составляют несколько процентов от общего числа производственных травм, но почти 50 % всех несчастных случаев со смертельным исходом происходит в результате поражения электрическим током, Он может явиться также причиной возникновения пожара или взрыва.

Все помещения в зависимости от опасности работы с электрическим током делятся на три группы:

- без повышенной опасности;

- с повышенной опасностью;

- особо опасные.

Все цехи и отделы ткацкого производства относятся к особо опасным помещениям. Это объясняется тем, что на предприятиях текстильной промышленности пусковые и блокирующие электродвигатели, электродвигатели сигнализирующих приборов, электрических, подземных и транспортирующих устройств и осветительных установок работают в условиях повышенной температуры и влажности. Вследствие этого разрушается изоляция проводов, снижается ее сопротивление, возрастает возможность перехода напряжения на корпуса машин и опасность поражения рабочих, обслуживающих машины.

Не менее важными являются производственные факторы, такие как: микроклимат производства, выделение производством пыли и пуха. Одними из основных вредных факторов для ткацких предприятий являются шум и вибрация, а также производственное освещение.

2.1.1 ВЫЯВЛЕНИЕ ПОТЕНЦИАЛЬНО - ВРЕДНЫХ ПРОИЗВОДСТВЕННЫХ ФАКТОРОВ.

МИКРОКЛИМАТ

Микроклимат производственных помещений - климат внутренней среды этих помещений, который определяется действующими на организм человека сочетаниями температуры, влажности и скорости движения воздуха.

Особенность микроклимата ряда производств текстильной промышленности заключается в наличии повышенной температура воздуха в сочетании с его повышенной влажностью, что обусловлено спецификой технологии.

Нормативы микроклимата для производственных помещений установлены ГОСТ 12.1.005 - 76. Гигиенические принципы, заложенные в этих нормативах, сводятся к следующим основным положениям:

1. Нормируются температура, влажность и скорость движения воздуха в виде оптимальных и допустимых величин.

2. При легких работах принята несколько более высокая температура воздуха и меньшая скорость его движения.

3. Для производств с избыточным выделением тепла в теплый период года установлены повышенные допустимые нормы температуры, влажности и скорости движения воздуха.

4. В качестве предельно - допустимой температуры воздуха для работ легкой и средней тяжести установлена температура 28?С, а для тяжелых физических работ - температура 26?С.

ЗАПЫЛЕННОСТЬ.

На текстильных предприятиях пыль является серьезным фактором, так как содержит частицы волокон растительного и животного происхождения. Пыль растительного происхождения может быть: хлопковая, льняная, пеньковая, древесная; а пыль животного происхождения может быть шерстяная, шелковая. Хлопковая пыль обладает рядом особенностей. Она состоит из двух фракций - органической и минеральной, которые имеют сложный состав частиц разнообразных форм и размеров. Основным компонентом минеральной части пыли является диоксид кремния (SiO2), который создает опасность заболевания силикозом. Пыль вырабатывается в ткацком производстве при разбраковке суровых тканей, стрижке и ворсовании тканей и вызывает раздражение дыхательных путей, легких, слизистых оболочек глаз и поверхности кожи.

Особенно большое количество пыли выделяется в прядильном и ткацком производствах льняных предприятий.

Содержание пыли в воздухе рабочей зоны не должно превышать предельно допустимых концентраций (ПДК), установленных ГОСТ 121.005-76.

Продолжительность работы в запыленных условиях может привести к профессиональному заболеванию легких. Пыль способствует возникновению воспалительных процессов глаз, гнойничковых заболеваний кожи, а также оказывает вредное воздействие на органы пищеварения, носоглотку, бронхи, легкие.

ШУM И ВИБРАЦИЯ.

В цехах ткацкого производства шум является одним из распространенных неблагоприятных факторов. Он является не только профессиональной вредностью, но и нередко бывает причиной производственного травматизма (не слышно предупредительных сигналов об опасности, замедляется реакция).

Основным источником шума и вибрации на ткацких предприятиях являются вращающиеся с большой скоростью главные и вспомогательные валы машин, их исполнительные органы, электродвигатели, цепные передачи и т.д. Шум оказывает вредное воздействие на центральную нервную систему, вызывает переутомление и истощение клеток коры головного мозга.

При вибрации рабочих мест (пол, рабочая площадка) воздействию механических колебаний подвергается весь организм человека. При воздействии общей вибрации более выражены изменения со стороны центральной нервной системы, поражения костно-суставного аппарата локализуются главным образом в ногах и позвоночнике.

