Современный подход к классификации режимов искусственной вентиляции легких

Искусственная вентиляция легких: метод временного протезирования жизненно важной функции организма - внешнего дыхания. Роль механической вентиляции в процессе выздоровления пациента. История респираторной терапии. Технические аспекты, виды вентиляции.

Рубрика Медицина
Вид курсовая работа
Язык русский
Дата добавления 24.02.2009
Размер файла 361,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

44

Российская Военно-медицинская академия

Кафедра анестезиологии и реаниматологии

Современный подход к классификации режимов искусственной вентиляции легких

(Курсовая работа)

Санкт-Петербург

2008

ОГЛАВЛЕНИЕ

  • СПИСОК СОКРАЩЕНИЙ 4
    • Введение 6
    • Глава 1. Исторические события в эволюции респираторной терапии 9
    • 1. 1. Применение оксигенотерапии 9
    • 1.2. Клиническое использование механической вентиляции 11
    • Глава 2. Некоторые технические аспекты механической вентиляции и классификации аппаратов ИВЛ 21
    • 2.1. Схема контроля (управления) 22
    • Глава 3. Режимы управления вентилятором 42
    • 3.1. Режимы 44
    • Непрерывная Принудительная Вентиляция (Continuous Mandatory Ventilation) 44
    • Вспомогательная / Контролируемая Вентиляция (Assist / Control Ventilation) 46
    • Вспомогательная Искусственная Вентиляция (Assisted Mechanical Ventilation) 47
    • Перемежающаяся Принудительная Вентиляция(Intermittent Mandatory Ventilation) 48
    • 3.6. Синхронизированная Перемежающаяся Принудительная Вентиляция (Synchronized Intermittent Mandatory Ventilation) 50
    • Вентиляция с поддержкой давлением (Pressure Support Ventilation) 55
    • Постоянное Положительное Давление Дыхательных Путей 7 (Continuous Positive Airway Pressure) 58
    • Вентиляция со свободным (сбрасываемым) давлением дыхательных путей (Airway Pressure Release Ventilation) 59
    • Принудительная Минутная Вентиляция (Mandatory Minute Ventilation) 63
    • комбинированные режимы 64
    • режимы двойного контроля искусственной вентиляции легких 65
    • Двойной Контроль в пределах цикла дыхания 65
    • Обеспечиваемая объемом поддержка давлением
    • (Volume Assured Pressure Support) 65
    • Вентиляция с Двойным Контролем от дыхания к дыханию 69
    • Поддержка объемом (Volume Support) 69
    • Вентиляция регулируемая давлением с контролем объема
    • (Pressure-Regulated Volume Support) 71
    • Автоматический режим (Automode) 73
    • Адаптивная поддержка вентиляции
    • (Adaptive Support Ventilation) 74
    • Автоматическая компенсация трубки
    • (Automatic Tube Compensation) 76
    • Пропорциональная вспомогательная вентиляция
    • (Proportional Assist Ventilation) 80
  • ЗАКЛЮЧЕНИЕ 83
  • СПИСОК ЛИТЕРАТУРЫ 85

список сокращений

В современной медицинской литературе широко используются различные сокращения, которые применяются также для обозначения режимов искусственной вентиляции легких на респираторах зарубежного производства. Ниже приведены некоторые из этих аббревиатур, их расшифровка, а также общепринятые сокращения на русском и английском языках.

A / C - assist / control, вспомогательно - принудительный режим

ASV - adaptive support ventilation, адаптивная поддержка вентиляции

ATC - automatic tube compensation, автоматическая компенсация трубки

BiPAP - bi-level positive airway pressure, вентиляция с двумя уровнями (фазами) положительного давления в дыхательных путях

CMV/ - continuous mandatory ventilation, непрерывная принудительная вентиляция

CPAP - continuous positive airway pressure, постоянное положительное давление в дыхательных путях

IMV - intermittent mandatory ventilation, перемежающаяся принудительная вентиляция

IRV

- inverse-ratio ventilation, вентиляция с инвертированным соотношением

вдох/выдох

MMV - mandatory minute ventilation, принудительная вентиляция с заданным минутным объемом

PAV - proportional assist ventilation, пропорциональная вспомогательная вентиляция

