Численные методы для решения нелинейных уравнений

Изучение численных методов приближенного решения нелинейных систем уравнений. Составление на базе вычислительных схем алгоритмов; программ на алгоритмическом языке Фортран - IV. Приобретение практических навыков отладки и решения задач с помощью ЭВМ.

Рубрика Математика
Вид методичка
Язык русский
Дата добавления 27.11.2009
Размер файла 150,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство общего и профессионального образования Российской Федерации

Саратовский государственный технический университет

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Методические указания

к самостоятельной работе по курсу «Высшая математика»

для студентов всех специальностей

под контролем преподавателя

Одобрено

редакционно-издательским советом

Саратовского государственного

технического университета

Саратов 2008

Введение

Данная работа ориентирована на изучение некоторых численных методов приближенного решения систем нелинейных уравнений с любым числом уравнений, составление на базе этих методов вычислительных схем алгоритмов и программ на алгоритмическом языке ФОРТРАН - IV.

Методические указания могут быть использованы как в процессе выполнения курсовой работы, так и для решения практических задач.

Задача настоящих указаний состоит в том, чтобы научить студентов решать системы нелинейных уравнений с помощью ЭВМ и затем полученные навыки использовать в курсовом и дипломном проектировании.

Предполагается, что студенты прослушали лекционный курс по основам алгоритмического языка ФОРТРАН - IV.

В качестве справочного пособия по языкам программирования может быть использована литература. [5]

Численные методы для решения нелинейных уравнений

Цель работы: изучение численных методов приближенного решения нелинейных систем уравнений, составление на базе вычислительных схем алгоритмов; программ на алгоритмическом языке ФОРТРАН - IV, приобретение практических навыков отладки и решения задач с помощью ЭВМ.

1. Определения и условные обозначения

- конечномерное линейное пространство, элементами (точками, векторами) являются группы из упорядоченных действительных чисел, например:

где - действительные числа, .

В введена операция сложения элементов, т. е. определено отображение ,

где

Оно обладает следующими свойствами:

1. ,

2. ,

3. , что (элемент называется нулевым),

4. , что (элемент называется противоположным элементу ).

В введена операция умножения элементов на действительные числа, т.е. определено отображение ,

где

Оно обладает следующими свойствами:

1. ,

2.

Операции сложения элементов и умножения их на числа удовлетворяют законам дистрибутивности:

1. ,

2. .

Каждой паре элементов поставлено в соответствие действительное число, обозначаемое символом и называемое скалярным произведением, где

и выполнены следующие условия:

1. ,

2. ,

3. ,

4. , причем - нулевой элемент.

Матрица вида

, (1)

где - действительные числа (,) определяет линейный оператор, отображающий линейное пространство в себя, а именно, для

,

где .

Над линейными операторами, действующими в линейном пространстве , вводятся следующие операции:

1. сложение операторов , при этом, если , то ,

2. умножение операторов на числа: при этом, если , то ,

3. умножение операторов: , при этом, если , то .

Обратным к оператору называется оператор такой, что , где - единичный оператор, реализующий тождественное отображение, а именно,

.

Пусть число и элемент , таковы, что .

Тогда число называется собственным числом линейного оператора , а элемент - собственным вектором этого оператора, соответствующим собственному числу .

Линейный оператор называется сопряженным к оператору , если для любых элементов выполняется равенство .

Для всякого оператора сопряженный оператор существует, единствен; если , то .

Справедливы равенства:

1. ,

2. ,

3. ,

4. , если существует.

Каждому элементу ставится в соответствие действительное положительное число, обозначаемое символом и называемое нормой элемента .

Введем в рассмотрение три нормы для :

,

,

.

При этом выполняются следующие неравенства:

.

Норма элемента удовлетворяет следующим условиям (аксиомам нормы):

1. , причем , лишь если ,

2. ,

3. .

Говорят, что последовательность элементов сходится к элементу ,

а именно, ,

или ,

если .