ПАРОГАЗОВЫЕ ВЫДЕЛЕНИЯ.

Химические парогазовые выделения появляются в воздухе рабочей зоны в результате использования в текстильной промышленности различных химических веществ.

При вдыхании рабочими воздуха, содержащего химические парогазовые выделения, у них могут возникнуть отравления, а также ожоги слизистых оболочек разной степени.

Большой токсичностью обладают диспергированные частицы серы и красителей, выделяющихся при переработке окрашенного вискозного и хлопкового волокна, а также пыль, образующаяся при ручном вскрытии барабанов с сернистым натрием и от клеящего препарата (смесь крахмала с жировыми и клеящимися веществами), при работе шлихтовальных машин. Для приготовления шлихты, используемой в процессе шлихтования основной пряжи, применяют серную, соляную и уксусную кислоты, гидроксид натрия и другие химически вредные вещества, которые выделяют токсичные пары и газы. В шлихтовальных отделах применяют локальный отсос. В этом случае шлихтовальные машины имеют шатры с локальными отсосами, соединенными с вытяжным устройством. Так же для борьбы с парогазовыми выделениями осуществляют герметизацию оборудования.

ОСВЕЩЕНИЕ

Освещенность рабочих поверхностей в зонах обслуживания производственных процессов должна соответствовать отраслевым нормам освещенности и показателям качества освещения текстильных предприятий, а также нормативам СНиП 11-4-79 "Естественное и искусственное освещение. Нормы проектирования". Технологическое оборудование должно быть расположено так, чтобы максимально использовать естественное освещение во время рабочего дня.

Естественное освещение текстильных предприятий может быть трех видов: боковое, верхнее и комбинированное. В бесфонарных зданиях следует, как правило, предусматривать в наружных стенах оконные проемы, используемые для освещения крайних пролетов и притока свежего воздуха. Естественная освещенность изменяется в зависимости от времени дня и года, внешних метеорологических условий, отражающих свойства земного покрытия и стен близлежащих зданий. В ткацких цехах текстильных предприятий работа сопряжена с длительным напряжением органов зрения, так как связанна с контролем технологического процесса, устранением обрывов и улучшением качества вырабатываемой продукции. Поэтому в этих цехах устанавливают люминесцентные лампы.

На текстильных предприятиях наилучшее зрительное восприятие создают лампы дневного света ЛД и ЛДЦ, обладающие меньшим стробоскопическим эффектом и более экономичные. Для цехов текстильных предприятий следует использовать систему освещения с равномерным и локализованным размещением светильников относительно оборудования и систему комбинированного освещения.

Не допускается применение одного местного освещения. В качестве встроенного в машину светильника локализованного освещения применяют светильники ЛКА02-1х40 (люминесцентные консольные светильники с лампой мощностью 1х40 Вт).

2.2 РАЗРАБОТКА КОМПЛЕКСНЫХ МЕРОПРИЯТИЙ ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ УСЛОВИЙ ТРУДА

Вce лица, поступающие на предприятия, независимо от их стажа, квалификации и предварительной теоретической подготовки должны пройти вводный инструктаж по технике безопасности.

При эксплуатации оборудование должно соответствовать ГОСТ 12.2.003 - 74, ГОСТ 12. 2. 005 - 80, ГОСТ 12. 4. 026 - 76. При эксплуатации электрической части необходимо соблюдать соответствующие требования "Правила устройства электроустановок" (ПУЗ -- 86 ), утвержденные Госэнергонадзором 21 декабря 1984 года и ГОСТ 12.1.019 - 79, ГОСТ 12.2.007.0 - 75, ГОСТ 12.2.007.14 - 75.

2.2.1 РАЗРАБОТКА КОМПЛЕКСА МЕРОПРИЯТИЙ ПО ОБЕСПЕЧЕНИЮ БЕЗОПАСНОСТИ ТРУДА

Во всех производственных процессах должны предусматриваться меры защиты персонала от возможного воздействия опасных и вредных производственных факторов. Организация работ и расположение оборудования должны обеспечить поточность технологических процессов и возможность применения механизации и автоматизации опасных операций.

