Разработка АСУ процессом производства конической шестерни среднего и заднего моста 6520-2402017

Строение автоматических линий машиностроения по агрегатно-модульному принципу из комплектов унифицированных узлов. Специфические требования, возникающие при эксплуатации унифицированных узлов подачи. Определение типа производства, выбор оборудования.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 14.06.2011
Размер файла 3,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

270

Частота вращения инструментального шпинделя, об/мин

20-250

Угловая скорость подачи обкаткой, град/с

0,3-9,0

Суммарная мощность установленных электродвигателей, кВТ

21

Габаритные размеры станка с отдельно расположенными станцией гидропривода и электрошкафом, мм

3100х3095х2090

Масса станка, кг

8700

Шлицешлифовальный ОШ-628Ф3 предназначен для шлифования шлицевых пазов прямого или эвольвентного профилей. Технические характеристики шлицешлифовального станка ОШ-628Ф3 приведены в таблице 8.

Таблица 8

Наименования

Значения

Наибольшие размеры устанавливаемой заготовки:

длина х диаметр, мм

1600х200

Предельные размеры обрабатываемых поверхностей:

1500х200х50

Возможное число обрабатываемых шлицев, шт

1.999

Размеры рабочей поверхности зеркала стола - длина х ширина, мм

2100х350

Расстояние от зеркала стола до оси центров, мм

180

Мощность главного привода, кВт

6

Частота вращения шлифовального шпинделя, об/мин

12000

Наибольшее расстояние от зеркала стола до оси шпинделя, мм

600

Дискретность перемещения шлифовальной головки и суппорта, мкм

0,5

Дискретность поворота шпинделя передней бабки, град

0,001

Габаритные размеры полуавтомата

4200х2770х2460

Масса станка с приставным оборудованием, кг

10000

Зубошлифовальный станок, работающий профильным кругом, с ЧПУ 5А868Ф предназначены для шлифования колес наружного и внутреннего зацепления с возможностью измерения прошлифованного зубчатого колеса непосредственно на станке.

Зубошлифовальный полуавтомат 5А868Ф для обработки прямозубых цилиндрических колес, работающий профильным кругом, предназначен для шлифования зубчатых колес наружного зацепления диаметром до 800 мм и модулем до 12 мм.

Полуавтомат работает как с автоматическим, так и с ручным циклом и может быть использован в крупносерийном производстве транспортного и тяжелого машиностроения.

Ввод в УЧПУ данных по изделию и режимам (непосредственно из чертежа или технической карты), а также подналадка по результатам шлифования осуществляется в диалоговом режиме, исключающим необходимость владения знаниями по программировании УЧПУ. Технические характеристики зубошлифовального станка 5А868Ф приведены в таблице 9.

Таблица 9

Наименования

Значения

Предельные размеры устанавливаемого изделия:

диаметр, мм

длина, мм

150.950

120.700

Наибольшая масса изделия, кг

400

Предельные размеры обрабатываемого изделия:

Наибольший наружный диаметр, мм

Наименьший диаметр окружности впадин, мм

900

150

Модуль

1,5…12

Число зубьев, шт

1…999

Наибольшая длина прямозубоговенца, мм

200

Наибольший диаметр шлифовального круга, мм

400

Система управления, шт

Синумерик 840D

Правка

2

Деление

1

Подача на врезание

1

Ход стола

1

Дискретность задания перемещений, мкм

0,1

Мощность RU; привода шлифовального круга, кВт

15

Суммарная мощность установленных на станке электродвигателей, кВт

40,0

Габаритные размеры станка:

5100х 3200х 2200

Масса станка, кг

13000

Круглошлифовальный станок ЗМ151Ф2 предназначен для наружного шлифования гладких и прерывистых цилиндрических поверхностей валов с несколькими ступенями. Обработка ступеней ведется последовательно одним кругом. Станок используется в условиях серийного и крупно-серийного производства. Технические характеристики круглошлифовального станка ЗМ151Ф2 приведены в таблице 10.

Таблица 10

Наибольшие размеры устанавливаемого изделия, мм:

диаметр

длина

200

700

Диаметр шлифования, мм:

с прибором активного контроля

по датчику

20-85

20-180

Высота центров над столом, мм

125

Наибольшее продольное перемещение, мм

700

Скорость гидравлического перемещения стола, м/мин

0,05ч5

Частота вращения изделия, об/мин

50-500

Наибольшее поперечное перемещение шлифовальной бабки, мм

235

Частота вращения шпинделя шлифовального круга, мм

1590

Скорость поперечной подачи шлифовального круга, мм/мин

1,2-0,02

Питающая электросеть:

род тока

частота, Гц

напряжение

переменный трехфазный

50

380

Габарит станка с приставным оборудованием, мм

5400х2400х2170

Масса станка, кг

6500

3. Расчетная часть

3.1 Расчет усилий захватного устройства

Усилия, возникающие в местах контакта объекта с рабочими элементами, зависят от способа закрепления объекта в захватном устройстве и направления действия вектора равнодействующей силы, приложенной к объекту.

Считаем, что центр масс объекта совпадает с центром схвата или имеет небольшое смещение. При движении исполнительного устройства с ускорением объект также будет двигаться ускоренно. Вектор равнодействующей силы Q от силы веса объекта и максимальной инерционной силы равен по формуле:

, (8)

где

m=20 кг.

Q=20* (9,8+1,5) =226 Н

Усилия в местах контакта объекта с рабочими элементами показаны на рисунках 1 и 2.

Рисунок 1

(9)

Рисунок 2

(10)

Найденная сила является минимально необходимой, которая требуется для удержания объекта. Для надежного закрепления объекта в рабочих элементах необходимо приложить усилие захватывания больше минимального.

4. Разработка системы управления

Спроектировать систему управления для автоматизированного комплекса, предназначенного для процесса обработки деталей конической шестерни ведущего среднего (5320-2502017) и заднего моста (6520-2402017-10), согласно требованиям пользователя и используя при разработке метод нисходящего проектирования.

Управление РТУ должно производится в автоматическом режиме.

Проектируемая система должна:

Управлять станками.

Станки с ЧПУ должны автоматически начинать свою работу при наличии в заготовки/детали в зоне загрузки. Рука ПР при этом должна находиться вне рабочей зоны станков.

Управлять ПР.

ПР должен осуществлять функции передвижения руки в зоне загрузки, над склизом, над станком 1, над станком 2, над станком 3, над станком 4, над станком 5, над станком 6, над станком7; подъема руки; опускания; зажима/разжима заготовки (детали); вращения ЗУ в положение 0 и 90.

4.1 Разработка функциональной модели СУ

Функциональная модель объединяет одинаковые функции системы в модули. Функциональная модель СУ представлена на рисунке 3. Глобально система состоит из трёх модулей:

Ввод;

Обработка;

Вывод

Производя детализацию, получим следующий набор модулей:

Модуль преобразования входного напряжения. На вход его поступают сигналы с датчиков с различными электрическими уровнями. Здесь они преобразуются в унифицированные значения тока и напряжения необходимые для подачи на вход следующего модуля. Этот модуль реализуется аппаратно;

Модуль гальванической развязки сигналов. Является аппаратным модулем. Функциональная модель представлена на рисунке 3.