PC (PCV) - pressure-controlled ventilation, вентиляция с контролем по давлению

PC-IRV - PC inverse-ratio ventilation, вентиляция с контролем по давлению и инвертированным соотношением вдох/выдох

PEEP (ПДКВ) - positive end expiratory pressure, положительное давление в конце выдоха

PRVC - pressure regulated volume control; вентиляция с контролем объема и регуляцией давлением

PS (PSV, CSV) - pressure support ventilation, вентиляция с поддержкой давлением

SIMV - synchronized intermittent mandatory ventilation, синхронизированная перемежающаяся принудительная вентиляция

VAPS - volume-assured pressure support, режим обеспечиваемой объемом поддержки давлением

VS - volume support, поддержка объемом

FiO2 - фракционная концентрация кислорода в дыхательной смеси

ДО - дыхательный объем

ИВЛ - искусственная вентиляция легких

Триггер - система обратной связи респиратора с пациентом, благодаря которой осуществляется возможность синхронизации аппаратных вдохов и обнаружения спонтанной дыхательной активности с последующей респираторной поддержкой

ФОЕ - функциональная остаточная емкость

Введение

Искусственная вентиляция легких является методом временного протезирования жизненно важной функции организма - внешнего дыхания. Несмотря на нежелательные побочные эффекты, ИВЛ незаменима при лечении тяжелобольных с острой дыхательной недостаточностью. Другого столь же эффективного способа устранения гипоксии и предупреждения развития в организме необратимых изменений современная медицина не знает.

Механическая вентиляция занимает значительное место в процессе выздоровления пациента от отделения интенсивной терапии до дома. В конце 1990-х в мире, по приблизительной оценке, 100.000 аппаратов ИВЛ находилось в использовании [Maclntyre N. R., Branson R. D., 2001]. Около половины из них - в Северной Америке. По тем же данным приблизительно 1.5. миллионам пациентов ежегодно в Соединенных Штатах проводится механическая вентиляция вне операционных блоков и послеоперационных палат, средняя продолжительность которой в госпиталях составляет 1-1,5 недели.

Две важные тенденции наметились в использовании вентиляции с положительным давлением в начале XXI столетия. Первая, это то, что количество интубированных пациентов и пациентов, нуждающихся в механической вентиляции, растет. Для этого имеется несколько причин. Одна из них - старение населения с большим количеством хронических заболеваний и частыми их обострениями. В дополнение, агрессивные хирургические манипуляции и процедуры выполняются пациентам старшего возраста и с более тяжелой патологией. Подобно этому более агрессивная химиотерапия проводится пациентам со злокачественными новообразованиями, результатом которой является большее количество имуноскомпрометированых больных с высоким риском септических осложнений и дыхательной недостаточности.

Вторая значимая тенденция в механической вентиляции, это то, что как только острая фаза дыхательной недостаточности разрешается, пациенты часто оказываются в хронической фазе зависимости от аппарата ИВЛ, результатом чего является повышение стоимости интенсивной терапии. Обе эти тенденции подразумевают, что потребность в ИВЛ только увеличится в течение обозримого будущего.

Расширение применения ИВЛ и поиск оптимальных конструкций аппаратов привели к их большому разнообразию. В конце 80-х - начале 90-х гг. в СССР выпускалось или готовилось к производству свыше 20 различных аппаратов, было известно также не менее 150 зарубежных конструкций [Бурлаков Р.И., Гальперин Ю.Ш., Юревич Ю.М., 1986]. Такое разнообразие затрудняет понимание принципиальных особенностей определенной модели, не позволяя эффективно использовать ее преимущества и нейтрализовать недостатки.