Для понижения механического воздействия на человека на фабрике должны быть введены следующие меры безопасности:

- индивидуальные приводы ткацких станков, все зубчатые и другие виды передач, приводные ремни и шкивы станков, выходящие на проходы, должны иметь надежное ограждение;

- ткацкие станки необходимо оснащать приспособлениями, предохраняющими от вылета челноков; тормоза ткацких станков должны обеспечивать быстрый останов станка; пусковые рукоятки ткацких станков должны иметь устройства, исключающие возможность самопроизвольного пуска.

Защита рабочих от воздействия электрического тока должна осуществляться в соответствии с ГОСТ 121.030 - 81. Обязателен инструктаж по технике безопасности при работе с электрооборудованием.

Для защиты работающих от воздействия электрического тока предлагается производить технологические осмотры электрооборудования для выявления и установки возможных неисправностей; а также проводить инструктаж рабочих по технике безопасности при работе с электроприборами. Для защиты от поражения электрическим током используют изоляцию и защитное ограждение токоведущих частей.

Токоведущие части изолируют, чтобы предотвратить возможность пожара и поражение человека электрическим током. Для защиты от прикосновения к частям электроустановок, применяют защитное ограждение. В качестве ограждения используют стальные решетки, сплошные щиты с дверцами, шкафы с дверцами и ящики. В различных частях электрических установок возможны пробои изоляции и замыкания на металлические корпуса электродвигателей, пускателей, светильников, оболочек кабелей, поэтому применяют защитное заземление. Защитное отключение - устройство для быстрого автоматического отключения электроустановки, при возникновении опасности поражения человека током. Непременной принадлежностью всех защитных устройств являются сигнализация и маркировка токопроводящих кабелей.

При обслуживании оборудования электротехнический персонал должен иметь изолирующие электрозащитные средства (по ГОСТ 12.1.009 - 76), такие как: изолирующие клещи, перчатки, диэлектрические боты, изолирующие подставки.

Для создания благоприятного микроклимата на рабочих местах необходимо обеспечить нормируемый объем производственных помещений не менее 15 м3 на одного работающего, рационально оборудованную вентиляцию, кондиционирование воздуха и систему отопления.

Предлагается устанавливать дополнительные отопительные батареи для повышения эффективности отопления помещений в холодное время года, этим самым улучшить комфортные условия работы персонала. Предлагается также использовать экранирование нагревающихся частей машин и механизмов.

В жаркое время года увеличить скорость движения воздуха путем установки дополнительных вентиляторов.

В области борьбы с шумом предлагается использовать для звукоизоляции шумных узлов (или машины в целом) кожухи и ограждения. Также для снижения шума рекомендуется прижимать резиновые или войлочные диски к боковым поверхностям шестерен шайбами или болтами, использовать бесшумные пластмассовые детали. Для устранения или ослабления шума следует изменять конструкцию агрегата или технологического процесса.

Рекомендуется при обслуживании ткацких станков пользоваться средствами индивидуальной защиты от шума однократного пользования из волокнистого материала согласно ГОСТ 12.1.029 - 80.

Для защиты от вибрации, передающейся на руки, необходимо применять виброгасящие рукавицы, фетровые, войлочные или хлопчатобумажные с прокладкой из утолщенной пористой резины.

Для защиты организма в целом от воздействия общей вибрации применять виброгасящие ботинки с текстильным верхом и резиновой стелькой.

В области освещения производственных помещений рекомендуется устанавливать дополнительные светильники в производственном помещении цеха. В связи с тем, что газоразрядные лампы на предприятиях имеют такой недостаток, как мигание, что может привести к травматизму, рекомендуется подключать электропитание к разным фазам.

Оценка уровня шума, создаваемого одним или несколькими источниками (прядильными машинами, ткацкими станками и др.) на рабочих местах и в цехе проводится по приведенным ниже формулам.

Если источник шума и расчетные точки находятся на территории предприятия, то октавные уровни звукового давления в этих точках следует определять по формуле:

Lk = Lpk - 15 lg rk + 10 lg Фk - 10 Ig Щ - вб rk / 1000

где Lpk - октавный уровень звуковой мощности, к-ого источника шума на территории;

rk - расстояние от к-ого источника шума до точки, расположенной в 2м от рассматриваемой ограждающей конструкции, м;

Фk - фактор направленности источника шума, принимаемый по п.2.3;

Щ - пространственный угол излучения;

вб - затухание звука в атмосфере, дБ/км;

При наличии нескольких источников шума уровень шума от всех источников, расположенных на территории предприятия, или от преград, за которыми находятся источники шума, в расчетной точке снаружи здания определяется по формуле:

Lнар = 10 lg ?