Рисунок 3

4.2 Разработка структурной схемы

Структурная схема СУ представлена на рисунке 4. Структурная схема состоит из блока контроллера и из трех больших блоков, а каждый блок состоит из нескольких подблоков. Первый блок состоит из подблока Робота 1, подблока станками с ЧПУ и подблока устройства загрузочно-ориентирующего. Подблок робота 1 имеет датчики положения, наличия и зажима и управляющих сигналов движением пневмоцилиндров и электродвигателя. Датчики положения, наличия и зажима отправляют сигнал на контроллер. Контроллер обрабатывает сигналы с датчиков и посылает сигнал на управлением движением пневмоцилиндров и электродвигателя. Подблок станков с ЧПУ состоит из датчиков зажима и окончания цикла обработки и запуска цикла обработки. Датчики посылают сигнал на контроллер. После обработки сигнала с датчиков, контроллер посылает сигнал на запуск цикла обработки. Подблок загрузочно-ориентирующего устройства состоит из датчиков наличия детали и управляющих сигналов. При срабатывании датчика наличия детали, сигнал идет на контроллер а после обработки с контролера, посылается сигнал управления устройства ориентации. Блок скат-склиз имеет аналогичный датчик как и в предыдущем подблоке, датчик наличия отправляет сигнал на контроллер.

Рисунок 4

Определение сигналов с датчиков и сигналов управления.

В состав автоматической линии по обработке детали "Конической шестерни среднего и заднего моста" входят следующие виды технологического оборудования:

- Семь станков с ЧПУ;

- Два загрузочно-ориентирующих устройства;

- Три промышленных робота;

- Разрабатываемая система управления должна:

- Обеспечить согласованную работу оборудования на участке в соответствии с представленной на чертеже циклограммой.

- Управлять включением/выключением программы обработки на станках.

- Управлять приводами промышленного робота.

- Получение сигнала наличие заготовки в загрузочно-ориентирующих устройствах и склизе.

4.3 Разработка циклограммы

Циклограмму работы АЛ и назначения датчиков представлена на листе на листе ДП 0.220301.65.17.10.45.00.00 ДЦ.

Для управления ходом технологического процесса необходимо на соответствующем оборудовании расставить датчики. Количество и тип датчиков определяется исходя из определённых соображений.

Количество датчиков должно быть достаточным, но не избыточным. При увеличении количества датчиков увеличивается стоимость системы в следствии необходимости установки дополнительных средств сопряжения.

Тип датчика зависит от того на какие действия он должен срабатывать (перемещение, вращение, угол поворота, наличие объекта в рабочей зоне, изменение различных физических параметров окружающей среды, таких как температура, освещённость, давление и проч.).

Наличие заготовки в вибробункерах 1 и 2, X1, X70 и у гравитационного транспорта X22, заготовки определяются при помощи оптических датчиков которые реагируют на прерывание сигнала.

Зажим/разжим заготовки в роботах манипуляторах также контролируется парой бесконтактных путевых выключателей X13, X35, X58, X14, X36, X59. Они располагаются в крайних положениях штока гидроцилиндра. То при контроле подъёма (X11, X33, X56) и опускания (X12, X34, X57). Тип датчика тот же.

Зажим-разжим заготовки на станках контролируется при помощи таких же датчиков (X16, X17, X19, X20, X38, X39, X41, X42, X44, X45, X61, X62, X64, X65, X67, X68).

X1, X70, X22 - путевые бесконтактные выключатели. Каждый из них "считывает", есть ли в наличие заготовка. Если есть, то он даёт сигнал лог.1, иначе - лог.0. Таким образом, система анализируя полученный от датчиков код, сопоставляет его с заданным и определяет "пришла" ли заготовка в зону загрузки.

В первую очередь в загрузочно-ориентирующем устройстве проверяется на наличие заготовки (X1, X71). Если заготовка в зоне загрузки, то включается, то включается э/д, поворачивающий робота в нужную позицию (X1, X2, X3, X4, X23, X24, X25, X26, X48, X49, X50, X51). Перед поворотом опрашиваются датчики о втянутом положении толкателя ЗУ (X7, X28, X53).

После поворота робота на соответствующую позицию у ЗУ проверяется на завершения цикла обработки заготовки на станке. Если цикл обработки заготовки кончился то ЗУ выдвигает толкатель (X6, X28, X52). Если шпиндель станка зажат (X16, X19, X38, X41, X44, X61, X64, X67) Робот разжимает ЗУ и втягивает толкатель. Если робот втянул толкатель то начинается цикл обработки заготовки.

Все выбранные датчики ВКБ-200 имеют постоянное напряжение питания 24В. Датчик преобразует входной сигнал в электрический сигнал двух уровней. "Нулевой" сигнал - когда нет детали. Выходное напряжение с датчика около нуля вольт. "Единичный" - когда есть деталь. Выходное напряжение с датчика около 16-24 вольт.

Были выбраны бесконтактные путевые выключатели, так как обеспечивают определённую точность и надёжность срабатывания. Кроме того, эти датчики лишены недостатка окисления контактов и имеют больший рабочий ресурс по сравнению с концевиками.

Эти датчики обладают хорошей помехозащищённостью. Скорость изменения сигнала с высокого уровня на низкий достаточная, чтобы обеспечить необходимое быстродействие системы. К тому же использовать унифицированное оборудование эффективнее в эксплуатации, чем разнотипное.

4.3.1 Математическая модель

Математическая модель системы состоит из системы логических уравнений, описывающих поведение различных исполнительных устройств в зависимости от значений сигналов поступающих с датчиков.

Математическая модель составляется по циклограмме работы системы.

Здесь приняты следующие обозначения:

- входные сигналы, поступающие с датчиков;

- управляющие сигналы для исполнительных устройств;

Входные сигналы:

1. На промышленном роботе 1 устанавливаются следующие датчики:

Сигнал о зажиме/разжиме захватного устройства (ЗУ) манипулятора поступает с датчиков:

Х2 - сигнализирует о том что робот 1 находиться в позиции 1;

Х3 - сигнализирует о том что робот 1 находиться в позиции 2;

Х4 - сигнализирует о том что робот 1 находиться в позиции 3;

Х5 - сигнализирует о том что робот 1 находиться в позиции 4;

Х6 - датчик, сигнализирующий о подводе ЗУ;

Х7 - датчик, сигнализирующий об отводе ЗУ;

Х8 - датчик, сигнализирующий о повороте ЗУ на 0;

Х9 - датчик, сигнализирующий о повороте ЗУ на 90;

Х10 - датчик, сигнализирующий о повороте ЗУ на - 90;

Х11 - датчик, сигнализирующий, что рука робота 1 опущена;

Х12 - датчик, сигнализирующий, что рука робота 1 поднята;

Х13 - сигнализирует о зажиме ЗУ;

Х14 - сигнализирует о разжиме ЗУ.

