Аркфункции
Тригонометрические функции от одного и того же аргумента выражаются алгебраически одна через другую, поэтому в результате выполнения какой-либо тригонометрической операции над любой из аркфункций получается алгебраическое выражение.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 26.05.2006 |
Размер файла | 203,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Примеры: в нижеследующих примерах приведены образцы исследования элементарных функций, заданных формулами, содержащими обратные тригонометрические функции.
Пример №1. Исследовать функции arcsin(1/x) и arccos(1/y) и построить их графики.
Решение: Рассмотрим 1-ю функцию
y = arcsin(1/x)
Д(f): | 1/x | ? 1 ,
| x | ? 1 ,
( - ? ; -1 ] U [ 1; + ? )
Функция нечетная
( f(x) убывает на пр. [0;1] , f(y) убывает на пр. [0;р/2] )
Заметим, что функция y=arccosec(x) определяется из условий cosec(y)=x и y є [-р/2; р/2], но из условия cosec(y)=x следует sin(y)=1/x, откуда
y=arcsin(1/x). Итак, arccos(1/x)=arcsec(x)
Д(f): ( - ? ; -1 ] U [ 1; + ? )
Пример №2. Исследовать функцию y=arccos(x2).
Решение:
Д(f): [-1;1]
Четная
f(x) убывает на пр. [0;1]
f(x) возрастает на пр. [-1;0]
Пример №3. Исследовать функцию y=arccos2(x).
Решение: Пусть z = arccos(x), тогда y = z2
f(z) убывает на пр. [-1;1] от р до 0.
f(y) убывает на пр. [-1;1] от р2 до 0.
Пример №4. Исследовать функцию y=arctg(1/(x2-1))
Решение:
Д(f): ( - ? ; -1 ) U ( -1; 1 ) U ( 1; +? )
Т.к. функция четная, то достаточно исследовать функцию на двух промежутках:
[ 0 ; 1 ) и ( 1 ; +? )
X |
0 |
< x < |
1 |
< x < |
+? |
|
u=1/(x2-1) |
-1 |
? |
+ ? - ? |
? |
0 |
|
y=arctg(u) |
- р/4 |
? |
р/2 - р/2 |
? |
0 |
Тригонометрические операции над аркфункциями
Тригонометрические функции от одного и того же аргумента выражаются алгебраически одна через другую, поэтому в результате выполнения какой-либо тригонометрической операции над любой из аркфункций получается алгебраическое выражение.
В силу определения аркфункций:
sin(arcsin(x)) = x , cos(arccos(x)) = x
(справедливо только для x є [-1;1] )
tg(arctg(x)) = x , ctg(arcctg(x)) = x
(справедливо при любых x )
Графическое различие между функциями, заданными формулами:
y=x и y=sin(arcsin(x))
Сводка формул, получающихся в результате выполнения простейших тригонометрических операций над аркфункциями.
Аргументфункция |
arcsin(x) |
arccos(x) |
arctg(x) |
arcctg(x) |
|
sin |
sin(arcsin(x))=x |
||||
cos |
x |
||||
tg |
x |
1 / x |
|||
ctg |
1 / x |
x |
Справедливость всех этих формул может быть установлена при помощи рассуждений, приведенных ниже:
Т.к. cos2x + sin2x = 1 и ц = arcsin(x)
Перед радикалом следует взять знак “+”, т.к. дуга принадлежит правой полуокружности (замкнутой) , на которой косинус неотрицательный.
Значит, имеем
Из тождества следует:
Имеем
Ниже приведены образцы выполнения различных преобразований посредством выведения формул.
Пример №1. Преобразовать выражение
Решение: Применяем формулу , имеем:
Пример №2. Подобным же образом устанавливается справедливость тождеств:
Пример №3. Пользуясь ...
Пример №4. Аналогично можно доказать следующие тождества:
Пример №5. Положив в формулах
, и
, получим:
,
Пример №6. Преобразуем
Положив в формуле ,
Получим:
Перед радикалами взят знак “+”, т.к. дуга принадлежит I четверти, а потому левая часть неотрицательная.