где Lнар - суммарный уровень звукового давления от всех источников шума в 2 м от рассматриваемой ограждающей конструкции;

n - количество источников шума на территории.

2.3 ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ

Научно-техническая революция принесла людям не только блага, она сопровождалась и теневыми явлениями, а именно: загрязнением атмосферы, морских акваторий, пресных водоемов, нарушением почвенного покрова и ландшафтов; истощением водных и лесных ресурсов; уменьшением численности животных. Экологический кризис осложняется экспоненциальным ростом народонаселения планеты и его урбанизацией. Атмосфера загрязняется промышленными выбросами, содержащими оксиды серы, азота, углеводорода, частицы пыли. В водоемы и реки попадают нефть и отходы нефтепродуктов, вещества органического и минерального происхождения, а в почвенный покров-шлаки, зола, промышленные отходы, кислота, соединения тяжелых металлов и др. Множество разработанных технологических процессов привело к росту числа токсичных веществ, поступающих в окружающую среду.

Выбросы промышленных предприятий (схема 1), энергетических систем и транспорта в атмосферу, водоемы и недра достигали таких размеров (схема 2), что в ряде районов земного шара уровни загрязнений значительно превышают допустимые санитарные нормы. Это приводит, особенно среди городского населения, к увеличению количества людей, заболевающих хроническим бронхитом, астмой, аллергией, ишемией, раком. Неблагоприятное влияние на жизнедеятельность человека оказывают шум, вибрации, инфразвук, а также воздействие электромагнитных полей и различных излучений (ультрафиолетовых, инфракрасных, световых, ионизирующих). Среда обитания человека, окружающая среда - характеризуется совокупностью физических, химических и биологических факторов, способных при определенных условиях оказывать прямое или косвенное, немедленное или отдаленное воздействие на деятельность и здоровье человека.

Вопросами развития окружающей среды занимается экология- наука о взаимоотношении живых организмов и среды их обитания.

Рациональное решение экологических проблем возможно лишь при оптимальном воздействии природы и общества, обеспечивающим, с одной стороны, дальнейшее развитие общества, с другой - сохранение и поддержание восстановительных сил в природе, что достижимо лишь при проведении широкого комплекса практических мероприятий и научных исследований по охране окружающей среды.

Современная текстильная промышленность делится на отрасли: шерстяную, хлопчатобумажную, льняную, шелковую. Каждая отрасль включает в себя следующие производства: первичная обработка сырья, прядильное производство, ткацкое производство, трикотажное производство, производство нетканных материалов, красильно-отделочное. В отраслях могут быть дополнительные виды производств: крутильно-ниточное, кордное, ватное, сетевязальное и т. д.

СОСТАВ ГАЗООБРАЗНЫХ ЗАГРЯЗНИТЕЛЕЙ.

В отделочных производствах при обработке ткани на опаливающих машинах выделяется продукт не полного сгорания природного газа СО. При кубовом и сернистом крашении выделяется сернистый газ SO2 и H2S. При производстве искусственного шелка выделяются пары сероуглерода. В процессе изготовления растворов диазокрасителей и их использовании в крашении выделяются окислы азота N2O и NO2.

В производстве анилиновых красителей и ситцепечатном производстве выделяются ядовитые пары анилина C6H5NH2 и синильной кислоты HCN.

Многие вредные вещества являются не только профессионально вредными, но одновременно могут быть и производственно-опасными, т. к. при определенной концентрации в воздухе они образуют сильные взрывчатые смеси, которые могут быть причиной аварии с человеческими жертвами.

К числу вредных и взрывоопасных веществ относится окись углерода, сероводород, анилин, бензол, сероуглерод и скипидар.

Большинство токсичных газов и паров, попадая с воздухом в органы дыхания, всасываются в кровь, поглощая гемоглобин, что приводит к кислородной недостаточности, удушью и головной боли.

Согласно ГОСТ 17.2.1.01-76 выбросы в атмосферу классифицируют:

1) по агрегатному состоянию вредных веществ в выбросах в виде: газообразном и парообразном (SO; СО; NO; углеводороды и др.); жидком (кислоты, щелочи, органические соединения, растворы солей и жидких металлов), твердом (свинец и его соединения, органическая и неорганическая пыль, сажа, смолистые вещества и др.);

2) по массовому выбросу - т/сут-, выделяют шесть групп: 1 - менее 0, 01 вкл.; 2 - св. 0,01 до 0,1 вкл.; 3 - св. 0,1 до 1,0 вкл.; 4 - св. 1,0 до 10 вкл.; 5 - св. 10 до 100 вкл.; 6 - св. 100.