2. На промышленном роботе 2 устанавливаются следующие датчики:

Х23 - сигнализирует о том что робот 2 находиться в позиции 5;

Х24 - сигнализирует о том что робот 2 находиться в позиции 6;

Х25 - сигнализирует о том что робот 2 находиться в позиции 7;

Х26 - сигнализирует о том что робот 2 находиться в позиции 8;

Х27 - сигнализирует о том что робот 2 находиться в позиции 9;

Х28 - датчик, сигнализирующий о подводе ЗУ;

Х29 - датчик, сигнализирующий об отводе ЗУ;

Х30 - датчик, сигнализирующий о повороте ЗУ на 0;

Х31 - датчик, сигнализирующий о повороте ЗУ на 90;

Х33 - датчик, сигнализирующий, что рука робота 2 поднята;

Х34 - датчик, сигнализирующий, что рука робота 2 опущена;

Х35 - сигнализирует о зажиме ЗУ;

Х36 - сигнализирует о разжиме ЗУ.

2. На промышленном роботе 3 устанавливаются следующие датчики:

Х47 - сигнализирует о том что робот 3 находиться в позиции 10;

Х48 - сигнализирует о том что робот 3 находиться в позиции 11;

Х49 - сигнализирует о том что робот 3 находиться в позиции 12;

Х50 - сигнализирует о том что робот 3 находиться в позиции 13;

Х51 - сигнализирует о том что робот 3 находиться в позиции 14;

Х52 - датчик, сигнализирующий о подводе ЗУ;

Х53 - датчик, сигнализирующий об отводе ЗУ;

Х54 - датчик, сигнализирующий о повороте ЗУ на 0;

Х55 - датчик, сигнализирующий о повороте ЗУ на 90;

Х56 - датчик, сигнализирующий, что рука робота 3 поднята;

Х57 - датчик, сигнализирующий, что рука робота 3 опущена;

Х58 - сигнализирует о зажиме ЗУ;

Х59 - сигнализирует о разжиме ЗУ.

4. На станках с ЧПУ устанавливаются следующие датчики:

Х16 - сигнализирует о зажиме заготовки станком FANUC XD-40;

Х17 - сигнализирует о разжиме заготовки станком FANUC XD-40;

Х18 - сигнализирует об окончании цикла обработки станком FANUC XD-40;

Х19 - сигнализирует о зажиме заготовки станком 16К20РФ3;

Х20 - сигнализирует о разжиме заготовки станком 16К20РФ3;

Х21 - сигнализирует об окончании цикла обработки станком 16К20РФ3;

Х38 - сигнализирует о зажиме заготовки станком 5Б352ПФ2;

Х39 - сигнализирует о разжиме заготовки станком 5Б352ПФ2;

Х40 - сигнализирует об окончании цикла обработки станком 5Б352ПФ2;

Х41 - сигнализирует о зажиме заготовки станком 5А270ВФ3;

Х42 - сигнализирует о разжиме заготовки станком 5А270ВФ3;

Х43 - сигнализирует об окончании цикла обработки станком 5А270ВФ3;

Х44 - сигнализирует о зажиме заготовки станком 5А270ВФ3;

Х45 - сигнализирует о разжиме заготовки станком 5А270ВФ3;

Х46 - сигнализирует об окончании цикла обработки станком 5А270ВФ3;

Х61 - сигнализирует о зажиме заготовки станком ОШ-628Ф3;

Х62 - сигнализирует о разжиме заготовки станком ОШ-628Ф3;

Х63 - сигнализирует об окончании цикла обработки станком ОШ-628Ф3;

Х64 - сигнализирует о зажиме заготовки станком 5А868Ф;

Х65 - сигнализирует о разжиме заготовки станком 5А868Ф;

Х66 - сигнализирует об окончании цикла обработки станком 5А868Ф;

Х67 - сигнализирует о зажиме заготовки станком 3М151Ф2;

Х68 - сигнализирует о разжиме заготовки станком 3М151Ф2;

Х69 - сигнализирует об окончании цикла обработки станком 3М151Ф2.

5. На загрузочно-ориентирующем устройстве и склизе устанавливаются следующие датчики:

Х1 - сигнализирует о наличии заготовки в загрузочно-ориентирующем устройстве1;

Х70 - сигнализирует о наличии заготовки в загрузочно-ориентирующем устройстве2;

Х22 - сигнализирует о наличии заготовки в склизе;

Х71 - включение загрузочно-ориентирующего устройства 1;

Х72 - включение загрузочно-ориентирующего устройства 2.

Значения входных сигналов ПР1 приведены в таблице 10.

Таблица 11

Сигнал

Характеристика

Промышленный робот 1

Х2

сигнал о том что робот 1 находиться в позиции 1

Х3

сигнал о том что робот 1 находиться в позиции 2

Х4

сигнал о том что робот 1 находиться в позиции 3

Х5

сигнал о том что робот 1 находиться в позиции 4

Х6

сигнал о подводе ЗУ

Х7

сигнал об отводе ЗУ

Х8

сигнал о повороте ЗУ на 0

Х9

сигнал о повороте ЗУ на 90

Х10

сигнал о повороте ЗУ на - 90

Х11

сигнал что рука робота 1 опущена

Х12

сигнал что рука робота 1 поднята

Х13

сигнал о зажиме ЗУ

Х14

сигнал о разжиме ЗУ

Значения входных сигналов ПР2 приведены в таблице 12

Таблица 12

Сигнал

Характеристика

Промышленный робот 2

Х23

сигнал о том что робот 2 находиться в позиции 5

Х24

сигнал о том что робот 2 находиться в позиции 6

Х25

сигнал о том что робот 2 находиться в позиции 7

Х26

сигнал о том что робот 2 находиться в позиции 8

Х27

сигнал о том что робот 2 находиться в позиции 9

Х28

сигнал о подводе ЗУ

Х29

сигнал об отводе ЗУ

Х30

сигнал о повороте ЗУ на 0

Х31

сигнал о повороте ЗУ на 90

Х33

сигнал что рука робота 2 опущена

Х34

сигнал что рука робота 2 поднята

Х35

сигнал о зажиме ЗУ

Х36

сигнал о разжиме ЗУ

Значения входных сигналов ПР3 приведены в таблице 13

Таблица 13

Сигнал

Характеристика

Промышленный робот 3

Х47

сигнал о том что робот 3 находиться в позиции 10

Х48

сигнал о том что робот 3 находиться в позиции 11

Х49

сигнал о том что робот 3 находиться в позиции 12

Х50

сигнал о том что робот 3 находиться в позиции 13

Х51

сигнал о том что робот 3 находиться в позиции 14

Продолжение таблицы 13

Продолжение таблицы 12

Х52

сигнал о подводе ЗУ

Х53

сигнал об отводе ЗУ

Х54

сигнал о повороте ЗУ на 0

Х55

сигнал о повороте ЗУ на 90

Х56

сигнал что рука робота 1 опущена;

Х57

сигнал что рука робота 1 поднята;

Х58

сигнал о зажиме ЗУ

Х59

сигнал о разжиме ЗУ

Значения входных сигналов станков приведены в таблице 14

Таблица14

Сигнал

Характеристика

Станки

Х16

сигнал о зажиме заготовки станком FANUC XD-40;

Х17

сигнал о разжиме заготовки станком FANUC XD-40;

Х18

сигнал об окончании цикла обработки станком FANUC XD-40;

