Метод скінчених різниць в обчислювальній математиці

Крайова задача для звичайного диференціального рівняння. Метод Рунге-Кутта, метод прогнозу і корекції та метод кінцевих різниць для розв’язання лінійних крайових задач. Реалізація пакетом Maple. Оцінка похибки й уточнення отриманих результатів.

Рубрика Математика
Вид контрольная работа
Язык украинский
Дата добавления 14.08.2010
Размер файла 340,6 K
Оценка (голосов: 5)

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Задача Коші і крайова задача. Двоточкова крайова задача для диференціального рівняння другого порядку. Види граничних умов. Метод, заснований на заміні розв’язку крайової задачі розв’язком декількох задач Коші. Розв'язування систем нелінійних рівнянь.

    презентация [86,2 K], добавлен 06.02.2014

  • Вивчення методів розв'язання лінійної крайової задачі комбінуванням двох задач Коші. Переваги та недоліки інших методів: прицілювання, колокацій, Гальоркіна, найменших квадратів та ін. Пошук єдиного розв'язку звичайного диференціального рівняння.

    курсовая работа [419,2 K], добавлен 29.08.2010

  • Розгляд крайової задачі для нелінійного рівняння другого порядку. Вивчення різницевого методу розв'язання крайових задач для звичайних диференціальних рівнянь. Метод прогонки - окремий випадок методу Гауса. Програма на алгоритмічній мові Turbo Pascal.

    курсовая работа [49,7 K], добавлен 10.04.2011

  • Графічний спосіб розв'язку рівнянь. Комбінований метод пошуку та відокремлення коренів. Метод Ньютона (метод дотичних або лінеаризації). Процедура Ейткена прискорення збіжності. Метод половинного поділу та простих ітерацій уточнення коренів рівняння.

    лекция [1,9 M], добавлен 27.07.2013

  • Метод простої ітерації Якобі і метод Зейделя. Необхідна і достатня умова збіжності методу простої ітерації для розв’язання системи лінейних рівнянь. Оцінка похибки. Діагональне домінування матриці як умова збіжності ітерації. Основні переваги цих методів.

    презентация [79,9 K], добавлен 06.02.2014

  • Умови та особливості використання модифікованого методу Ейлера для отримання другої похідної в кінцево-різницевій формі. Два обчислення функції за крок. Метод Ейлера-Коші як частковий випадок методу Рунге-Кутта. Метод четвертого порядку точності.

    презентация [171,0 K], добавлен 06.02.2014

  • Виведення рівняння коливань струни. Постановка початкових і кінцевих умов. Розв’язання задачі про коливання нескінченної і напівнескінченної струни. Метод та фізичний зміст формули Даламбера. Розповсюдження хвиль відхилення. Метод Фур'є, стоячі хвилі.

    курсовая работа [1,3 M], добавлен 04.04.2011

  • Чисельні методи розв’язання систем нелінійних рівнянь: лінійні і нелінійні рівняння, метод простих ітерацій, метод Ньютона. Практичне використання методів та особливості розв’язання систем нелінійних рівнянь у пакеті Mathcad, Excel та на мові С++.

    курсовая работа [2,0 M], добавлен 30.11.2010

  • Методи скінченних різниць або методи сіток як чисельні методи розв'язку інтегро-диференціальних рівнянь алгебри диференціального та інтегрального числення. порядок розв’язання задачі Діріхле для рівняння Лапласа методом сіток у прямокутної області.

    курсовая работа [236,5 K], добавлен 11.06.2015

  • Метод Гаусса, метод прогонки, нелинейное уравнение. Метод вращения Якоби. Интерполяционный многочлен Лагранжа и Ньютона. Метод наименьших квадратов, интерполяция сплайнами. Дифференцирование многочленами, метод Монте-Карло и Рунге-Кутты, краевая задача.