Эффектом однонаправленного действия обладают вредные вещества: диоксиды серы и сероводорода; сильные минеральные кислоты (серная, соляная, азотная); этилен, пропилен, бутилен, амилен, озон, диоксид азота, формальдегид и др.

В зависимости от размера частиц (мкм) жидкие выбросы делятся на подгруппы: супертонкий туман - до 0,5 вкл; тонкодисперстныйтуман - св. 0,5 до 3; грубодисперстный туман -- св. 3 до 10 и брызги - св.10.

ХАРАКТЕРИСТИКА СТОЧНЫХ ВОД ПО СОСТАВУ ЗАГРЯЗНИТЕЛЯ.

На территории промышленных предприятий образуются сточные воды трех видов: бытовые, поверхностные и производственные.

Бытовые сточные воды предприятий образуются при эксплуатации на его территории душевых, туалетов, прачечных и столовых. Предприятие не отвечает за качество данных сточных вод и направляет их на городские (районные) станции очистки.

Поверхностные сточные воды образуются в результате смывания дождевой, талой и поливочной водой примесей, скапливающихся на территории, крышах и стенах производственных зданий. Основными примесями этих вод являются твердые частицы (песок, камень, стружки, опилки, пыль, сажа, остатки растений, деревьев); нефтепродукты (масла, бензин и керосин), используемые в двигателях транспортных средств, а также органические и минеральные удобрения, используемые в заводских скверах и цветниках. Каждое предприятие отвечает за загрязнение водоемов, поэтому необходимо знать объем сточных вод данного типа.

Производственные сточные воды образуются в результате использования воды в технологических процессах. Их количество, состав и концентрация примесей определяется типом предприятия, его мощностью, видами используемых технологических процессов.

Для обеспечения текстильных предприятий ежегодно забирается из естественных источников водоснабжения 100 млрд. куб.м. воды, при этом 90% этого количества возвращается обратно в водоемы с различной степенью загрязнения. Около 10% общего водопотребления промышленности приходится на текстильные предприятия, где воду используют на приготовление различных технологических растворов, промывку и очистку исходных материалов и продукции; хозяйственно- бытовое обслуживание.

К наиболее вредным органическим загрязнителям гидросферы, относят нефть и нефтепродукты. Наличие на поверхности водоемов пленок масла, жиров, смазочных материалов препятствует газообмену между водой и атмосферой, что снижает насыщенность воды кислородом. Загрязнение вод нефтью прежде всего оказывает отрицательное влияние на состояние фитопланктона и являются причиной массовой гибели птиц.

Основные неорганические (минеральные) загрязнители пресных и морских вод-соединение свинца, мышьяка, ртути, хрома, меди и др. В таблице приведены данные по антропогенному загрязнению мирового океана некоторыми из этих веществ.

Таблица 5

Вещество

Загрязнение т/год

сток с суши

Атмосферный перенос

Свинец

(1-20) х 10

(2-20) х 10

Ртуть

(5-8) х 10

(2-3) х10

Кадмий

(1-20) х 10

(5-40) х 10

Отходы, содержащие минеральные загрязнения, в основном, локализуются около берегов, лишь некоторая их часть выносится далеко за пределы территориальных вод. Особенно опасно загрязнение вод ртутью, поскольку заражение морских организмов может стать причиной отравления людей (болезнь Минамата).

В случаях, когда промышленные и бытовые отходы вывозятся на свалки, создаются реальные угрозы значительных загрязнений атмосферы, поверхностных и грунтовых вод, это ведет к загрязнению и не рациональному использованию земельных угодий, неизбежно, растут транспортные расходы и безвозвратно теряются ценные материалы и вещества.

Грунтовые воды в результате взаимодействия влаги и загрязнения почвы закисляются до pН среды 2,5 - 3,5 (при pН7- среда нейтральная). Осадки близлежащих водоемов загрязняются тяжелыми металлами на глубину 3 - 5 м.