Х19

сигнал о зажиме заготовки станком 16К20РФ3;

Х20

сигнал о разжиме заготовки станком 16К20РФ3;

Х21

сигнал об окончании цикла обработки станком 16К20РФ3;

Х38

сигнал о зажиме заготовки станком 5Б352ПФ2;

Х39

сигнал о разжиме заготовки станком 5Б352ПФ2;

Х40

сигнал об окончании цикла обработки станком 5Б352ПФ2;

Х41

сигнал о зажиме заготовки станком 5А270ВФ3;

Х42

сигнал о разжиме заготовки станком 5А270ВФ3;

Х43

сигнал об окончании цикла обработки станком 5А270ВФ3;

Х44

сигнал о зажиме заготовки станком 5А270ВФ3;

Х45

сигнал о разжиме заготовки станком 5А270ВФ3;

Х46

сигнал об окончании цикла обработки станком 5А270ВФ3;

Х61

сигнал о зажиме заготовки станком ОШ-628Ф3;

Х62

сигнал о разжиме заготовки станком ОШ-628Ф3;

Х63

сигнал об окончании цикла обработки станком ОШ-628Ф3;

Х64

сигнал о зажиме заготовки станком 5А868Ф;

Х65

сигнал о разжиме заготовки станком 5А868Ф;

Х66

сигнал об окончании цикла обработки станком 5А868Ф;

Х67

сигнал о зажиме заготовки станком 3М151Ф2;

Х68

сигнал о разжиме заготовки станком 3М151Ф2;

Х69

сигнал об окончании цикла обработки станком 3М151Ф2.

Значения входных сигналов станков приведены в таблице 15

Таблица 15

Сигнал

Характеристика

Загрузочно-ориентирующее устройство 1

Х1

сигнал о наличии заготовки в вибробункере 1

X71

включение вибробункер1

Загрузочно-ориентирующее устройство 2

Х70

сигнал о наличии заготовки в вибробункере 1

Продолжение таблицы 15

Сигнал

Характеристика

X72

включение вибробункер1

Склиз

зажат

Х22

сигнал о наличии заготовки в склизе

Выходные сигналы:

4.3.2 Функциональная спецификация

Функциональная спецификация определяет функции, которые должна выполнять контроллер для удовлетворения требований пользователей и обеспечения связи с объектом управления и конечным пользователем. Функциональная спецификация состоит из двух основных компонентов:

Список функций, выполняемых контроллером.

Описание взаимосвязи между контроллером и объектом управления.

Описание взаимосвязи необходимо для проектирования устройства связи с объектом (УСО). Представляемая информация должна содержать электрические и иные характеристики выходных сигналов с датчиков и входных сигналов устройств управления (УУ).

Описание форматов и характеристик входных сигналов

Для управления ходом технологического процесса необходимо на соответствующем оборудовании расставить датчики. Количество и тип датчиков определяется исходя из следующих условий:

количество датчиков должно быть достаточным, но не избыточным. При увеличении количества датчиков увеличивается стоимость системы вследствие необходимости установки дополнительных средств сопряжения (реле, усилители, оптроны и т.д.);

тип датчика зависит от того, на какие действия он должен срабатывать (перемещение, вращение, угол поворота, наличие объекта в рабочей зоне, изменение различных физических параметров окружающей среды, таких как температура, освещённость, давление и проч.).

Сигналы, информирующие о состоянии станков, сведены в таблицу.

Параметры сигналов следующие:

сигналы, поступающие с УЧПУ станка о состоянии станка (U=24В; I=0,6А);

сигналы, поступающие с датчиков, расположенных на роботе: напряжение питания (постоянное) 24 В, ток нагрузки 20мА.

Описание форматов и характеристик выходных сигналов

Зажим/разжим заготовки в ЗУ, перемещение руки по порталу, подъем/опускание, подвод/отвод руки ПР, поворот ЗУ робота происходит при помощи пневмоцилиндров.

Перемещение робота манипулятора с позиции на позицию осуществляется с помощью двигателя постоянного тока.

Сигналы и соответствующие им действия:

Т.е. выходные сигналы следующие:

сигналы на пневмоцилиндры (U=24B; I=0,6A);

сигналы, поступающие на станок, предназначенные для управления работой механизмов станка (U=24B; I=0,6A).

сигналы поступающие на устройство ориентации поступает на реле нагрузки а далее на электромагнит (U=24B; I=0,6A).

Перечень функций контроллера

Ввод данных

Информация, поступающая от объекта управления, содержит в себе сигналы от датчиков расположенных на станках, устройстве ориентации, склизе и роботе. С помощью этих данных появляется возможность прослеживать состояние РТУ в любой момент времени.

Функция ввода реализуется аппаратно-программным путем.

Инициализация:

подготовка портов к записи

установка адреса для записи входных и выходных данных

Чтение данных из порта

обработка входных данных:

При этом осуществляются следующие подфункции:

Формирование уровней ТТЛ (обеспечение номинального тока; ограничение напряжения)

Гальваническая развязка входных сигналов

Мультиплексирование входных сигналов

формирование адреса мультиплексирования

определение адреса датчика (запись в порт)

формирование сигнала чтения значений Х из порта МП

формирование сигнала записи данных в РПД МП

Последовательный порт

Ввод с последовательного порта

декодирование входных сигналов

формирование адреса ячейки РПД

Вывод с последовательного порта

Реализуется аппаратно-программно.

Формирование управляющего слова.

Эта функция реализуется программным путем. Формирование управляющего слова производится на основании вычислений проведенных по составленным уравнениям (математической модели), которые в явном виде описывают функционирование СУ во всех возможных ситуациях.

1) Расчёт математической модели (вычисление управляющего слова и передача сформированного управляющего воздействия в ячейки оперативной памяти)

2) Подсчёт времени (формирование таймером запроса к исполнительным механизмам и датчикам через промежуток времени определённый временем технологической операции)

Формирование сигнала "ОСТАНОВ" (от кнопки)

запрет прерываний

циклический вывод управляющих воздействий

Формирование сигнала - запрет прерывания (в автоматическом режиме)

проверка слова состояния текущего процесса

запись слова состояния такта аварийной ситуации

запрет прерывания

циклический вывод управляющих воздействий

Вывод данных.

Запись в регистр

Выбор регистра

Формирование адреса регистра (запись в порт)

Формирование сигнала чтения (получение адреса регистра)

Формирование сигнала записи

Усиление мощности

Преобразование уровня

Гальваническая развязка выходных сигналов

Вывод на исполнительные механизмы (прием сигнала на соответствующее действие исполнительных механизмов - и транзисторные ключи)

4.3.3 Определение программной и аппаратной частей

Разделим выше перечисленный перечень функций контроллера на два класса в соответствии со способом реализации.

Выполняемые функции разделены на аппаратную и программную части: Функции аппаратной части:

считывание сигналов с датчиков;

преобразование сигналов;

обеспечение гальванической развязки;

подача сигналов на исполнительные механизмы;

преобразование протоколов.

Функции программной части:

чтение и запись данных из модулей;

обработка данных;

формирование управляющего воздействия;

хранение данных;

контроль заданных параметров.