Соотношения между аркфункциями
Соотношения первого рода - соотношения между аркфункциями, вытекающими из зависимости между тригонометрическими функциями дополнительных дуг.
Теорема. При всех допустимых х имеют место тождества:
Соотношения второго рода - соотношения между аркфункциями, вытекающие из соотношений между значениями тригонометрических функций от одного и того же аргумента. Посредством соотношений 2-го рода производятся преобразования одной аркфункции в другую (но от различных аргументов).
Случай №1. Значения двух данных аркфункций заключены в одной и той же полуокружности.
Пусть, например, рассматривается дуга б, заключенная в интервале (-р/2; р/2).
Данная дуга может быть представлена как в виде арксинуса, так и в виде арктангенса. В самом деле, дуга имеет синус, равный sinб и заключена, так же как и б, в интервале (-р/2; р/2), следовательно
Аналогично можно дугу б представить в виде арктангенса:
А если бы дуга б была заключена в интервале ( 0 ; р ), то она могла бы быть представлена как в виде арккосинуса, так и в виде арккотангенса:
Так, например:
Аналогично:
Формулы преобразования одних аркфункций в другие, значения которых содержаться в одной и той же полуокружности (правой или верхней).
Выражение через арктангенс.
Пусть , тогда
Дуга , по определению арктангенса, имеет тангенс, равный и расположена в интервале (-р/2; р/2).
Дуга имеет тот же тангенс и расположена в том же интервале (-р/2; р/2).
Следовательно,
(1)
(в интервале ( -1 : 1 )
Выражение через арксинус.
Т.к. , то (2)
в интервале
Выражение арккосинуса через арккотангенс. Из равенства следует тождество
(3)
Случай №2. Рассмотрим две аркфункции, значения которых выбираются в различных промежутках (например, арксинус и арккосинус; арккосинус и арктангенс и т.п.). Если аргумент какой-либо аркфункции (т.е. значение тригонометрической функции) положителен, то соответственно аркфункция (дуга), заключенная в первой четверти, может быть представлена при помощи любой аркфункции; так, например,
Поэтому каждая из аркфункций от положительного аргумента может быть выражена посредством любой другой аркфункции.
Значение какой-либо аркфункции от отрицательного аргумента принадлежит либо промежутку от -р/2 до 0, либо промежутку от р/2 до р и не может быть представлено в виде аркфункции, значение которой принадлежит другому (из этих двух) промежутку.
Так, например, дуга не может быть значением арксинуса. В этом случае
Формулы преобразования одних аркфункций в другие, значения которых выбираются в различных полуокружностях.
Выражение арксинуса через арккосинус.
Пусть , если , то . Дуга имеет косинус, равный , а поэтому
При это равенство выполняться не может. В самом деле, в этом случае
, а для функции имеем:
так как аргумент арккосинуса есть арифметический корень , т.е. число неотрицательное.
Расположение рассматриваемых дуг пояснено на рисунке:
Х>0 X<0
При отрицательных значениях Х имеем Х<0, а при положительных X>0, и
Таким образом, имеем окончательно:
если , (4)
, если
График функции
Область определения есть сегмент [-1;1]; согласно равенству (4), закон соответствия можно выразить следующим образом:
, если
, если
Аналогично установим, что при имеем:
, если же , то
Таким образом:
, если (5)
, если
Выражение арктангенса через арккосинус. Из соотношения
при имеем:
Если же х<0, то
Итак,
, если (6)
, если
Выражение арккосинуса через арктангенс. Если , то
При имеем:
Итак,
, если (7)
, если
Выражение арктангенса через арккотангенс.
, если х>0 (8)
,если x<0
При x>0 равенство (8) легко установить; если же x<0, то
.
Выражение арксинуса через арккотангенс.
, если (9)
, если
Выражение арккотангенса через арксинус.
, если 0<x (10)
, если х<0
Выражение арккотангенса через арктангенс.
