Вычисление пределов
Предел последовательности, его графическое изображение. Основные свойства сходящихся последовательностей. Бесконечно большие и бесконечно малые функции, связь между функций, ее приделом и бесконечно малой функцией. Первый и второй замечательный предел.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 14.05.2009 |
Размер файла | 152,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1
Санкт-Петербургское государственное образовательное учреждение среднего профессионального образования
Согласовано:
Предметной (цикловой) комиссией Председатель
____________/_____________
(Подпись) (ФИО)
«_____» __________200__г.
Утверждено:
Заместителем директора по УР
__________/______________/
(Подпись) (ФИО)
«____»________200___г.
Указания по проведению
практической работы № ___1____
Задачи на вычисление пределов
(Название работы)
По дисциплине «Математика»
Специальность __080110, 080112, 080501__
Разработал преподаватель
_____________(___................. __)
(Подпись) (ФИО)
«_______» _________________200___г.
Цель работы:
1. Формировать умения и навыки вычисления пределов
2. Формировать умения и навыки самостоятельного умственного труда
3. Прививать умения и навыки работы со справочным материалом
4. Определить уровень остаточных знаний студентов по данной теме
Перечень справочной литературы :
1. Богомолов Н.В. «Практические занятия по математике», М: Высшая школа, 2004
2. Письменный Д. «Конспект лекций по высшей математике», ч.1., Москва, Айрис-Пресс, 2004
3. Шипачев В.С. «Задачник по высшей математике», М: Высшая школа, 2003
4. Выгодский М.Я. «Справочник по высшей математике», Росткнига, 2001
Краткие теоретические сведения:
Предел последовательности
Определение. Число называется пределом последовательности , если для любого положительно го числа найдется такое натуральное число , что при всех > выполняется неравенство
Пишут:
Графически это выглядит так:
n -
Т.е. элемент находится в - окрестности точки а. При этом последовательности называется сходящейся, в противном случае - расходящейся.
Основные свойства сходящихся последовательностей
1)Сходящаяся последовательность ограничена.
2)Пусть , , тогда а) б) в)
3)Если и для всех выполняется неравенства , то .
4) Если и последовательность {уn} - ограниченная, то
№1. Найти пределы: |
||
Бесконечно большие и бесконечно малые функции
Определение. Функция называется бесконечно малой при , если
Например: 1) при б. м. ф. т.к. 2) при б. м. ф. т. к
Определение. Функция называется бесконечно большой при , если , или
Например, есть б. б. Ф при ; если б. б. ф. при действительно и
Теорема (о связи между функций, ее приделом и бесконечно малой функцией). Если функция имеет придел, равный , то ее можно представить как сумму числа и бесконечно малой функции , т.е. если
Теорема (обратная). Если функцию можно представить в виде суммы числа А и б.м.ф. (x), то число А является пределом функции, т.е если , то
Например, требуется вычислить . Представим числитель и знаменатель в виде суммы числа и б.м.ф.
Функции при есть б.м.ф. таким образом
Основные теоремы о пределах
Теорема 1. Предел суммы (разности) двух функций равен сумме (разности) их пределов:
Теорема справедлива для алгебраической суммы любого конечного числа функций.
Теорема 2. Функция может иметь только один предел при .
Теорема 3. Предел произведения двух функций равен произведению их пределов:
.
Следствие 1. Постоянный множитель можно выносить за знак предела:
Следствие 2. Предел степени с натуральным показателем равен той же степени предела: .
Теорема 4. Предел дроби равен пределу числителя, деленному на предел знаменателя, если предел знаменателя не равен нулю.
Примеры:
1)== ==
===
2) =
=
3)
Первый замечательный предел
Второй замечательный предел
или
Примеры:
Вычислить:
1) .
2) .
3)
4) ===
№2. Найти пределы:
№3. Найти пределы:
Порядок проведения работы:
1. Используя теоретические сведения выполнить предложенное преподавателем задание
2. Соответствующим образом оформить работу
Лист 1.Практическая работа по теме«Вычисление пределов»Выполнил:__________(ФИО)группа:_____________Проверил:__________Оценка:____________ |
Лист 2.№ примераРешение:Ответ: |
Оформление работы:
Подобные документы
Общее понятие числовой последовательности. Предел функции в точке. Бесконечно большая и малая функция. Связь между функцией, ее пределом и бесконечно малой функцией. Признаки существования пределов. Основные теоремы о пределах: краткая характеристика.
презентация [137,0 K], добавлен 25.01.2013Свойства бесконечно малых величин. Произведение бесконечно малой величины на ограниченную функцию. Предел функции f(x) при x, стремящимся к бесконечности: теорема и ее доказательство. Пример решения функции и предел отношения двух малых величин.
презентация [61,7 K], добавлен 21.09.2013Предел числовой последовательности. Сравнение бесконечно малых величин. Второй замечательный предел. Теорема Коши о сходимости числовой последовательности. Использование бинома Ньютона. Замена сомножителей на эквивалентные им более простые величины.
контрольная работа [152,1 K], добавлен 11.08.2009Вычисление математических последовательностей и определение числа, которое называется пределом последовательности. Методы расчетов предела функции. Произведение бесконечно малой функции и ограниченной функции. Определение предела последовательности.
контрольная работа [114,0 K], добавлен 17.12.2010Основные свойства функций, для которых существуют пределы. Понятие бесконечно малых величин и их суммы. Предел алгебраической суммы, разности и произведения конечного числа функций. Предел частного двух функций. Нахождение предела сложной функции.
презентация [83,4 K], добавлен 21.09.2013Определение предела функции в точке. Понятие односторонних пределов. Геометрический смысл предела функции при х, стремящемся в бесконечности. Основные теоремы о пределах. Вычисление пределов и раскрытие неопределенностей. Первый замечательный предел.
презентация [292,4 K], добавлен 14.11.2014Определение второго замечательного предела. Понятие бесконечно малых функций. Математическое описание непрерывности зависимости одной переменной величины от другой в точке. Точки разрыва функции. Свойства и непрерывность ее в интервале и на отрезке.
презентация [314,4 K], добавлен 14.11.2014Понятие возрастающей числовой последовательности. Формула бинома Ньютона. Число положительных слагаемых. Определение ограниченности последовательности чисел. Предел монотонной и ограниченной последовательностей. Показательный рост или убывание.
презентация [87,1 K], добавлен 21.09.2013Множество как ключевой объект математики, теории множеств и логики. Операции над множествами, числовые последовательности. Множества действительных чисел. Бесконечно малые и большие функции. Непрерывность функции в точке. Свойства непрерывных функций.
лекция [540,0 K], добавлен 25.03.2012Теоретические аспекты применения правил Лопиталя. Определение предела функции в точке. Понятия бесконечно большой и бесконечно малой функций. Рассмотрение содержания теорем о дифференцируемых функциях. Раскрытие неопределенностей по правилу Лопиталя.
курсовая работа [1,3 M], добавлен 30.12.2021