4.3.4 Описание входных сигналов

Описание входных сигналов показана в разделе математическая модель. Модели датчиков и считывание сигналов с исполнительных устройств приведены в таблице 14.

Таблица 14

Действие

Модель датчика

Заготовка в зоне загрузки

ДПИ - 1

Зажим ЗУ

ВКН-1

Разжим ЗУ

ВКН-1

Продолжение таблицы 14

Действие

Модель датчика

Кисть ПР в положении 00

ВКН-1

Кисть ПР в положении 900

ВКН-1

Подъем руки робота

БВК-200

Опускание руки робота

БВК-200

Выдвижение руки робота

ВКН-1

Втягивание руки робота

ВКН-1

ПР в позиции 1 - 14

БВК-200

Зажим на станке

ВКН-1

Разжим на станке

ВКН-1

Окончание цикла обработки

ВКН-1

Характеристики датчиков:

БВК-200 - бесконтактные путевые переключатели. Рисунок 5.

Рисунок 5

Технические характеристики:

Напряжение питания 24 В,

Дифференциал хода 3 мм,

Время включения 0,3 мс,

Время выключения 0,6 мс,

Потребляемая мощность 0,5 Вт,

Сопротивление нагрузки 91 Ом,

Ток нагрузки 0,1 А.

ВКН-1 - путевые конечные выключатели. Рисунок 6.

Рисунок 6

Технические характеристики:

Напряжение питания (постоянное) 24 В,

Ток нагрузки 0,4 А,

Время переключения контактов 4 мс.

ДПИ - 1 - индуктивный бесконтактный датчик положения. Рисунок 7.

Рисунок 7

Технические характеристики:

ДПИ-1-18 - диаметр корпуса 18 мм, Напряжение питания от 7 до 30 В постоянного тока;

Релейный выходной сигнал;

Потребляемая электрическая мощность не более 0,2 Вт.

Маркировка взрывозащиты OExiaIICT5;

Зона срабатывания датчика от 1,5 до 5 мм;

Номинальное расстояние переключения датчика от 2 до 6 мм;

Погрешность срабатывания +1,0 мм;

Зона возврата не более 1 мм;

Предельная длина линии связи между датчиком и источником питания не более 500 м;

Габаритные размеры не более D18х61 мм;

Масса не более 0,08 кг;

Длина кабельного вывода 2 м.

Сигналы, поступающие с УЧПУ, о состоянии станков (работа/ожидание) имеют следующие характеристики U= 24 В и I=0,6 А.

4.3.5 Описание выходных сигналов

Управляющие сигналы, поступающие на электромагниты пневмоцилиндров предназначенные для управления движениями механизмов устройств зажима/разжима захватного устройства руки ПР, втягивание, вытягивание руки ПР принимаются электромагнитным клапаном.

Клапан электромагнитный Burkert

2/2 ходовой электромагнитный клапан прямого действия

Ду от 1 до 3 мм, давление 0-100 бар, температура от - 40°C до +180°C

Среда: сжатый воздух, бытовой газ, вода, гидравлическое масло, загрязненные масло и жир, щелочи, горячие воздух и вода, пар

Материал корпуса: латунь, нержавеющая сталь

Материал мембраны: EPDM, FPM, PTFE

Присоединение: резьбовое G1/4

Особенности: температура среды до +180°C

Описание реле нагрузки Релпол RM94:

RM94 способны коммутировать ток до 16А (суммарный ток на 2 группах контактов: по 8А в каждой группе). Также отличительной особенностью реле данной серии является расширенный диапазон управляющего напряжения катушки: от 5 до 110VDC. Реле используются в основном в устройствах промышленной автоматики в цепях коммутации переменного тока напряжением до 400В частоты 50 и 60Гц и в цепях коммутации постоянного тока напряжением до 250В и могут иметь 2 NO, NC или C/O группы контактов.

RM94 монтируются как на печатную плату, так и в колодки под рейки DIN.

Ресурс реле составляет более 30 млн. коммутаций без нагрузки и более 200 тыс коммутаций при полной нагрузке (250VAC).

управление нагрузкой напрямую, не требуются дополнительные компоненты;

широкий диапазон управляющих напряжений;

основание модуля электрически изолировано от силовых цепей, не требуется изоляционная прокладка для монтажа;

встроенная защита от высоковольтных импульсов напряжения. Технические характеристики реле нагрузки представлена в таблице 15.

Таблица 15

Управляющие сигналы, поступающие на электродвигатели механизмов поворота и разворота робота, принимаются пускателями типа ПME-112 с характеристиками U=24В.

Описание электромагнитных пускателей серии ПМ12.

Пускатели электромагнитные предназначены для применения в стационарных установках для дистанционного пуска непосредственным подключением к сети, остановки и реверсирования трехфазных асинхронных электродвигателей с короткозамкнутым ротором переменного напряжения 660 В частоты 50 и 60 Гц. При наличии трехполюсных тепловых реле серий РТТ и РТЛ пускатели осуществляют защиту управляемых электродвигателей от перегрузок недопустимой продолжительности и от токов, возникающих при обрыве одной из фаз. Пускатели пригодны для работы в системах управления с применением микропроцессорной техники при шунтировании включающей катушки помехоподавляющим устройством или при тиристорном управлении. Технические данные приведены в таблице 16.

Таблица 16

Температура окружающей среды

от - 40 до +55°С

Относительная влажность

до 100% при температуре 35°С

Номинальное напряжение по изоляции

660 В

Номинальный ток контактов вспомогательной цепи

10 А

Номинальное напряжение контактов вспомогательной цепи

до 660 В переменного тока

Номинальное напряжение втягивающей катушки, частоты 50 Гц

24, 36, 40, 48, 110, 127, 220, 230, 240, 380, 400, 415, 440, 500, 660 В

Номинальное напряжение втягивающей катушки, частоты 60 Гц

24, 36, 48, 110, 115, 220, 230, 240, 380

4.3.6 Описание исполнительных устройств

Для приведения в действие команд контроллера необходимы исполнительные устройства. Исполнительные устройства должны выполнять функции системы, иметь малую инерционность, обладать устойчивостью и управляемостью, достаточным быстродействием.

Зажим/разжим заготовки в ЗУ ПР, втягивание, вытягивание руки ПР осуществляется при помощи пневмоцилиндра, имеющего два рабочих положения. Воздух в полость цилиндра попадает при помощи электромагнитного клапана.

Поворот кисти руки робота происходит при помощи асинхронного электродвигателя. Электродвигатель мощностью 1,5 КВт. Двигатель - реверсивный, поэтому управление включением электродвигателя осуществляется пускателями ПМЕ-112.

Подъем/опускание руки робота, её поворот и перемещение в продольном направлении, осуществляется с помощью пневмоцилиндров.

Питание катушек пускателей и электромагнитных клапанов осуществляется напряжением 220В переменного тока.

4.4 Выбор элементов СУ

Выбор аппаратных средств системы управления

Произведем выбор технической реализации системы управления.

Спектр предлагаемой продукции ПЛК чрезвычайно широк.

Для выбора систем управления проведем анализ промышленных контроллеров:

Программируемый логический контроллер серии OMRON CQM1H.

