Теория случайных функций
Однородный Марковский процесс. Построение графа состояний системы. Вероятность выхода из строя и восстановления элемента. Система дифференциальных уравнений Колмогорова. Обратное преобразование Лапласа. Определение среднего времени жизни системы.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 08.09.2010 |
Размер файла | 71,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Московский Государственный Институт Электроники и Математики
(Технический Университет)
КОНТРОЛЬНАЯ РАБОТА
по теме “Теория случайных функций“
Студент: Айдаров Д.А.
Вариант: 2.4.5.б
Преподаватель: Попка А.И.
Шымкент 2009
Дано: Восстанавливаемая, резервированная система (5,1) с КПУ, вероятность срабатывания КПУ?равна b??.
Время невыхода из строя (т.е. безотказной работы) основного элемента распределено экспоненциально с параметром a.
Время восстановления вышедшего из строя элемента распределено экспоненциально с параметром m.
Тип резервирования - ненагруженный.
Для описания состояния системы введем двумерный случайный процесс n(t) = (x(t), d(t)) с координатами, описывающими:
- функционирование элементов
x(t) О {0, 1, 2} - число неисправных элементов;
- функционирование КПУ
d(t) О {0,1} - 1 - 1, если исправен, 0 - если нет.
Так как времена безотказной работы и восстановления имеют экспоненциальное распределение, то в силу свойств экспоненциального распределения, получим, что x(t) - однородный Марковский процесс.
Определим состояние отказа системы:
Система отказывает либо если переходит в состояние 2 процесса x(t) (т.е. отказ какого-либо элемента при количестве резервных элементов, равным нулю), либо если находится в состоянии 0 процесса x(t) (т.е. отказ какого-либо элемента и отказ КПУ).
Таким образом, можно построить граф состояний системы:
|
|
|
0 1 |
П |
|
|
|
|
|
0 - состояние, при котором 0 неисправных элементов, т.е. состояние n(t) = (0, d(t))
1 - состояние, при котором 1 неисправный элемент, т.е. состояние n(t) = (1, 1)
П - состояние, при котором либо 2 неисправных элемента, либо 1 неисправный элемент и неисправный КПУ, т.е. композиция состояний n(t) = (1, 1), n(t) =(2, 0) - поглощающее состояние.
Найдем интенсивности переходов.
Так как выход из строя каждого из элементов - события независимые, то получим:
вероятность выхода из строя элемента: 1-exp(-5ah) =--5ah + o(h)
вероятность восстановления элемента: 1-exp(-mh) =--mh + o(h)
Ю--
Пусть
Получим систему дифференциальных уравнений Колмогорова:
Пусть ,
т.е. применим преобразование Лапласа к .
Т.к. , то, подставляя значения интенсивностей, получаем:
Ю--
Ю--
(-----корни =_)
Представляя каждую из полученных функций в виде суммы двух правильных дробей, получаем:
Применяя обратное преобразование Лапласа, получаем выражения для функций :Ю--
Ю--
Искомая вероятность невыхода системы из строя за время t:
,
Где
,
Итак,
,--
Где
Определим теперь среднее время жизни такой системы, т.е. MT (T - время жизни системы):
Ю--
Подобные документы
Систему дифференциальных уравнений Колмогорова. Решение системы алгебраических уравнений для финальных вероятностей состояний. Графики зависимостей. Тип системы массового обслуживания по характеру входящего потока и распределению времени обслуживания.
контрольная работа [187,7 K], добавлен 01.03.2016Прямое, обратное, двустороннее и дискретное преобразование Лапласа. Применение преобразования Лапласа. Прямое и обратное преобразования Лапласа некоторых функций. Связь с другими преобразованиями. Преобразование Лапласа по энергии и по координатам.
реферат [674,0 K], добавлен 26.11.2010Решение системы линейных уравнений методами Крамера, Гаусса (посредством преобразований, не изменяющих множество решений системы), матричным (нахождением обратной матрицы). Вероятность оценки события. Определение предельных вероятностей состояний системы.
контрольная работа [69,7 K], добавлен 26.02.2012Решение системы уравнений по формулам Крамера, методом обратной матрицы и методом Гаусса. Преобразование и поиск общего определителя. Преобразование системы уравнений в матрицу и приведение к ступенчатому виду. Алгебраическое дополнение элемента.
контрольная работа [84,5 K], добавлен 15.01.2014Решение систем линейных уравнений методами Крамера и Гауса. Граф состояний марковской системы. Составление уравнений Колмогорова. Предельные вероятности состояний системы. Матричный метод, матрица треугольная, матрица квадратная и решение системы.
контрольная работа [84,5 K], добавлен 20.07.2010Преобразование матрицы: умножение, приведение коэффициентов на главной диагонали матрицы к 1. Решение системы уравнений методом Крамера. Определители дополнительных матриц. Определение вероятности события (теория вероятности), математическая статистика.
контрольная работа [73,5 K], добавлен 21.10.2010Решение системы линейных обыкновенных дифференциальных уравнений, описывающей боковое перемещение нестабильного самолета относительно заданного курса полета методом преобразования Лапласа. Стабилизация движения путем введения отрицательной обратной связи.
курсовая работа [335,8 K], добавлен 31.05.2016Случайный процесс в теории вероятностей. Математическое ожидание и дисперсия. Многомерные законы распределения. Вероятностные характеристики "входной" и "выходной" функций. Сечение случайной функции. Совокупность случайных величин, зависящих от параметра.
курсовая работа [1,8 M], добавлен 23.12.2012Системы дифференциальных уравнений первого порядка. Положение равновесия системы. Численный расчет линеаризованной системы уравнений. Определение асимптотической устойчивости состояния равновесия системы в соответствии с первым методом Ляпунова.
курсовая работа [3,0 M], добавлен 15.05.2012Решение дифференциальных уравнений математической модели системы с гасителем и без гасителя. Статический расчет виброизоляции. Определение собственных частот системы, построение амплитудно-частотных характеристик и зависимости перемещений от времени.
контрольная работа [1,6 M], добавлен 22.12.2014