Обобщенный принцип максимума модуля и его приложения

Исследование вспомогательных определений и тем, необходимых при доказательстве основных утверждений. Понятие и содержание субгармоничной функции, ее свойства и особенности. Содержание обобщенного принципа максимума модуля и его важнейшие приложения.

Рубрика Математика
Вид дипломная работа
Язык русский
Дата добавления 08.07.2012
Размер файла 546,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.


Подобные документы

  • Определения и параболические операторы. Принцип максимума для уравнений параболического типа. Применение принципа максимума при математическом моделировании процессов. Наличие экстремальных свойств уравнений. Решение уравнения теплопроводности.

    курсовая работа [159,5 K], добавлен 22.08.2013

  • Принцип максимума Понтрягина. Необходимое и достаточное условие экстремума для классической задачи на условный экстремум. Регулярная и нерегулярная задача. Поведение функции в различных ситуациях. Метод Ньютона решения задачи, свойства его сходимости.

    курсовая работа [1,4 M], добавлен 31.01.2014

  • Нахождение частных производных по направлению вектора. Составление уравнения касательной плоскости к поверхности в заданной точке. Исследование на экстремум функции двух переменных. Определение условного максимума функции при помощи функции Лагранжа.

    контрольная работа [61,5 K], добавлен 14.01.2015

  • Основные свойства непрерывной функции. Теоремы о корне, промежуточном значении и об ограниченности непрерывной функции, их доказательство. Непрерывная на отрезке функция достигает максимума и минимума. Графическое представление корней уравнения.

    лекция [497,0 K], добавлен 13.02.2009

  • Нахождение экстремума функции нескольких переменных не на всей области определения, а на множестве, удовлетворяющему некоторому условию. Практический пример нахождения точки максимума и минимума функции. Главные особенности метода множителей Лагранжа.

    презентация [112,6 K], добавлен 17.09.2013

  • Основные определения и теоремы производной, дифференциала функции; техника дифференцирования. Применение производных к вычислению пределов. Исследование функции на монотонность и точки локального экстремума. Полное исследование функции, асимптоты графика.

    контрольная работа [539,8 K], добавлен 20.03.2016

  • Вспомогательные леммы. Теоремы Джексона для к-го обобщенного модуля гладкости. Обобщенное неравенство Минковского. Тригонометрический полином. Вычисление модулей гладкости для некоторых функций. Понятие прямой и обратной теоремы теории приближений.

    курсовая работа [3,0 M], добавлен 26.05.2013

  • Многие переменные, минимизация их функций. Точки максимума и минимума называются точками экстремума функции. Условия существования экстремумов функции многих переменных. Квадратичная форма, принимающая, как положительные, так и отрицательные значения.

    реферат [70,2 K], добавлен 05.09.2010

  • Понятие неравенства, его сущность и особенности, классификация и разновидности. Основные свойства числовых неравенств. Методика графического решения неравенств второй степени. Системы неравенств с двумя переменными, с переменной под знаком модуля.

    реферат [118,9 K], добавлен 31.01.2009

  • Главные особенности вычисления преобразования Фурье, приложения и методы использования их на практике. Решение сложных уравнений физики, описывающих динамические процессы, которые возникают под воздействием электрической, тепловой или световой энергии.

    контрольная работа [151,0 K], добавлен 14.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.