РАЗРАБОТКА КОМПЛЕКСНЫХ МЕРОПРИЯТИЙ ПО СОЗДАНИЮ ЭКОЛОГИЧЕСКОЙ ОБСТАНОВКИ

В качестве средств защиты окружающей среды применяют: аппараты и системы для очистки газовых выбросов и сточных вод от примесей; виброизоляторы технологического оборудования; экраны для защиты от ЭПМ и др. В целях снижения выбросов вредных веществ в атмосферу на ткацкой фабрике следует применять две ступени очистки: первая - циклоны; вторая - рукавные фильтры.

Для очистки воды широко используются отстойники, гидроциклоны и флотация.

2.4 РАБОТА ПРЕДПРИЯТИЙ В ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯ Х.

2.4.1 ПРОФИЛАКТИКА ПОЖАРОВ МОЛНИЕЗАЩИТА

Пожарная профилактика - это комплекс организационных и технических мероприятий, направленных на обеспечение безопасности людей, а также создания условий для успешного тушения пожара (ГОСТ 12.1.033 - 81).

На текстильных предприятиях перерабатываются опасные в пожарном отношении материалы: природные волокна растительного (хлопковое, льняное, пенько - джутовое) происхождения и животного (шерсть, шелк) происхождения.

Большую пожарную опасность представляют очесы, отходы, пух, пыль и др. Поэтому текстильные предприятия относятся к пожароопасным.

Анализ причин возгорания и пожаров на текстильных предприятиях показывает, что основными причинами возгорания являются:

- неосторожное обращение с огнем, несоблюдение правил пожарной безопасности при элетро и газосварочных работах;

- нарушение технологического режима (обрыв и наматывание волокон и др.);

- накопление пуха и пыли на осветительной арматуре;

- электростатические разряды;

- атмосферное электричество.

Весьма высокая скорость распространения пламени при горении волокнистого сырья (2 - 5 м/сек), является основной причиной быстрого распространения пожаров на текстильных предприятиях.

Наибольшую опасность представляет пыль, находящаяся в воздухе, так как оно способна не только гореть, но и в ряде случаев врываться.

Текстильная пыль состоит из пуха, коротких волокон, обрывков, очесов; основным компонентом пыли являются мельчайшие волоконца, что делает пыль пожароопасной. Пыль способна воспламеняться от электрической искры, трения в подшипниках и других узлах машины, причем наибольшую опасность представляет осевшая пыль.

Еще одной причиной пожара может стать атмосферное электричество. По статистике на земном шаре за сутки происходит свыше 40 тысяч гроз, сопровождающихся мощными электрическими разрядами.

Ток молнии может оказывать тепловое, электромагнитное и механическое воздействие на те объекты, по которым он проходит. Помимо прямого удара в здание, сооружение проявления молнии могут быть в виде электростатической и электромагнитной индукции.

Электростатическая индукция приводит к образованию на изолированных от земли металлических предметах опасных электрических потенциалов, вследствие чего может возникнуть искрение между металлическими элементами конструкций и оборудования.

При грозе во время ударов молнии в различные промышленные объекты, возможен занос электрических потенциалов внутрь объектов по внешним металлическим коммуникациям (эстакадам, трубопроводам и др.).

Искрообразование внутри производственных помещений, обусловленное электростатической и электромагнитной индукцией, а также заносом высоких потенциалов по металлическим коммуникациям, представляет большую опасность для текстильных предприятий.

2.4.2 РАЗРАБОТКА КОМПЛЕКСНЫХ МЕРОПРИЯТИЙ МОЛНИЕЗАЩИТЫ И ПОЖАРНОЙ БЕЗОПАСНОСТИ

Противопожарную профилактику следует начинать при проектировании предприятия.

При разработке проектов большое значение имеет правильное установление категории пожарной опасности производства, правильный выбор материала для строительных конструкций, меры по предотвращению распространения огня: противопожарные разрывы между зданиями и сооружениями, наличие противопожарного водоснабжения, пожарной сигнализации и связи. Во всех зданиях и вспомогательных сооружениях на случай пожара при проектировании должна быть предусмотрена бесперебойная и безопасная эвакуация людей.

Предприятия должны иметь средства тушения пожара. Огнегасительные средства подразделяются на первичные и основные. К первичным относятся огнетушители, сыпучие материалы, брезентовые накидки и другие подручные средства, с помощью которых удается ликвидировать, как правило, лишь небольшие очаги возгораний.