CQM1H - Усовершенствованный контроллер серии CQM1 класса Small для работы в распределённых системах управления.

Высокое быстродействие, широкие сетевые возможности. Идеально подходит для управления технологическими агрегатами малого и среднего класса. Память программ, память данных и количество точек ввода/вывода увеличены вдвое по сравнению с CQM1. Быстродействие увеличено на 1/3. Возможность работы в сети Controller Link (32 узла в сети длиной до 1км). Простое редактирование программ контроллера, чтение и запись данных с помощью ПО под Windows. Встраиваемые платы (коммуникационные карты, поддерживающие Protocol Macro, высокоскоростные счётчики), широкий спектр модулей контроллера обеспечивают большую гибкость в построении АСУ ТП.

CQM1H - это компактный быстродействующий программируемый контроллер, состоящий из модуля питания, центрального процессорного устройства (ЦПУ), модулей входов/выходов и специальных модулей. Все модули соединяются друг с другом для образования единого устройства, которое обычно монтируется на профиле DIN.

На ЦПУ всех типов CQM1H имеется порт RS-232, который может подключаться к управляющему компьютеру, другому ПК или другим устройствам с последовательным портом.

Основные характеристики CQM1H:

CQM1H имеет много характерных особенностей, включая следующие:

На ЦПУ находятся 16 встроенных входов.

Для увеличения числа входов/выходов можно добавить модули входов/выходов.

CQM1H обладает большим быстродействием 0.5 мкс. на базовую инструкцию.

Встроены быстродействующие таймеры и счетчики.

Выходы обслуживаются сразу при исполнении команд (прямые выходы).

CQM1H поддерживает три типа прерываний:

Входные прерывания

Прерывания интервального таймера

Прерывания высокоскоростного счетчика

Входные прерывания используются для обработки входных сигналов от внешних устройств, когда сигналы короче, чем время исполнения программы. Можно использовать сигналы с шиной импульса 0.1 мкс.

Прерывания интервального таймера можно осуществлять, используя высокоскоростной интервальный таймер.

Выходами могут служить однофазные импульсы частотой до 5 кГц и двухфазные импульсы частотой до 2.5 кГц. Прерывания высокоскоростного счетчика можно объединить с выдачей импульсов и использовать для решения таких прикладных задач, как управление двигателем. Высокоскоростной счетчик имеет 2 дополнительные точки.

Функция выдачи импульсов

Импульсы частотой до 1 кГц можно выдавать с контактов модуля транзисторных выходов. CQM1H имеет два специальных порта для выдачи импульсов частотой 50 кГц.

Связь

Имеются периферийный порт и порт RS-232, которые используются для связи с внешними устройствами с помощью следующих методов:

HOST LINK

RS-232

Линия связи 1: 1 LINK

CQM1H с помощью HOST LINK может связываться с персональным компьютером и программируемым терминалам, используя команды HOST LINK.

CQM1H с помощью RS-232 может читать данные с считывателя штрих-кода или измерительного устройства и выводить данные на принтер.

Можно создать линию данных с областью данных в другом контроллере CQM1H для просмотра состояния данных другого ПК и синхронизации процессов, управляемых ПК.

Функция аналоговых регуляторов

На контроллерах CQM1H имеются аналоговые регуляторы ля 4 каналов.

Удобные инструкции ввода/вывода

Можно использовать одну инструкцию для ввода или вывода данных, что упрощает программу.

Инструкцию "ввод с клавиатуры 10 клавиш" можно использовать для чтения двоично-десятичного восьми разрядного числа с клавиатуры 10 клавиш.

Инструкцию "ввод с клавиатуры 16 клавиш" можно использовать для чтения двоично-десятичного восьми разрядного числа с клавиатуры 16 клавиш.

Инструкцию "ввод символа с цифрового переключателя" можно использовать для чтения четыре разрядного или восьми разрядного двоично-десятичного числа с цифровых переключателей.

Инструкцию "вывод на семи сегментный индикатор" можно использовать для выдачи четырех или восьми разрядного числа на семи разрядный индикатор. Характеристики промышленного контроллера представлены в таблице 17.

Таблица 17

Наименования

Значения

Максимальное число точек входа / выхода

512

Модули входа/выхода

(кол-во точек)

8/16/32 точки

Память программы

15 К слов

Количество инструкций

137

Область IR, бит

2,720

Область SR, бит

192

Область TR, бит

8

Счетчики / таймеры

До 512

Программируемые контроллеры Siemens Simatic S7-400

SIMATIC S7-400 - это модульный программируемый контроллер, предназначенный для построения систем автоматизации средней и высокой степени сложности.

Модульная конструкция, работа с естественным охлаждением, возможность применения структур локального и распределенного ввода-вывода, широкие коммуникационные возможности, множество функций, поддерживаемых на уровне операционной системы, удобство эксплуатации и обслуживания обеспечивают возможность получения рентабельных решений для построения систем автоматического управления в различных областях промышленного производства.

Эффективному применению контроллеров способствует возможность использования нескольких типов центральных процессоров различной производительности, наличие широкой гаммы модулей ввода-вывода дискретных и аналоговых сигналов, функциональных модулей и коммуникационных процессоров.

SIMATIC S7-400 является универсальным контроллером. Он отвечает самым жестким требованиям промышленных стандартов, обладает высокой степенью электромагнитной совместимости, высокой стойкостью к ударным и вибрационным нагрузкам. Установка и замена модулей контроллера может производиться без отключения питания ("горячая замена").

Конструкция

Система автоматизации S7-400 имеет модульную конструкцию. Она может комплектоваться широким спектром модулей, устанавливаемых в монтажных стойках в любом порядке. Система включает в свой состав:

Модули блоков питания (PS): используются для подключения SIMATIC S7-400 к источникам питания =24/ 48/ 60/ 120/ 230В или ~120/ 230В.

Модули центральных процессоров (CPU): в составе контроллера могут использоваться центральные процессоры различной производительности.

Все центральные процессоры оснащены встроенными интерфейсами PROFIBUS-DP. При необходимости, в базовом блоке контроллера может быть использовано до 4 центральных процессоров.

Сигнальные модули (SM): для ввода-вывода дискретных и аналоговых сигналов.

Коммуникационные модули (CP): для организации последовательной передачи данных по PtP интерфейсу, а также сетевого обмена данными.

Функциональные модули (FM): для решения специальных задач управления, к которым можно отнести счет, позиционирование, автоматическое регулирование и т.д.

При необходимости в составе S7-400 могут быть использованы:

Интерфейсные модули (IM): для связи базового блока контроллера со стойками расширения. К одному базовому блоку контроллера SIMATIC S7-400 может подключаться до 21 стойки расширения.

Модули SIMATIC S5: все модули ввода-вывода контроллеров SIMATIC S5-115U/-135U/-155U могут устанавливаться в соответствующие стойки расширения SIMATIC S5. Кроме того, модули специального назначения IP и WF могут использоваться как в стойках SIMATIC S5, так и в базовом блоке контроллера SIMATIC S7-400. В последнем случае подключение модулей к внутренней шине контроллера S7-400 выполняется через адаптер.

