Структура динамической системы станка

Резание как процесс обработки материалов, структура динамической системы металлорежущего станка. Выражение воздействия упругой системы на рабочие процессы при изменении основных параметров - сечении среза, давлении на поверхность и скорости движения.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 02.05.2011
Размер файла 237,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Структура динамической системы станка

Резание, процессы, происходящие в подвижных соединениях станка, в электродвигателях и в гидросистемах и т.п. (рабочие процессы) вызывают деформации упругой системы (УС) станка за счет силового или теплового воздействия. Деформации упругой системы, в свою очередь, изменяют взаимное расположение деталей, образующих подвижное соединение.

Воздействие УС на рабочие процессы выражено таким образом в изменении их основных параметров: сечении среза, нормальном давлении на поверхностях трения, скорости движения и т.п. Это воздействие вызывает изменение сил, количества выделяемого тепла и т.п. таким образом, силы и другие виды воздействия рабочих процессов на УС являются функциями координат (или их производных - скоростей, ускорений) упругой системы. Эта зависимость выражает обратную связь УС на рабочие процессы.

Упрощенная схема станка показана на рис. 1.

На схеме воздействие на УС станка процессов резания, процессов трения и процессов, происходящих в электродвигателях, обозначены соответственно через Р, F, M.

Силы резания зависят главным образом от свойств обрабатываемого материала, геометрических параметров режущего инструмента и площади среза. Одна из первых зависимостей силы резания от площади среза и свойств материала заготовки:

P = Kba

где К - удельная сила резания на 1 мм2 среза для конструкционной углеродистой стали К2000 Н/мм2);

b, a - ширина и толщина среза, мм.

В свою очередь, толщина среза а зависит от относительного отжатия (смещения) инструмента и заготовки.

Процессы трения характеризуются зависимостью силы F трения от нормальной нагрузки N и коэффициента трения . Нагрузку можно выразить через коэффициент нормальной жесткости cN и нормальную деформацию (податливость) yN, тогда получим формулу Амонтона-Кулона:

металлорежущий станок срез давление

F = cN (yN)m

где - т - показатель степени.

Для малых контактных деформаций показатель степени m=1.

Условная схема ДС станка показана на рис. 2.

Динамические процессы, происходящие в самой УС, например, воздействие силы инерции неуравновешенных вращающихся масс, совершающих возвратно-поступательное движение; силы веса узлов и заготовок и др. рассматриваются как внешние воздействия на УС и обозначаются f(t). Эти воздействия зависят от геометрической и кинематической точности станка, его деталей и сопряжений.

Внешние воздействия на рабочие процессы выражаются в заданном изменении припуска, в заданном изменении давления смазки на направляющие, в заданном изменении электрического напряжения, питающего электродвигатель, и т.п., т.е. параметры изменения настройки рабочих процессов обозначаются у(t) с соответствующим индексом.

Перемещения УС, вызываемые всеми воздействиями, обозначаются буквами у с соответствующим индексом.

При исследовании какого-либо рабочего процесса многоконтурную ДС станка для упрощения заменяют одноконтурной, состоящей из рассматриваемого рабочего процесса и эквивалентной упругой системы (ЭУС), к которой приведены все остальные элементы системы. Например, схемы одноконтурных систем при исследовании воздействия на станок процесса резания и процессов, происходящих в электродвигателе приведены на рис 3а и 3б. На рис. 3б обозначение перемещения у3 заменено углом поворота вала .

Воздействия рабочих процессов на УС называются связями.

Цепь воздействий, включающую элементы схемы и связи между ними, называют контуром связи.

Контур связи может быть замкнутым и незамкнутым. Физическую величину, описывающую воздействие на данный элемент или систему. Называют входной координатой хвх элемента или системы; результат воздействия - выходной координатой хвых. Уравнение, связывающее выходную и входную координаты, называют характеристикой W этого элемента или системы.

Свойства ДС станка и ее элементов определяется их характеристикой. Если разорвать две связи элемента "Процесс резания" и рассмотреть его отдельно, получим разомкнутую схему (рис. 4).

Характеристика элемента "Процесс резания" WПР:

WПР =

Любая из рассматриваемых характеристик называется статической, если входная координата не изменяется во времени, и динамической, если изменяется.

Примером статического воздействия на станок может служить воздействие постоянной силы Р. Результатом такого воздействия будет упругое смещение на величину у. Если рассмотреть изолировано саму УС в статике, то входящей координатой для упругой системы является постоянная сила Р, а результатом действия силы будет упругое смещение (деформация) у. Таким образом, статической характеристикой УС является

WУС = КУС =

Эта характеристика является обратной величиной жесткости и называется податливостью (е) или обратной жесткостью (e = 1/j = 1/c). Для подчеркивания статического статуса этой характеристики ее обозначают буквой К. Статическая характеристика УС любого станка или любого его узла является нелинейной зависимостью и на графике представляется в виде петли гистерезиса. Площадь, ограниченная петлей, характеризует работу сил внутреннего и внешнего трения. В уравнениях динамики характеристику WУС удобно представлять в виде линейной зависимости, т.е. постоянного коэффициента, для чего учитывают только чисто упругие свойства характеристики, а работу сил трения учитывают углом наклона прямой.