Все текстильные предприятия должны иметь наружный противопожарный водопровод, который прокладывается по территории промышленной площадки, а также разветвленную по корпусам, цехам и объектам сеть внутреннего противопожарного водопровода. Источниками водоснабжения могут быть реки, озера, грунтовые и артезианские источники, а также городская водопроводная сеть.

Все помещения как производственные, так и бытовые, должны быть оборудованы не только огнетушителями, но и иметь термическую пожарную сигнализацию.

Для обнаружения очага возгорания и сигнализации о пожаре целесообразно использовать сигнализационную комплексную пожарную установку - СКПУ.

Также одной из не менее важных защит является молниезащита. Для приема электрического разряда молнии и отвода ее тока в землю применяют стержневые (мачтовые), троссовые (антенные) и сетчатые молниеотводы.

Заземлителями могут служить стальные трубы диаметром 40 - 60 мм и длиной 2 - 3,5 м, стальные полосы и др. Расстояние между заземлителями должно быть 3 - 6 м, а расстояние до стен здания 1,5 - 2 м. Общее сопротивление заземлителя должно быть не более 10 ом. Выбор способа молниезащиты зависит от конструкции и технологических особенностей объекта, его назначения, грозовой интенсивности в данной местности.

2.5 ВЫВОДЫ

В дипломном проекте рассмотрены санитарно-гигиенические и физиологические основы обеспечения жизнедеятельности на текстильных предприятиях; проведен анализ труда при эксплуатации технологического оборудования на производстве; выявлены потенциально-опасные производственные факторы: механическое, электрическое, термическое воздействия, выявлены потенциально-вредные производственные факторы; оценены производственный микроклимат, выделение пыли, шум и вибрация, химические и парогазовые выделения, дана оценка производственного освещения. Предложен комплекс мероприятий, который обеспечит безопасность труда, снижение уровня травматизма и профессиональных заболеваний. В разделе охрана окружающей среды дана характеристика состава загрязнителя вентиляционных выбросов на производстве, рассмотрены состав газообразных, жидких и твердых загрязнителей. Дана характеристика сточных вод по составу загрязнителя, а также растворимых в воде загрязнителей. Проведена оценка активности сточных вод по PН показателю. Разработаны комплексные мероприятия по созданию благоприятной экологической обстановки. В разделе работа предприятий в чрезвычайных ситуациях рассмотрены защита от пожарной опасности, молниезащита, а также разработан комплекс мероприятий по улучшению молниезащиты и защиты от пожарной опасности.

Указанные мероприятия в области охраны труда и охраны окружающей среды позволяют создать комфортные условия работы, улучшить экологическую обстановку, снизить загрязнение окружающей среды и уверенно работать в чрезвычайных ситуациях.

3. РАСЧЕТ ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ МОДЕРНИЗИРОВАННОГО ТКАЦКОГО СТАНКА СТБ2-250

На ткацком станке СТБ2-250 вырабатывается суконная ткань с шириной проборки основы по берду Шб = 250 см, плотность ткани по утку Пу = 170 нит. на 10 см, частота вращения главного вала станка - 180 мин-1, уточная паковка бобина, масса пряжи в бобине - 1880 г, полезная длина нити в бобине Lб = 14563 м, длина ткани в куске Lт = 32 м, способ обслуживания станков ткачом - маршрутносторожевой, коэффициент, учитывающий загруженность ткача, Кзр = 0,75 (12).

Расчет экономической эффективности выполним для базового станка СТБ2-250 и модернизированного станка СТБ2-250, на котором устанавливается модернизированная приемная коробка, конструкция которой, разработана в настоящем дипломном проекте. Цена станка СТБ2-250 по прейскуранту завода-изготовителя (АО "Текстильмаш") составляет 2.820 тыс. руб., стоимость заменяемых при модернизации деталей 19600 руб., а стоимость устанавливаемых деталей 24600 руб. Отсюда цена Цм модернизированного станка СТБ2-250:

Цм = 2820000 - 19600 + 24600 = 2825 тыс. руб.

3.1 ОПРЕДЕЛЕНИЕ НОРМЫ ОБСЛУЖИВАНИЯ ТКАЧЕЙ

Определение А производительности оборудования и потребности в нем для производства ткани в объеме 1000 пог.м/час. Теоретическая А производительность станка м/час:

А = 6 Ч n/Пу

где n - частота вращения главного вала, мин-1;

nб = 180 мин-1, для немодернизированного станка;

nм = 215 мин-1, для модернизированного станка, индекс «м» соответствует модернизированному станку.