Простота конструкции S7-400 существенно повышает его эксплуатационные характеристики:

Простота установки модулей. Модули устанавливаются в свободные разъемы монтажных стоек в произвольном порядке и фиксируются в рабочих положениях винтами. Фиксированные места занимают только блоки питания, первый центральный процессор и некоторые интерфейсные модули.

Внутренняя шина, встроенная в монтажные стойки. Во все монтажные стойки встроена параллельная шина (Р-шина) для скоростного обмена данными с сигнальными и функциональными модулями. Все стойки, за исключением ER1 и ER2 имеют последовательную коммуникационную шину (К-шину) для скоростного обмена большими объемами данных с функциональными модулями и коммуникационными процессорами.

Центральные процессоры

Программируемые контроллеры S7-400 могут комплектоваться различными типами центральных процессоров, которые отличаются вычислительными возможностями, объемами памяти, быстродействием, количеством встроенных интерфейсов и т.д.

При построении сложных систем управления S7-400 позволяет использовать в своем составе до 4 центральных процессоров, выполняющих параллельную обработку информации.

Большинство параметров центральных процессоров может быть настроено с помощью Hardware Configuration STEP 7.

Для программирования и конфигурирования контроллеров SIMATIC S7-400 используется пакет STEP 7, весь спектр инструментальных средств проектирования и программное обеспечение Runtime.

Сигнальные модули, широкая гамма модулей ввода-вывода дискретных и аналоговых сигналов позволяет максимально адаптировать S7-400 к требованиям решаемой задачи.

Коммуникационные процессоры

Коммуникационные процессоры - это интеллектуальные модули, выполняющие автономную обработку коммуникационных задач для промышленных сетей AS-Interface, PROFIBUS, Industrial Ethernet, PROFINET и интерфейса PtP.

Функциональные модули

Интеллектуальные модули ввода-вывода, оснащенные встроенным микропроцессором и способные выполнять задачи автоматического регулирования, позиционирования, скоростного счета, управления перемещением и т.д. Целый ряд функциональных модулей способен продолжать выполнение возложенных на них задач даже в случае остановки центрального процессора.

Интерфейсные модули Интерфейсные модули предназначены для организации связи между базовым блоком контроллера и его стойками расширения, а также для подключения S7-400 к сети PROFIBUS-DP.

Блоки питания Каждый центральный процессор S7-400 имеет встроенный блок питания с входным напряжением =24В. Для питания центрального процессора и других модулей контроллера используются блоки питания PS 405 и PS 407. PS 405 используют для своей работы входное напряжение постоянного тока, PS 407 - входное напряжение переменного тока промышленной частоты. Возможна установка двух блоков питания в корзину для дублирования питания стойки.

Монтажные стойки являются конструктивной основой контроллера и позволяют размещать от 4 до 18 модулей контроллера.

Новые функциональные возможности

Центральные процессоры S7-400 с операционной системой от версии 3.1 и выше обеспечивают поддержку изохронного режима работы систем распределенного ввода-вывода и технологии CiR (Configuration in Run).

Изохронный режим

В традиционных системах распределенного ввода-вывода на основе PROFIBUS-DP существует множество несогласованных циклов: цикл выполнения программы центрального процессора, циклы обмена данными через PROFIBUS-DP, циклы обслуживания входов-выходов станций распределенного ввода-вывода и т.д. В результате этого считываемые в память центрального процессора значения входных сигналов системы распределенного ввода-вывода относятся к различным моментам времени, что вносит погрешности в работу системы автоматического управления.

Изохронный режим позволяет синхронизировать все перечисленные циклы и исключить погрешности, обусловленные временным рассогласованием считываемой информации.

Поддержка изохронного режима позволяет успешно решать задачи построения распределенных систем управления движением, распределенных измерительных систем, распределенных систем автоматического регулирования и т.д.

Технология CiR

Технология CiR позволяет вносить изменения в конфигурацию существующей системы управления без остановки производственного процесса.

Технология CiR позволяет:

Добавлять новые или удалять существующие станции распределенного ввода-вывода и приборы полевого уровня, выполняющие функции ведомых устройств на шине PROFIBUSDP/PA.

Добавлять новые или удалять существующие модули в станциях распределенного ввода-вывода ET 200M.

Отменять введенные конфигурации.

Основные технические данные центральных процессоров S7-400 представлены в таблице 18.

Таблица 18

Области применения:

SIMATIC S7-400 - это мощный программируемый контроллер для построения систем управления средней и высокой степени сложности.

Модульная конструкция, работа с естественным охлаждением, гибкие возможности расширения, мощные коммуникационные возможности, простота создания распределенных систем управления и удобство обслуживания делают SIMATIC S7-400 идеальным средством для решения практически любых задач автоматизации.

Основными областями применения SIMATIC S7-400 являются:

Машиностроение.

Автомобильная промышленность.

Складское хозяйство.

Технологические установки.

Системы измерения и сбора данных.

Текстильная промышленность.

Упаковочные машины и линии.

Производство контроллеров.

Автоматизация машин специального назначения.

Несколько типов центральных процессоров различной производительности и широкий спектр модулей с множеством встроенных функций существенно упрощают разработку систем автоматизации на основе SIMATIC S7-400.

Если алгоритмы управления становятся более сложными и требуют применения дополнительного оборудования, контроллер позволяет легко нарастить свои возможности установкой дополнительного набора модулей.

Программируемый контроллер SIMATIC S7-400H разработан для построения систем автоматического управления, отличающихся повышенной надежностью функционирования. Наличие резервированной структуры позволяет продолжать работу в случае возникновения одного или нескольких отказов в его компонентах. Как правило, такие системы управляют производствами, простой которых вызывает большие экономические потери.

Благодаря своей высокой надежности SIMATIC S7-400H может использоваться:

В системах с высокими затратами на перезапуск производства в случае отказа контроллера.

В системах с высокой стоимостью простоя. В процессах обработки ценных материалов.

В системах без постоянного контроля со стороны обслуживающего персонала.

В системах с небольшим количеством обслуживающего персонала.

Программируемые контроллеры S7-400F/FH предназначены для построения систем безопасного управления, в которых возникновение отказов не влечет за собой появление опасности для жизни обслуживающего персонала и не приводит к загрязнению окружающей природной среды. На основе программируемых контроллеров S7-400F/FH могут создаваться системы безопасного управления, отвечающие требованиям:

Классов AK1 … AK6 по DIN V 19250/ DIN V VDE 0801.

Классов SIL 1 … SIL 3 по IEC 61508.

Категорий 1 … 4 по EN 954-1.

DIN, EN, IEC.

FM класс 1, раздел 2, группы A, B, C и D.

Температурная группа T4 (до 134°C).

Описание промышленного контроллера MELSEC FX3U. Изображение контроллера Mitsubishi Electric MELSEC FX3U изображено на рисунке 8.

Рисунок 8

Современный результат развития и совершенствования проверенной временем концепции FX3U.