Определенная таким образом сходимость в конечномерном линейном пространстве называется сходимостью по норме.

Множество элементов , удовлетворяющих неравенству называется замкнутым (открытым) шаром в пространстве с центром в точке и обозначается .

Каждому линейному оператору, определяемому квадратной матрицей (1), ставится в соответствие действительное неотрицательное число, обозначаемое символом и называемое нормой линейного оператора .

Норма линейного оператора удовлетворяет следующим условиям аксиомам норм:

4.4 , причем , лишь если - нулевая матрица,

4.4 ,

4.4 .

Введем в рассмотрение три нормы для А отображающего в :

,

,

,

где i-ое собственное значение матрицы .

Эти нормы линейного оператора А согласованы с соответствующими нормами элемента (вектора) в смысле условия .

2. Основные сведения о системах нелинейных уравнений в

Общая форма систем нелинейных уравнений в имеет вид:

(2)

или F(x) = 0,

где - заданные функции n переменных, - неизвестные.

Функция при действительных значениях аргументов принимают действительные значения, т.е. являются действительнозначными. Вычислять будем только действительные решения.

Решением системы нелинейных уравнений (2) называется совокупность (группа) чисел , которые, будучи подставлены на место неизвестных , обращают каждое уравнение системы в тождество.

Частным случаем системы (2) является система линейных уравнений:

или ,

где А - матрица вида (1), порождающая линейный оператор, отображающий в

Система линейных уравнений (2) поставим в соответствие линеаризованное уравнение (первые два члена из разложения в ряд Тейлора (2)) в точке вида

(2)

или ,

где - квадратная матрица Якоби, составленная из частных производных первого порядка функций, а именно , вычисленных точке .

Для дальнейшего нам потребуется еще одна форма записи системы нелинейных уравнений в , а именно:

(3)

или ,

где .

Операции, с помощью которых осуществляется преобразование системы (2) к системе (3), могут быть любыми, необходимо только, чтобы искомое решение системы (3) удовлетворяло системе (2).

Функции удовлетворяют тем же условиям, что и функции .

3. Отделение решений

Задача отделения решений систем нелинейных уравнений состоит в определении достаточно малой окрестности (шара малого радиуса, центром которого является решение) около какого-нибудь одного решения и в выборе в этой окрестности начального приближения к решению. Начальное приближение должно попасть при этом в область сходимости метода.

Задача отделения решений не имеет достаточно эффективных методов общего характера. При решении уравнения предполагается знание начальных приближений к изолированному решению из постановки конкретной задачи. Если же таких данных нет, то можно дать лишь некоторые рекомендации для конкретных видов уравнений.

Так, если дано скалярное уравнение , то его решение с геометрической точки зрения можно рассматривать как абсциссы точек пересечения графика функции с осью абсцисс. Построив график функции y=f (x), приближенно определяем окрестности изолированных точек пересечения графика с горизонтальной осью. Сами точки пересечения берем за начальные приближения к точным решениям.

Безусловно, графические построения имеют большие погрешности, и выбранные начальные приближения могут не попасть в область сходимости применяемого метода.

Тогда нужно провести пробные решения на ЭВМ выбранным методом с исследованием сходимости.

Если приближения сходятся, то начальные приближения выбраны в области сходимости метода и можно получить приближенное решение с заданной точностью.

Если приближения расходятся, следует провести более точные графические построения и выбрать начальное приближение в области сходимости.

Аналогично отделяются решения для системы двух нелинейных уравнений

, .

В этом случае на плоскости x,y строятся линии уровня функции двух переменных и . Координаты точек пересечения графиков этих функций дают начальные приближения изолированных решений.

4. Методы решения нелинейных уравнений

4.1 Метод простой итерации

Метод простой итерации (см. [1]) применяется для решения систем нелинейных уравнений с любым числом уравнений. Его можно применять как для уточнения найденного решения, так и для первоначального нахождения решения. В последнем случае, однако, метод может не дать результата.

Для применения метода простой итерации система уравнений (2) приводится к виду (3).

