Интервальный анализ дохода трамвайного парка в очередные сутки с применением доверительной вероятности

Закон распределения суточного дохода трамвайного парка, оценка доверительного интервала для математического ожидания и дисперсии суточного дохода. Особенности определения математического ожидания рассматривающейся случайной величины при решении задач.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 02.05.2011
Размер файла 69,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

12

12

ГОУ ВПО

Уфимский Государственный Авиационный Технический Университет

Кафедра вычислительной математики и кибернетики

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе

по теории вероятности

на тему:

Интервальный анализ дохода трамвайного парка в очередные сутки с применением доверительной вероятности

Уфа 2010 г

Задание 1

Условие

Исходные данные - суточный доход трамвайного парка (млн. руб.):

12,56; 12,41; 12,52; 12,80; 12,98; 12,70.

Актуальные вопросы: Каков практический максимум суточного дохода трамвайного парка? В каких пределах практически будет находиться доход трамвайного парка в очередные сутки?

Сформулировать эти вопросы на языке теории вероятностей и дать на них ответы.

Высказать предположение (с обоснованием) о законе распределения суточного дохода трамвайного парка, найти оценки и построить доверительные интервалы для математического ожидания и дисперсии суточного дохода.

Решение

Исходный материал - данные наблюдений над суточным доходом трамвайного парка (млн. руб):

По условию известно:

х1=12,56; х2=12,41; х 3=12,52; х 4=12,80; х 5=12,98; х 6=12,70; n=6.

Под X будем понимать случайную величину - доход, который получит трамвайный парк в будущий день. Данная величина дискретна, так как получить доход , например, 89,623 руб нельзя, существуют определенные стандарты. Но для решения этой задачи мы перейдем к идеализации и допустим, что р, е и др.- все это возможные значения X. Тогда X - непрерывная случайная величина.

Исчерпывающей характеристикой случайной величины является закон распределения, который зависит от условий проведения опыта. В нашем случае, опыт - это завтрашняя работа трамвайного парка. Учесть все условия невозможно. Может быть на следующий день резко возрастут цены на проезд в автобусах, и люди предпочтут пользоваться трамваями. А может это будет выходной, и людям просто захочется остаться дома. Так как же проанализировать условия?

1. В трамвайном парке работает множество трамваев. Пусть число трамваев - s.

2. Доход каждого трамвая завтра зависит от случая. Занумеруем трамваи:

1,

2,

3

h

,

,

3. Общий доход, который получат трамваи завтра:

X=+++…+

Т.е. X можно представить в виде суммы большого числа слагаемых. В силу центральной предельной теоремы мы можем ожидать, что закон распределения X близок к нормальному.

Пусть с - доход, который будет получен трамвайным парком в очередные сутки.

Событие является желательным событием. Найдем его вероятность.

Нам известно, что вероятность того, что X не превысит величины с, согласно нормальному закону распределения, зависит от с следующим образом:

где m=M(X) - математическое ожидание X, =D(Х) - дисперсия, а - стандартное отклонение X. Эти константы можно оценить, используя формулы:

(млн.руб)

Следует отметить, что оценки и зависят от данных наблюдений, которые зависят от случая, когда m и от случая не зависят.

Зная оценки и , можно приближенно ответить на вопрос: «Какой доход (величина с) получит трамвайный парк в очередной день, т.е. чтобы вероятность события была достаточно велика, например, равна ?» Величину с найдем из уравнения:

.

Сделаем подстановку , тогда:

, ; при , ; при , .

Получим уравнение:

.

Выберем вероятность равной 0,95 (т.е. чтобы получить практический максимум суточного дохода трамвайного парка) и решим уравнение с помощью таблицы значений нормальной функции распределения. Получим:

; (млн.руб)

Таким образом, мы получили, что в очередные сутки практическим максимумом суточного дохода трамвайного парка будет являться 13,0132 млн. руб. Ответим на вопрос: «В каких пределах практически будет находиться доход трамвайного парка в очередные сутки?»

Общая формула:

, где

функция Лапласа, а a и b - концевые точки.

Пусть a и b расположены симметрично относительно m: a=m-s*; b= m+s*. Тогда:

,

т.к. функция нечетная. По таблицам найдем, что если s=1,96, то .