, если x>0 (11)
, если x<0
Примеры:
Пример №1. Исследовать функцию
Решение. Эта функция определена для всех значений х, за исключением значения х=0 (при х=0) второе слагаемое теряет смысл). Воспользовавшись формулой (8) получим:
y= 0 , если x>0
-р , если x<0
На чертеже изображен график
данной функции
Пример №2. Исследовать функцию
Решение: Первое слагаемое определено для значений , второе - для тех же значений аргумента. Преобразим первое слагаемое по формуле (4).
Т.к. , то получаем
,
откуда:
на сегменте [0;1]
Пример №3. Исследовать функцию
Решение: Выражения, стоящие под знаками аркфункций не превосходят по абсолютной величине единицы, поэтому данная функция определена для всех значений х. Преобразуем первое слагаемое по формуле (4).
Приняв во внимание равенство
, если
, если
получим:
y = 0 , если
, если
Выполнение обратных тригонометрических операций над тригонометрическими функциями.
При преобразовании выражений вида
следует принимать во внимание в какой четверти находится аргумент х и в каком промежутке находится значение данной аркфункции. Рассмотрим, например, первое из данных выражений:
Согласно определению арксинуса, y - есть дуга правой полуокружности (замкнутая), синус которой равен sin x;
и
Областью определения функции служит интервал , так как при всех действительных значениях х значение промежуточного аргумента содержится на сегменте . При произвольном действительном х значение y (в общем случае) отлично от значения х.
Так, например, при х=р/6 имеем:
но при х=5р/6
В силу периодичности синуса функция arcsin x также является периодической с периодом 2р, поэтому достаточно исследовать ее на сегменте [-р/2; 3р/2] величиной 2р.
Если значение х принадлежит сегменту [-р/2; р/2] то y=x, на этом сегменте график функции совпадает с биссектрисой координатного угла.
Если значение х принадлежит сегменту [р/2; 3р/2], то в этом случае дуга р-х принадлежит сегменту [-р/2; р/2]; и, так как
, то имеем y=р-х;
в этом промежутке график функции совпадает с прямой линией y=р-х. Если значение х принадлежит сегменту [3р/2; 5р/2], то, пользуясь периодичностью или путем непосредственной проверки, получим:
y=х-2р
Если значение х принадлежит сегменту [-3р/2; -р/2], то
y=-р-х
Если значение х принадлежит сегменту [-5р/2; -3р/2], то
y=х+2р
Вообще, если , то
y=х-2рk
и если , то
y=(р-х)+2рk
График функции представлен на рисунке. Это ломаная линия с бесконечным множеством прямолинейных звеньев.
Рассмотрим функцию
Согласно определению арккосинуса, имеем:
cos y = cos x, где
Областью определения данной функции является множество всех действительных чисел; функция периодическая, с периодом, равным 2р. Если значение Х принадлежит сегменту [0; р], то y = x. Если х принадлежит сегменту [р; 2р], то дуга 2р-х принадлежит сегменту [0; р] и , поэтому:
Следовательно, на сегменте [р; 2р] имеем y = 2р - x
Если х принадлежит сегменту [2р; 3р], то y = x - 2р
Если х принадлежит сегменту [3р; 4р], то y = 4р - x
Вообще, если , то y = x - 2рk
Если же , то y = -x + рk
Графиком функции является ломаная линия
Формулы сложения
Формулы сложения дают выражения для суммы или разности двух (или нескольких) аркфункций через какую-либо данную аркфункцию. Пусть дана сумма аркфункций; над этой суммой можно выполнить любую тригонометрическую операцию. (....) В соответствии с этим дуга-функция может быть выражена посредством любой данной аркфункции. Однако в различных случаях (при одних и тех же аркфункциях) могут получаться различные формулы, в зависимости от промежутка, в котором берется значение рассматриваемой аркфункции.
Сказанное пояснено ниже на числовых примерах.
Примеры.