Затем, взяв начальное приближение , которое предполагается либо известным, либо произвольным, строим последовательность

(4)

по следующим формулам

(5)

Замечание. Для приведения системы уравнений (2) к виду (3) можно использовать прием:

где - релаксационный параметр, определяется методом Зейделя.

4.2 Метод Зейделя

Метод Зейделя отличается от метода простой итерации тем, что вычисления ведутся по формулам:

(6)

Иными словами, при вычислении используются не , как в методе простой итерации, а .

4.3 Метод Ньютона

Этот метод (см.[1], [4]) предложен И.Ньютоном в 1669 году, однако наиболее полное обоснование было сделано советским математиком Л.В.Канторовичем в 1949 году (см.[4]), поэтому в литературе этот метод часто называют методом Ньютона-Канторовича.

Метод Ньютона является одним из итерационных методов, получаемых линеаризацией линейного оператора

,

где из уравнения (2).

Так, для к-го приближения к точному решению уравнения (2) ставится в соответствие линеаризованное уравнение вида (2), а именно:

или ,

где - квадратная матрица Якоби, составленная из частных производных первого порядка функций, т.е. , вычисленных в точке .

Таким образом, последовательность (4) строится по следующим правилам:

(),

где - обратный оператор к линейному оператору , определяемому квадратной матрицей

Трудности построения алгоритма метода Ньютона, связанные с обращением производной (построение ), обычно преодолеваются тем, что вместо методов обращения матрицы решают алгебраическую систему уравнений (7) относительно неизвестных . Алгоритмы решения системы линейных алгебраических уравнений хорошо отработаны, для них имеются стандартные программы для ЭВМ и, кроме того, в результате решения системы одновременно с обращением матрицы получается умножение обратной матрицы на вектор .

Итерационная формула метода Ньютона при таком подходе будет иметь вид:

(7)

. (8)

4.4 Модифицированный метод Ньютона

Эта разновидность метода Ньютона строится путем определения производной только в одной точке приближенного решения, т. е. Последовательные приближения (4) строятся по формулам:

, (9)

где - начальное приближение к точному решению .

4.5 Метод Зейделя на основе линеаризованного уравнения

Итерационная формула для построения приближенного решения нелинейного уравнения (2) на основе линеаризованного уравнения (7) имеет вид:

4.6 Метод наискорейшего спуска

Методы спуска (см. [2]) сводят решение системы (2) к задаче нахождения минимума специально построенного функционала (функционал - отображение в R), а именно:

,

где .

Функционал в конечном пространстве Rn можно рассматривать как функцию многих переменных .

Для нахождения точки , в которой функционал принимает минимальное нулевое значение, выбирают точку , находят и строят итерационную формулу: с начальным приближением .

В итерационной формуле параметр hk пока не определен, выберем его таким образом, чтобы выполнилось условие: , начиная с x0, в предположении, что - монотонный функционал.

Для выбора hk построим функционал, зависящий от параметра, который изменяется непрерывно: .

При h=0 имеем, что (0) - линия уровня функционала, проходящая через точку xk . Для нахождения следующей линии уровня, более близкой к минимуму, будем выбирать h таким образом, чтобы для данного xk

Это условие минимума по h будем рассматривать как уравнение для получения hk.

Решим его приближенно, т.к. ошибка в несколько процентов обычно не влияет на скорость сходимости. Отметим кстати, что число hk всегда должно быть положительным. Для этого разложим функцию в ряд Тейлора по h в точке h=0 и возьмем только линейную часть этого разложения

.

Подстановка линейной части в условие , дает уравнение для приближенного определения

.

Решая построенное уравнение относительно h, получим:

или .

Таким образом, итерационная формула метода наискорейшего спуска имеет вид:

или , где производные вычислены в точке .

Метод наискорейшего спуска требует большего количества вычислений, чем другие методы первого порядка. Однако он обладает по сравнению с другими методами важным преимуществом, заключающемся в неизбежной сходимости процесса. При этом нужно помнить, что метод наискорейшего спуска может привести не к решению системы уравнений (2), а к значениям аргумента, дающим относительный экстремум функции

, т.е. .