Таким образом, нам известно, что с вероятностью 0,95 Х будет находиться в пределах .

Т.е. доход трамвайного парка будет практически находиться в пределах от 12,262 до 13,077 млн. руб.

Как уже отмечалось, оценки и зависят от случая, в то время как m и от случая не зависят. О местоположении этих констант на числовой оси дают представление доверительные интервалы, т.е. такие интервалы, для которых до проведения наблюдений известна вероятность того, что они в итоге наблюдений накроют константу.

В нашем случае концевые точки доверительного интервала для m находятся по формулам: , , где

,

а коэффициент зависит от устраивающей нас вероятности накрывания интервалом константы m:

.

можно найти из таблицы: при =0,95 и k=5(где k=(n-1) - число степеней свободы) =2,57.

Доверительный интервал для m: (12,45; 12,89) с вероятностью покрытия 0,95.

Концевые точки доверительного интервала для находятся по формулам:

, .

Вероятность того, что такой интервал накроет , обозначим:

Она зависит от чисел и . Выберем вероятность накрывания дисперсии, например, и воспользуемся таблицами для вычисления и . Для этого вычислим:

(1-б)/2=0,1 - погрешность слева; (1+б)/2=0,6 - погрешность справа, k=n-1=5 - число степеней свободы.

Значит =1,610; =9,24.

Интервал: (0,113; 0,646) - доверительный интервал для дисперсии с вероятностью покрытия 0,8.

Задание 2

Условие

В продолжение задания 1. Существенно ли изменились условия проведения опыта, если очередная серия наблюдений привела к следующим данным? Поставить этот вопрос на языке теории вероятностей и получить ответ.

11,84; 12,50; 11,70; 11,72; 11,81; 11,78; 11,70.

Решение

Новые суточные доходы трамвайного парка: п2=7.

Перед нами стоит вопрос: «Существенно ли изменились условия проведения опыта, если очередная серия наблюдений привела к следующим данным, т.е. изменились ли математическое ожидание и дисперсия в новой серии наблюдений?»

Предполагается, что над случайной величиной X проведены независимых испытаний, а над Y - независимых испытаний.

Пусть случайные величины X и Y независимы и каждая подчиняется одному и тому же нормальному закону распределения.

Нормальный закон распределения определяется функцией распределения или плотностью вероятностей, которые зависят только от двух констант - m и . Пусть дисперсии X и Y одинаковы. Тогда если математические ожидания X и Y одинаковы, то условия проведения опыта полностью совпадают.

Найдем оценки и :

(млн.руб); (млн.руб).

Если действовать согласно интуиции, то можно прийти к такому выводу: если в результате наблюдений случайная величина примет значение, сильно отличающееся от нуля, то следует, что математические ожидания X и Y неодинаковы. Но как понять, что значит «сильно отличаться от нуля», а что - «не сильно»? Для этого нам необходимо найти границу.

Рассмотрим случайную величину:

Возьмем какое-либо число , которое назовем пороговым числом, т.е. границей между значениями t, достаточно сильно отличающимися от 0 и не сильно. Тогда:

1) если | t |>, то проверяемая гипотеза отвергается;

2) если | t |, то отвергать гипотезу не будем.

Но данные наблюдений всегда зависят от случая, поэтому мы можем отвергнуть справедливую гипотезу и допустить ошибку. Выберем устраивающую нас достаточно малую вероятность такой ошибки в.

..

Пусть в=0,05. Нужно использовать таблицу для погрешностей, но т.к. ее нет, найдем ц=1- в=0,95.

По таблицам Стьюдента =2,20.

Сравним t и : | 5,4 |>2,20 гипотеза отвергается, и M(X)M(Y).

Таким образом, с вероятностью ошибки 0,05 можно считать, что условия проведения опыта существенно изменились.

Задание 3

Условие

В продолжение задания 1. Можно ли утверждать, что указанные в задании 1 данные говорят о существенном изменении условий проведения опыта, если известно, что для проведения этих наблюдений математическое ожидание рассматривающейся случайной величины составляло 12,42?