Дополнен новой высокоскоростной шиной расширения (в сумме до 8 FX3U - ADP модулей):

FX3U-4DA-ADP - аналоговый выход 12 бит 4 канала;

FX3U-4AD-ADP - аналоговый вход 12 бит 4 канала;

FX3U-4AD-TC-ADP - 4 канала ввода с термопар (12 бит);

FX3U-4AD-PT-ADP - 4 канала ввода с термосопротивлений Pt100 (12 бит);

FX3U-4HSX-ADP - заменяет 4 стандартные входа на импульсные (дифференциальная витая пара до 200кГц);

FX3U-2HSY-ADP - заменяет 2 стандартных выхода (открытый коллектор до 100кГц) на улучшенные для задач позиционирования (импульсное задание по дифференциальной витой паре до 200 кГц);

FX3U-232ADP - порт RS232 на разъем DB9;

FX3U-485ADP - порт RS422\485.

Можно установить не более 4-х любых аналоговых ADP модулей в сумме; не более 2-х импульсных ADP модулей каждой модели; не более 2-х последовательных портов (с учетом FX3U - BD).

Для подключения FX3U - ADP модулей к ПЛК необходимо установить один из интерфейсных модулей:

FX3U-232-BD - порт RS232;

FX3U-485-BD - порт RS422\485;

FX3U-422BD - порт RS422 с разъемом Minidin-8F;

FX3U-CNV-BD - переходник для подключения ADP модулей FX3U-USB-BD.

Расширяемый в сумме до 384 дискретных входов/выходов: до 256 удаленных и до 256 подключенных к базовому модулю.

Встраиваемый (вынос на кабеле) 4-х кнопочный текстовый дисплей FX3U-7DM.

Сохранена возможность расширения спецмодулями от серий FX0N и FX2N. Кроме того, добавились FX3U модули аналогового выхода 16 бит, Profibus-DP (Master), полнофункциональный модуль Ethernet, управление сервоприводами по сети SSCNETIII.

Программа хранится в RAM (литиевой батареи FX3U-32BL для резервирования хватает на 5 лет).

8 встроенных cчётных входов до 80 кГц суммарно (при вводе с энкодеров есть учетверение).

3 встроенных импульсных выхода до 100 кГц.

Два дополнительных порта RS232 или RS422/RS485. USB-связь с ПК через FX3U-USB-BD.

Расширенный набор инструкций для работы с плавающей точкой, тригонометрией, инструкция для связи по последовательному каналу с преобразователями частоты Mitsubishi Electric.

Усовершенствованная инструкция ПИД-регулирования с возможностью самонастройки, и т.д. (ограничение на суммарное количество ПИД-регуляторов в программе FX3U снято).

Монтаж на DIN-рейку или винтами.

Программирование с помощью GX IEC Developer (FX), GX Developer (FX). При расширении только спецмодулями серии FX3U, шина-шлейф работает в высокоскоростном режиме, но могут применяться и модули расширения от серий FX0N и FX2N, тогда шина переводится в стандартный режим.

Технические характеристики контроллера изображены на рисунке 9.

Рисунок 9

Электрические параметры изображены на рисунке 10

Рисунок 10

Программные характеристики изображены на рисунке 11.

Рисунок 11

Модули расширения, применяемые в сериях FX1N, FX2N, FX2NC, FX3U

"обычными" модулями расширения считаются модули с дискретными входами (=24В) или выходами (транзистор =30В, 0,5А или реле ~240В, 2А). Не имеют ограничений по совместимости с различными сериями ПЛК FX. С питанием от шины выпускаются группами по 8 и по 16 каждого типа. Также есть модуль FX2N-8ER: 4 входа и 4 выхода-реле. С встроенными блоками питания (от =24B или от ~110…220B) выпускаются модули FX0N-40E - (24 вх. \ 16 вых.), FX2N-32E - (16 вх. \ 16 вых.) и FX2N48E - (24 вх. \ 24 вых.).

Все аналоговые модули работают в стандартных диапазонах 0…10В и 0.20мА (4.20мА). Как расширение этих диапазонов многие модули работают и с отрицательной частью шкалы: - 10…10В и - 20.20мА.

Основные проверки на допустимость конфигурации базового модуля ПЛК с разнообразными модулями расширения:

o совместимость по присоединительным разъемам (актуально для всех модулей присоединяемых не на "правую шлейф-шину": мини-дисплеев, кассет памяти, модулей FX - ADP и FX - BD). За несколькими исключениями определяется по совпадению кода серии в обозначении модуля.


Подобные документы

  • Определение порядка обработки и технологических переходов, назначение режимов резания для каждого перехода. Подбор стандартного технологического оборудования и унифицированных узлов станка. Выбор типа агрегатного приспособления, его рабочий цикл.

    курсовая работа [4,1 M], добавлен 08.12.2010

  • Проектирование заготовки шестерни ведомой заднего моста автомобиля с максимальным коэффициентом использования материала и с минимальной себестоимостью. Технологическая обработка ступицы, составление оптимальной схемы. Конструкция инструмента и оснастки.

    дипломная работа [1,7 M], добавлен 17.10.2010

  • Определение типа производства и выбор организационной формы сборки платы измерителя истинной скорости самолета. Разработка маршрутной технологии сборки. Выбор операций, оборудования, приспособлений, инструмента для определения схемы единичного процесса.

    практическая работа [129,4 K], добавлен 08.12.2015

  • Разработка кинематической схемы привода. Ознакомление с процессом предварительного выбора подшипников и корпусов подшипниковых узлов приводного вала. Расчёт и конструирование протяжки. Анализ технологичности детали. Определение типа производства.

    дипломная работа [333,8 K], добавлен 22.03.2018

  • Анализ технологичности конструкции шестерни четвертой передачи автомобиля ЗИЛ. Определение типа производства и способа получения заготовки. Выбор технологического маршрута и нормирование технологических операций. Определение количества оборудования.

    контрольная работа [73,4 K], добавлен 09.07.2010

  • Роботизация промышленного производства. Автоматизация технологической подготовки производства: объект, сущность, основные требования. Автоматизированное проектирование унифицированных и единичных технологических процессов. Функциональные подсистемы.

    контрольная работа [24,4 K], добавлен 05.11.2008

  • Анализ конструкции конической шестерни, оценка технологичности, затрат материалов и времени на изготовление в условиях мелкосерийного производства. Химический состав и механические свойства конструкционной легированной стали 40 Х, режимы термообработки.

    курсовая работа [209,5 K], добавлен 23.06.2015

  • Организация ремонта редукторов заднего моста автомобилей в ООО "ИГАП": расчет годовой программы; проект участка; выбор оборудования и разработка конструкции универсального стенда. Охрана труда и экологическая безопасность; технико-экономическая оценка.

    дипломная работа [242,4 K], добавлен 11.08.2011

  • Расчет второй ступени редуктора. Выбор материала шестерни и колеса. Определение допускаемых напряжений. Геометрический расчет зубчатых колес. Проектировочный расчет конической зубчатой передачи. Проектировочный и проверочный расчет деталей и узлов.

    курсовая работа [803,9 K], добавлен 17.10.2013

  • Методика выполнения кинематических, силовых и прочностных расчетов узлов и деталей энергетического оборудования. Особенности выбора материалов, вида термической обработки для узлов и деталей оборудования электростанций, а также системы их обеспечения.

    курсовая работа [1,8 M], добавлен 14.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.