5. Сходимость методов решения нелинейных уравнений

Если метод сходится, то есть , где

- точное решение

- k-тое приближение к точному решению, то итерационный процесс следовало бы закончить по достижению заданной погрешности , где - заданная точность (погрешность).

Однако практически это условие выполнить нельзя, так как неизвестно, тогда для окончания итерационного процесса можно воспользоваться неравенствами , или , где и - заданные величины.

При таком окончании итераций погрешность может возрасти по сравнению с и, поэтому, чтобы не увеличивалась, величины и соответственно уменьшают или увеличивают число итераций.

Методы простой итерации, Зейделя, модифицированный метод Ньютона, метод наискорейшего спуска (см. [1], [2], [3], [4]) являются методами первого порядка - это значит, что имеет место неравенство , k=1, 2, . . . , где - константа, своя у каждого метода, зависящая от выбора начального приближения , функции fi , i = 1, 2, . . . , n, и их частных производных первого и второго порядков - точнее их оценок в некоторой окрестности искомого решения, которой принадлежит начальное приближение.

Метод Ньютона является методом второго порядка, то есть для него имеет место неравенство , k=1, 2, . . . , где - константа, зависящая от тех же величин, что и константа .

А теперь рассмотрим достаточные условия сходимости метода простой итерации и метода Ньютона.

Сходимость процесса простой итерации зависит от двух условий. Первое условие состоит в том, что какая-нибудь точка должна оказаться близкой к исходному решению . Степень необходимой близости зависит от функций 1, 2, . . . , n . Это требование не относится к системам линейных уравнений, для которых сходимость процесса простой итерации зависит только от второго условия.

Второе условие связано с матрицей, составленной из частных производных первого порядка функций 1, 2, . . . , n - матрицей Якоби

,

вычисленных в точке .

В случае, когда рассматривается система линейных алгебраических уравнений, матрица M состоит из постоянных чисел - коэффициентов, стоящих при неизвестных в правой части уравнения (3). В случае нелинейных уравнений элементы матрицы M зависят, вообще говоря, от . Для сходимости процесса простой итерации достаточно, чтобы выполнялось неравенство: для из некоторой окрестности точного решения , которой должно принадлежать начальное приближение .

Приведем также достаточные условия сходимости метода Ньютона для системы уравнений вида (2) по норме .

Предположим, что имеется начальное приближение к искомому решению системы (2) , функции непрерывны и имеют непрерывные частные производные до второго порядка в шаре , тогда, если выполнены условия:

1) Матрица Якоби системы (2) на начальном приближении имеет обратную и известна оценка нормы обратной матрицы ,

2) Для всех точек шара выполнено неравенство

при i, j = 1, 2, . . . , n ,

3) Выполнено неравенство

,

где L - постоянная 0 L 1,

4) Числа b, N, r подчинены условию nbNr < 0,4, тогда система уравнений (2) в шаре имеет единственное решение, к которому сходятся последовательные приближения (8) или (7'), (9').

Для других методов условия сходимости имеют сложный вид, и мы отсылаем читателя к специальной литературе [1], [2], [3], [4].

6. Примерный перечень возможных исследований

1) Сравнение различных методов на экономичность при решении конкретной задачи:

· по числу операций на одной итерации;

· по числу итераций, необходимых для достижения заданной точности;

2) Зависимость числа итераций для достижения заданной точности:

· от выбора вида нормы;

· от выбора критерия окончания итерационного процесса по или по невязке ;

· от выбора начального приближения;

· от погрешности задания коэффициентов в уравнении.

7. Контрольные вопросы

1) Понятие о нелинейных системах уравнений в Rn.

2) Понятие приближенного и точного решения нелинейной системы уравнений.

3) Сущность графического метода отделения решения для системы двух нелинейных уравнений, каковы его преимущества и недостатки?