Решение

У нас имеется случайная величина X, закон распределения которой близок к нормальному закону. Нам нужно ответить на вопрос: «Справедливо ли, что математическое ожидание X равно заданной константе m, где m=12,42?» Если нет, то условия проведения нашего опыта существенно изменились. Предполагается, что над случайной величиной проведены n независимых испытаний.

Введем оценку математического ожидания для X:

Интуитивно мы можем сделать вывод по такому правилу: если после наблюдений случайная величина примет значение, сильно отличающееся от нуля, то условия проведения опыта существенно изменились. Но, опять же, нужно найти данную границу. Рассмотрим случайную величину:

.

Если | t |, то условия проведения опыта существенно не изменились, если | t |>, то условия изменились. Но, как и в задаче 2, это может привести к ошибке. Выберем малую вероятность такой ошибки: в=0,05.

.

С помощью таблицы Стьюдента найдем : =2,57.

Сравним t и : | 2,9 |>2,57 М(Х) m.

Таким образом, условия проведения опыта существенно изменились с вероятностью ошибки 0,05.

Литература

математическое ожидание дисперсия

1. Рудерман С.Ю. Законы в мире случая. Том 1. Уфа, 2005

2. Рудерман С.Ю. Законы в мире случая. Том 2. Уфа: РИО БашГУ, 2005

3. Вентцель Е.С. Теория вероятностей. М.: Высшая школа, 1999

4. Кремер Н.Ш. Теория вероятностей и математическая статистика. М.: ЮНИТИ-ДАНА, 2002

Размещено на Allbest


Подобные документы

  • Понятие доверительной вероятности и доверительного интервала и его границ. Закон распределения оценки. Построение доверительного интервала, соответствующего доверительной вероятности для математического ожидания. Доверительный интервал для дисперсии.

    презентация [124,9 K], добавлен 01.11.2013

  • Вычисление математического ожидания, дисперсии, функции распределения и среднеквадратического отклонения случайной величины. Закон распределения случайной величины. Классическое определение вероятности события. Нахождение плотности распределения.

    контрольная работа [38,5 K], добавлен 25.03.2015

  • Длина интервала группирования. Гистограмма относительных частот. Кусочно-постоянная функция. Среднеквадратичное отклонение оценки математического ожидания случайной величины. Коэффициент корреляции. Границы доверительного интервала для ожидания.

    курсовая работа [622,9 K], добавлен 18.02.2009

  • Определение вероятности для двух несовместных и достоверного событий. Закон распределения случайной величины; построение графика функции распределения. Нахождение математического ожидания, дисперсии, среднего квадратичного отклонения случайной величины.

    контрольная работа [97,1 K], добавлен 26.02.2012

  • Алгоритм определения вероятности события и выполнения статистических ожиданий. Оценка возможных значений случайной величины и их вероятности. Расчет математического ожидания, дисперсии и среднего квадратического отклонения. Анализ характеристик признака.

    контрольная работа [263,8 K], добавлен 13.01.2014

  • Определение математической вероятности правильного набора, если на нечетных местах комбинации стоят одинаковые цифры. Использование классического определения вероятности. Расчет математического ожидания и дисперсии для очков, выпавших на игральных костях.

    контрольная работа [90,2 K], добавлен 04.01.2011

  • Рассмотрение способов нахождения вероятностей происхождения событий при заданных условиях, плотности распределения, математического ожидания, дисперсии, среднеквадратического отклонения и построение доверительного интервала для истинной вероятности.

    контрольная работа [227,6 K], добавлен 28.04.2010

  • Моделирование случайной величины, распределённой по нормальному закону. Построение доверительных интервалов для математического ожидания и дисперсии, соответствующих доверительной вероятности. Оценка статистических характеристик случайного процесса.

    курсовая работа [744,3 K], добавлен 07.06.2010

  • Построение доверительных интервалов для математического ожидания и дисперсии, соответствующие вероятности. Исследование статистических характеристик случайной величины на основе выбора объема. Теоретическая и эмпирическая плотность распределения.

    курсовая работа [594,4 K], добавлен 02.01.2012

  • Определение вероятности определенного события. Вычисление математического ожидания, дисперсии, среднеквадратического отклонения дискретной случайной величины Х по известному закону ее распределения, заданному таблично. Расчет корреляционных признаков.

    контрольная работа [725,5 K], добавлен 12.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.