Пу - плотность по утку, нит/10 см (Пу = 170 нит/10 см).

Отсюда: Аб = 6 Ч 180/170 = 6,35 м/час

Ам = 6Ч 215/170 = 7,6 м/час

Машинное tм время наработки 1 метра ткани (мин), tм = 60/А

= 60/6,35 = 9,44 мин = 567,7 сек.

= 60/7,6 = 7,9мин = 474,4 сек.

Определение зоны обслуживания и затрат времени на обслуживание станка.

Максимальное n'мах число обслуживаемых ткачом станков при Кс=1 и Кд=1 находится:

n'мах = tм + tвн / tзр х Кзр

где tм -- машинное время наработки 1 метра ткани, сек;

tвн - время перерывов в работе станка при выработке 1 м ткани, сек;

tзр- общее время занятости ткача при выработке 1м ткани, сек;

Кзр - коэффициент загруженности ткача (Кзр = 0,75);

Найдем число Чб смен бобин, приходящихся на 1м вырабатываемой ткани:

Чб = 0,1 Шб х Пу/Lб,

при Шб = 250 см, Пу = 170 нит/10 см, Lб = 14563 м имеем,


Подобные документы

  • Рациональная схема механизма коробки скоростей фрезерного станка. Конструкция узлов привода главного движения. Расчет крутящих моментов и мощности, выбор электродвигателя. Обеспечение технологичности изготовления деталей и сборки проектируемых узлов.

    курсовая работа [594,0 K], добавлен 14.10.2012

  • Структурный анализ рычажного механизма. Кинематическое исследование рычажного механизма графо-аналитическим методом. Определение скоростей и ускорений шарнирных точек, центров тяжести звеньев и угловых скоростей звеньев. Силовой расчёт устройства.

    курсовая работа [800,0 K], добавлен 08.06.2011

  • Расчёт конструкции коробки скоростей вертикально-сверлильного станка 2Н125. Назначение, область применения станка. Кинематический расчет привода станка. Технико-экономический анализ основных показателей спроектированного станка и его действующего аналога.

    курсовая работа [3,7 M], добавлен 14.06.2011

  • Постановка задач проекта. Синтез кинематической схемы механизма. Синтез рычажного механизма. Синтез кулачкового механизма. Синтез зубчатого механизма. Кинематический анализ механизма. Динамический анализ механизма. Оптимизация параметров механизма.

    курсовая работа [142,8 K], добавлен 01.09.2010

  • Кинематическое изучение механизма станка. Создание плана положений, скоростей и ускорений звеньев механизма при разных положениях кривошипа. Определение количества и вида звеньев и кинематических пар. Структурная классификация механизма по Ассуру.

    курсовая работа [135,5 K], добавлен 01.02.2015

  • Определение технических характеристик станка 1Г340ПЦ. Кинематический расчёт привода подач и элементов коробки передач. Обоснование и выбор конструкции тягового механизма, определение скорости движения рейки. Назначение системы смазки привода устройства.

    курсовая работа [812,1 K], добавлен 14.10.2013

  • Выбор режимов резания на токарных станках. Эффективная мощность привода станка. Выбор типа и кинематической схемы механизма главного движения. Расчет коробки скоростей, основных конструктивных параметров деталей привода. Определение чисел зубьев шестерен.

    курсовая работа [874,8 K], добавлен 20.02.2013

  • Синтез кулачкового механизма и построение его профиля. Кинематический синтез рычажного механизма и его силовой расчет методом планов сил, определение уравновешивающего момента. Динамический анализ и синтез машинного агрегата. Синтез зубчатых механизмов.

    курсовая работа [744,1 K], добавлен 15.06.2014

  • Синтез кривошипно-коромыслового механизма привода штосселя с долбяком. Кинематический расчёт кривошипно-коромыслового механизма. Силовой анализ механизма методом кинетостатики. Динамический анализ механизма привода, расчёт маховика и профиля кулачка.

    курсовая работа [308,6 K], добавлен 02.05.2012

  • Структурное и кинематическое исследование механизма: описание схемы; построение планов скоростей. Определение реакций в кинематических парах; силовой расчет ведущего звена методом Н.Е. Жуковского. Синтез зубчатого зацепления и кулачкового механизма.

    курсовая работа [221,8 K], добавлен 09.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.