Пример №1. Преобразовать в арксинус сумму
Решение: эта сумма является суммой двух дуг б и в, где
;
В данном случае (т.к. , а следовательно, ), а также , поэтому .
Вычислив синус дуги г, получим:
Т.к. сумма г заключена на сегменте [-р/2; р/2], то
Пример №2. Представить дугу г, рассмотренную в предыдущем примере, в виде арктангенса. Имеем:
Откуда
Пример №3. Представить посредством арктангенса сумму
Решение: в данном случае (в отличие от предыдущего) дуга г оканчивается во второй четверти, т.к. , а . Вычисляем
В рассматриваемом примере , так как дуги г и заключены в различных интервалах,
, а
В данном случае
Пример №4. Представить дугу г, рассмотренную в предыдущем примере, в виде арккосинуса.
Решение: имеем
Обе дуги г и расположены в верхней полуокружности и имеют одинаковый косинус, следовательно, эти дуги равны:
Так как суммы и разности любых аркфункций можно выражать при помощи произвольных аркфункций, то можно получать самые разнообразные формулы сложения. Однако все эти формулы выводятся при помощи однотипных рассуждений. Ниже в качестве примеров даются некоторые из формул сложения, по этим образцам можно получить аналогичные формулы в различных прочих случаях.
Формулы сложения аркфункций от положительных аргументов.
Пусть б и в - две дуги, заключенные в промежутке от 0 до р/2 (первая четверть):
, и
Сумма б + в заключена в верхней полуокружности , следовательно, ее можно представить в виде аркфункции, значение которой выбирается в том же интервале, т.е. в виде арккосинуса, а также в виде арккотангенса:
;
Разность б - в заключена в правой полуокружности:
Следовательно, она может быть представлена в виде арксинуса, а также в виде арктангенса:
;
Так как значение всякой аркфункции от положительного аргумента заключено в интервале (0; р/2) то сумму двух аркфункций от положительных аргументов можно представить в виде арккосинуса, а также в виде арккотангенса, а разность двух аркфункций от положительных аргументов можно представить в виде арккосинуса, а также в виде арктангенса.
Ниже приведены образцы соответствующих преобразований.
Преобразуем в арккосинус , где и
Имеем:
Откуда
Аналогично
, где 0 < x < 1, 0 < y < 1
, где 0 < x < 1, 0 < y < 1
Формулы сложения аркфункций от произвольных аргументов.
Выразить сумму через арксинус
По определению арксинуса
и ,
откуда
Для дуги г возможны следующие три случая:
Случай 1:
Если числа x и y разных знаков или хотя бы одно из них равно нулю, то имеет место случай 1.
В самом деле, при и , имеем:
, и ,
откуда
При x > 0, y > 0 для дуги г имеет место одна из следующих двух систем неравенств:
а) б)
Необходимым и достаточным признаком, позволяющим отличить один от другого случаи а) и б), является выполнение неравенства:
в случае а) и в случае б)
В самом деле, взаимно исключающие друг друга соотношения а) и б) влекут за собой взаимно исключающие следствия и (соответственно), а потому эти следствия служат необходимыми и достаточными признаками наличия данных соотношений.
Вычислив , получим:
При x > 0, y > 0 наличие случая 1 означает выполнения неравенства а) т.е. или
Откуда
и, следовательно,
Наличие случая 1 при x < 0, y < 0 означает выполнение неравенств
;
но тогда для положительных аргументов -x и -y имеет место случай 1, а потому
или
Случай 2.
В этом случае x > 0, y > 0, т.е. выполняется неравенство б); из условия получим
Случай 3.
Этот случай имеет место при x < 0, y < 0, и
Изменив знаки на противоположные придем к предыдущему случаю:
откуда
Дуги г и имеют одинаковый синус, но (по определению арксинуса) , следовательно в случае 1 ;
в случае 2 и в случае 3 .