Если силы трения изменяются пропорционально прилагаемой нагрузке, то прямую статической характеристики проводят асимметрично нагрузочному и разгрузочному участкам экспериментальной кривой.

Статическая характеристика определяется величиной деформации в стыках и собственных деформаций деталей. Чаще всего статическую характеристику определяют экспериментально из-за большой сложности теоретических расчетов. При разных видах деформации жесткость рассчитывается по формулам:

- растяжение-сжатие;

- изгиб;

- кручение,

где S; l - площадь сечения и длина; E; G - модули упругости; J; Jp - осевой и полярный моменты инерции; С1; С2 - коэффициенты, зависящие от способа закрепления.

Из формул видно, что жесткость при любом виде деформации не зависит от прочности материала или способа термообработки.

ES, EJ, GJp - называют показателями жесткости растяжения-сжатия, изгиба и кручения.

Статическую характеристику ПР процесса резания можно определить из общего уравнения

WПР = ,

где - P = Kba - сила резания, равная произведению удельной силы на ширину и толщину среза;

y1(t) - внешнее воздействие на процесс резания.

Внешнее воздействие на процесс резания со стороны УС выражается в виде относительных упругих деформаций обрабатываемой детали и инструмента, что приводит к изменению толщины стружки, т.е. можно сказать, что y1(t)= а.

Тогда

WПР = КР = = Кb,

где - Кb - жесткость резания.

Статическую характеристику ПТ процесса трения определяем аналогично, считая, что при малых контактных деформациях имеется линейная зависимость между нагрузкой и деформацией.

На рис. 7 изображена схема процесса трения скольжения, где сила трения скольжения равна произведению коэффициента трения на нормальную силу прижатия F = м FN, а сила прижатия, в свою очередь, равна произведению нормальной жесткости на нормальную деформацию FN = cN·yN.

Статическая характеристика процесса трения определяется как отношение выходной координаты процесса к входной

WПТ = КТ = .

Размещено на Allbest.ru


Подобные документы

  • Методика и этапы исследования амплитуды и фазы вынужденных колебаний упругой системы станка зависимости от соотношения между собственной циклической частотой и циклической частотой возмущающего воздействия. Временная характеристика упругой системы.

    реферат [140,6 K], добавлен 02.05.2011

  • Изучение основных режимов металлорежущего станка. Кинематический расчёт привода главного движения. Построение графика мощности и момента, силовые расчеты элементов привода, ременной передачи и валов. Привила выбора шлицевых соединений и системы смазки.

    курсовая работа [868,5 K], добавлен 28.01.2014

  • Процесс торцевого фрезерования на вертикально-фрезерном станке, оптимальные значения подачи, скорости резания. Ограничения по кинематике станка, стойкости инструмента, мощности привода его главного движения. Целевая функция - производительность обработки.

    контрольная работа [134,0 K], добавлен 24.05.2012

  • Объемная податливость как сложный фактор, обуславливающий объемную точность станка. Применение метода координатных систем для определения параметров объемной податливости. Структура станочной системы. Виды соединений элементов металлорежущего станка.

    статья [487,7 K], добавлен 28.02.2012

  • Расчет кинематики (диаметр обработки, глубина резания, подача) привода шпинделя с плавным регулированием скорости, ременной передачи с зубчатым ремнем, узла токарного станка на радиальную и осевую жесткость с целью модернизации металлорежущего станка.

    контрольная работа [223,1 K], добавлен 07.07.2010

  • Динамический расчет вертикально-фрезерного станка 675 П. Расчет обработки вала ступенчатого. Динамическая модель основных характеристик токарно-винторезного станка 16Б16А. Определение прогиба вала, параметров резца, режимов резания и фрезерования.

    практическая работа [268,9 K], добавлен 31.01.2011

  • Расчет ограничений и технических параметров токарно-винторезного и вертикально-сверлильного станков. Определение режима, глубины и скорости резания. Способы крепления заготовки. Нахождение частоты вращения шпинделя станка, крутящего момента, осевой силы.

    контрольная работа [414,7 K], добавлен 06.04.2013

  • Анализ обрабатываемой заготовки, выбор оборудования и посадочного места стола станка. Особенности обработки шпоночного паза на горизонтально-фрезерном станке модели 6Н81Г. Расчет основных параметров силового привода и конструкции зажимного механизма.

    курсовая работа [241,6 K], добавлен 22.09.2015

  • Общая структура, обоснование применения и классификация систем числового программного управления. Назначение постпроцессоров и разработка системы подготовки обработки детали станка. Алгоритм работы программного модуля и его технологическая реализация.

    дипломная работа [3,7 M], добавлен 11.10.2010

  • Разработка черновых переходов при токарной обработке основных поверхностей. Описание и анализ конструкции станка 1П756ДФ3. Технологические характеристики и кинематическая схема станка. Настройка станка на выполнение операций, расчёт режимов резания.

    курсовая работа [4,9 M], добавлен 04.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.