    курсовая работа [4,8 M], добавлен 23.05.2013

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

СУМСЬКИЙ ДЕРЖАВНИЙ УНІВЕРСИТЕТ

кафедра інформатики

КОНТРОЛЬНА РОБОТА

ПО КУРСУ: Чисельні методи

на тему: «Метод скінчених різниць в обчислювальній математиці»

Зміст

Постановка задачі

Вступ

1 Теоретична частина

2 Програмна реалізація

Список використаної літератури

Постановка задачі

Використовуючи метод кінцевих різниць , розв'язати крайову задачу для звичайного диференціального рівняння

Вступ

Нехай потрібно чисельно розв'язати задачу Коші для звича-йного диференціального рівняння першого порядку, тобто знайти наближений розв'язок диференціального рівняння y=F(x,y), що задовольняє початковій умові y(x)=y.Чисельне розв'язання задачі полягає в побудові таблиці наближених значень y,y,y,...,y-розв'язку рівняння y=(x ) у точках x,x,x,...,x - вузлах сітки .

y

yn *

y3 *

y2 *

y1 *

y0 *

O x0 x1 x2 x3 xn x

На рисунку * позначені точки, що відповідають наближено-му розв'язку задачі Коші. Треба зазначити, що частіше використо-вують систему рівновіддалених вузлів x =x + ih (i=1,2,..,n) , де h - крок сітки

( h > 0 ) .

1 Теоретична частина

Методи Рунге-Кутта

Різні представники цієї категорії методів потребують більшого чи меншого об'єму обчислень і відповідно забезпечують більшу чи меншу точність. При розв'язанні конкретної задачі виникають питання, якою із формул Рунге-Кутта доцільно скористатися і як вибрати крок сітки.

Якщо неперервна й обмежена разом із своїми четвертими похідними, то гарні результати дає метод четвертого порядку. Він описується системою наступних п'яти співвідношень:

();

Якщо функція не має зазначених похідних, порядок точності вищенаведеного методу не може бути реалізований. Тоді необхідно користуватися методами меншого порядку точності, що відповідає порядку наявних похідних.

Одним з найбільш простих і досить ефективних методів

оцінки похибки й уточнення отриманих результатів є правило Рунге. Для оцінки похибки за правилом Рунге порівнюють наближені розв'язки, отримані при різних кроках сітки. При цьому використовується наступне припущення: глобальна похибка методу порядку p у точці хi подається у вигляді

.

За формулою Рунге

Таким чином, із точністю до (величина більш високого порядку малості) при h>0 похибка методу має вигляд:

де yi - наближене значення, отримане в точці з кроком h; y2i - із кроком h/2; p - порядок методу; y(x2i) - точний розв'язок задачі.

Метод прогнозу і корекції

Підправивши схему Эйлера , одержимо схему прогнозу

,

де наближене значення . Цю формулу використовувати не можна ,оскільки схема прогнозу нестійка . Тому використовує-мо схему корекції

Оцінюючи похибки прогнозу і корекції, одержимо

- похибка корекції,

- похибка прогнозу .

Істинне значення лежить між прогнозом і корекцією .На будь-якому кроці можна оцінити точність рішення . При заданому =0,0000001, наприклад, .

Віднімаючи з співвідношення , маємо

.

Уточнюємо розв'язання, виходячи з формули :

Ця формула завершає схеми прогнозу і корекції .

Метод кінцевих різниць для розв'язання лінійних крайових задач

Маємо відрізок [a,b]. Потрібно знайти розв'язок лінійного диференціального рівняння другого порядку

,

що задовольняє такі крайові умови:

Виберемо рівномірну сітку: x = a + ih, i = 0,1,2,…,n... Нехай Апроксимуємо і у кожному внутрішньому вузлі (i = 1, 2, …, n-1) центральними різницями , і на кінцях відрізка - односторонніми скінченнорізницевими апроксимаціями , .

Використовуючи ці формули, одержуємо різницеву апроксимацію вихідного крайового завдання:

Коефіцієнти різницевих рівнянь залежать від кроку сітки.

Введемо позначення:

Перепишемо систему з урахуванням введених позначень:

Маємо різницеву схему крайового завдання. Запишемо систему рівнянь у розгорнутій матричній формі:

Таким чином, завдання зводиться до розв'язання системи лінійних алгебраїчних рівнянь, що можна записати у вигляді Ay=d.

2 Програмна реалізація

Реалізація пакетом Maple

> ss:=diff(diff(y(x),x),x)+diff(y(x),x)/x+2*y(x)-x;

Ш dsolve[interactive]( ss );

Список використаної літератури

Б. П. Демидович и И. А. Марон. “Основы вычислительной математики”, Москва, 1963г.

Н.С.Бахвалов, Н.П.Жидков, Г.М.Кобельков. “Численные методы”, Москва, 1987г.

Мусіяка В. Г. Основи чисельних методів механіки: підручник. - К.: Вища освіта, 2004. - 240 с.: іл.

Л. Д. Назаренко Чисельні методи. Дистанційний курс.

Работа, которую точно примут
Сколько стоит?

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.