Итак, имеем окончательно:
, или
; x > 0, y > 0, и (1)
; x < 0, y < 0, и
Пример:
;
2. Заменив в (1) x на -x получим:
, или
; x > 0, y > 0, и (2)
; x < 0, y < 0, и
3. Выразить сумму через арккосинус
и
имеем
Возможны следующие два случая.
Случай 1: если , то
Приняв во внимание, что обе дуги и расположены в промежутке [0;р] и что в этом промежутке косинус убывает, получим
и следовательно, , откуда
Случай 2: . Если , то
,
откуда при помощи рассуждений, аналогичных предыдущим, получим . Из сопоставления результатов следует, что случай 1 имеет место, если , а случай 2, если
.
Из равенства следует, что дуги
и имеют одинаковый косинус.
В случае 1 , в случае 2 , следовательно,
,
, (3)
4. Аналогично
,
, (4)
пример:
5.
; xy < 1
; x > 1, xy > 1 (5)
; x < 0, xy > 1
При xy=1 не имеет смысла
6.
; xy > -1
; x > 0, xy < -1 (6)
; x < 0, xy < -1
7.
;
; (7)
;
8.
; (8)
;
9.
;
; x > 1 (9)
; x < -1
10. (10)
(11)
, если (12)
, если
Подобные документы
Интегрирование выражений, зависящих от тригонометрических функций. Интегрирование рациональной функции от тригонометрической и алгебраических иррациональностей. Тригонометрические подстановки для интегралов, не выражающихся через элементарные функции.
контрольная работа [124,8 K], добавлен 22.08.2009Обозначение основных тригонометрических терминов: радианная и градусная мера угла, синус, косинус, тангенс, котангенс. Область определения функций и построение их графиков. Выведение формул сложения, суммы, разности и двойного аргумента функций.
презентация [229,3 K], добавлен 13.12.2011Углы и их измерение, тригонометрические функции острого угла. Свойства и знаки тригонометрических функций. Четные и нечетные функции. Обратные тригонометрические функции. Решение простейших тригонометрических уравнений и неравенств с помощью формул.
учебное пособие [876,9 K], добавлен 30.12.2009Элементарные тригонометрические уравнения и методы их решения. Введение вспомогательного аргумента. Схема решения тригонометрических уравнений. Преобразование и объединение групп общих решений тригонометрических уравнений. Разложение на множители.
курсовая работа [1,1 M], добавлен 21.12.2009Приближение действительных чисел конечными десятичными дробями. Действия над комплексными числами. Свойства функции и способы ее задания. Тригонометрические функции числового аргумента. Частные случаи тригонометрических уравнений, аксиомы стереометрии.
шпаргалка [2,2 M], добавлен 29.06.2010Нахождение вероятности, того что получится слово из карточек с буквами. Поиск вероятности того, что из пакетов акций в результате торгов по первоначальной заявленной цене некоторые будут проданы. Составление закона распределения случайной величины.
контрольная работа [413,4 K], добавлен 12.02.2013Понятие сходящихся рядов с комплексными числами. Действительные и мнимые части комплексной последовательности. Сумма и разность рядов в комплексными членами. Переход при помощи Эйлера от тригонометрической формы комплексного числа к показательной.
презентация [110,0 K], добавлен 17.09.2013Классификация основных элементарных функций: степенные, показательные, логарифмические, тригонометрические и обратные тригонометрические. Определение и простейшие свойства линейной и квадратичной функции. Понятие обратной пропорциональной зависимости.
презентация [1,0 M], добавлен 29.10.2015Переключательные функции одного аргумента. Переключательные функции двух аргументов. Представление переключательной функции в виде многочленов. Совершенная дизъюнктивная нормальная форма переключательной функции. Функция в виде полинома Жегалкина.
реферат [45,6 K], добавлен 27.11.2008Логарифм как многозначная функция. Обозначение главного значения логарифма. Свойства логарифма на случай комплексного аргумента. Понятие обратных тригонометрических функций (арккосинуса, арктангенса, арккотангенса), практические примеры их вычисления.
презентация [171,6 K], добавлен 17.09.2013