4) Сущность метода простой итерации и метода Зейделя. Каковы условия применимости метода простой итерации?

5) Сущность метода Ньютона и его модификации. Какова скорость сходимости метода Ньютона?

6) Сущность метода наискорейшего спуска. Как выбирается параметр спуска?

8. Порядок выполнения курсовой работы

1) Получить вариант задания, индивидуальный для каждого студента, у преподавателя, а именно:

Найти решение системы нелинейных уравнений в первой координатной четверти с номером - N1 (см. варианты заданий п.10), применив для первого этапа уточнения метод с номером - N2, а для второго этапа уточнения метод с номером - N3 , точность вычислений на первом этапе - EPS1[0.1 - 0.01], на втором этапе - EPS2 [0.1 - 0.0001], N4 - номер нормы, I - номер параметра a, J - номер параметра b, начальное приближение выбрать произвольно или графически, (0,1).

2) Разработать обязательные для выполнения задания разделы данных методических указаний.


Подобные документы

  • Методы решения нелинейных уравнений: касательных и хорд, результаты их вычислений. Алгоритм и блок схема метода секущих. Исследование характерных примеров для практического сравнения эффективности рассмотренных методов разрешения нелинейных уравнений.

    дипломная работа [793,2 K], добавлен 09.04.2015

  • Анализ методов решения систем нелинейных уравнений. Простая итерация, преобразование Эйткена, метод Ньютона и его модификации, квазиньютоновские и другие итерационные методы решения. Реализация итерационных методов с помощью математического пакета Maple.

    курсовая работа [820,5 K], добавлен 22.08.2010

  • Численные методы решения систем линейных уравнений: Гаусса, простой итерации, Зейделя. Методы аппроксимации и интерполяции функций: неопределенных коэффициентов, наименьших квадратов. Решения нелинейных уравнений и вычисление определенных интегралов.

    курсовая работа [322,7 K], добавлен 27.04.2011

  • Изучение способов решения нелинейных уравнений: метод деления отрезка пополам, комбинированный метод хорд и касательных. Примеры решения систем линейных алгебраических уравнений. Особенности математической обработки результатов опыта, полином Лагранжа.

    курсовая работа [181,1 K], добавлен 13.04.2010

  • Сравнение методов простой итерации и Ньютона для решения систем нелинейных уравнений по числу итераций, времени сходимости в зависимости от выбора начального приближения к решению и допустимой ошибки. Описание программного обеспечения и тестовых задач.

    курсовая работа [3,1 M], добавлен 26.02.2011

  • Методы, используемые при работе с матрицами, системами нелинейных и дифференциальных уравнений. Вычисление определенных интегралов. Нахождение экстремумов функции. Преобразования Фурье и Лапласа. Способы решения вычислительных задач с помощью Mathcad.

    учебное пособие [1,6 M], добавлен 15.12.2013

  • Сравнительный анализ численных методов решения систем линейных алгебраических уравнений. Вычисление определителей и обратных матриц. Реализация методов в виде машинных программ на языке высокого уровня и решение задач на ЭВМ. Модификации метода Гаусса.

    реферат [85,2 K], добавлен 04.03.2011

  • Сущность и графическое представление методов решения нелинейных уравнений вида F(x)=0. Особенности метода хорд, бисекции, простой итерации, касательных и секущих. Проверка результатов с помощью встроенных функций и оценка точности полученных значений.

    контрольная работа [316,1 K], добавлен 09.11.2010

  • Методы оценки погрешности интерполирования. Интерполирование алгебраическими многочленами. Построение алгебраических многочленов наилучшего среднеквадратичного приближения. Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений.

    лабораторная работа [265,6 K], добавлен 14.08.2010

  • Особенности решения линейных и нелинейных уравнений. Характеристика и практическое применение и различных методов при решении уравнений. Сущность многочлена Лагранжа и обратного интерполирования. Сравнение численного дифференцирования и интегрирования.

    курсовая работа [799,6 K], добавлен 20.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.