Актуальность работы обусловлена тем, что независимо от уровня экономического развития страны, лечебные учреждения различного ранга имеют на оснащении отделений интенсивной терапии аппараты ИВЛ зарубежного производства. И количество подобной аппаратуры непрерывно увеличивается. Современный аппарат ИВЛ представляет собой сложное устройство, требующее специальных знаний у врачей и обслуживающего персонала. Отсутствие таких знаний приводит к долгому «привыканию» к аппарату и неумелому его использованию, иногда ведущему к серьезным последствиям. Знание аппаратуры ИВЛ, грамотное и рациональное её использование являются отправной точкой успешного применения респираторной терапии. Но задача понимания механических вентиляторов становится все более трудной в течение последних нескольких лет. Это обусловлено тем, что производители пытаются достичь изделия отличающегося, создавая новые и различные названия для особенностей вентилятора, которые могут быть фундаментально одинаковыми. Однако, они могут использовать одинаковое слово для существенно различаемых особенностей. Существует ряд классификаций методов ИВЛ, которые по сути, не противоречат, но дополняют друг друга [Бурлаков Р.И. и др., 1986; Лескин Г.С., Кассиль В.Л., 1995; Гальперин Ю.Ш., Кассиль В.Л., 1996], поскольку почти ежегодно появляются новые режимы, предлагаемые различными фирмами. Для всех современных методов ИВЛ характерна общая черта - режим работы респиратора задается врачом и не зависит от пациента. В настоящее время разработано много режимов ИВЛ, основанных на разных принципах. Однако, общепринятой классификации их не существует [Кассиль В.Л., Лескин Г.С., Выжигина М.А., 1997].

Одним из рациональных вариантов решения данной проблемы может быть продвижение концепции определения ограниченного количества терминов, правил для их объединения и разъяснения терминологии. Невозможно заставить изготовителей принять последовательную схему классификации, но можно развивать ту, которая ясно объясняет, что делают вентиляторы, независимо от того, как производители называют это.

Целью данной работы является формулировка современного подхода к классификации режимов ИВЛ, определение и описание параметров, используемых для этого в настоящее время применительно к режимам ИВЛ.

Глава 1. Исторические события в эволюции респираторной терапии

Использование медицинского газа для лечения (первично, кислород) и механическая вентиляция, включающие перемежающееся положительное давление, создаваемое специальными устройствами, положили развитие многогранному направлению в медицине - респираторной терапии.

1. 1. Применение оксигенотерапии

В 1798 году Thomas Beddoes основал Институт пневматики в Бристоле (Англия), и начал опыты с кислородом, открытым Priestly. Там он начал использовать кислород для лечения заболеваний сердца, астмы и отравлений опиумом.Т. Beddoes можно отнести к отцам ингаляционной терапии. Он использовал кислород для решения задач, стоявших в то время перед медициной. Кислородная палатка была использована в 1910 г. Тем не менее, это произошло до того, как в 1920 г. были положены твердые физиологические основы лечения кислородом [Leigh J. M., 1974., Helmholz H. F., 1989., Barach A. L., 1962].

Научные исследования John Scott Haldane и Joseph Barcroft кислородной недостаточности у человека показали пользу кислородной терапии. Руководимый желанием дальнейшего изучения, J. Barcroft в 1920 г. провел 5 дней в камере, заполненной 15% кислородом. J. S. Haldane совершенствовал кислородную маску в 1918 г. во время первой мировой войны, когда применил лечение пациентов с отравлением хлором, вызывавшим отек легких.

Дальнейшее развитие кислородных устройств (лицевые маски, металлические/резиновые катетеры, кислородные камеры) выявило необходимость развития научно обоснованного назначения терапии кислородом.

Кислородные палатки начали использоваться в клиниках с 1920 г. Leonard Hill использовал их для лечения трофических язв нижних конечностей. Использовались также большие кислородные палатки, в которых пациенты могли получать лечение. В этот же период J. S. Haldane предложил использовать кислород в смеси с обычным атмосферным воздухом. Он также начал использовать кислородные микстуры и разработал маску для дыхания с положительным давлением (СРРВ или СРАР), достигавшим 4 см Н2О.

В 1938 году Walter Boothby, W. Randolf Lovelace и Arthur Bulbulian в Майо-Клиник разработали маску, позволявшую достигать высоких концентраций кислорода с минимальным повторным его использованием. В дальнейшем это обеспечило кислородом пилотов, летавших на больших высотах во время второй мировой войны. Использование этих разработок для госпитальных целей стало возможным после войны [Helmholz H. F., 1989; Barach A. L., 1962].

В дальнейшем наука и технические нужды разделились, что требовало дополнительных инвестиций. Кроме того, использование кислорода вызывало необходимость подготовки специально обученного персонала, что также сопровождалось определенными трудностями. Врачи и медицинские сестры были не в состоянии поддерживать обслуживание 24 часа в сутки.

Но исследования в области использования кислорода не прекратились. В середине 60-х, Clark и John Severinghaus представили электроды, позволившие произвести анализ РаО2 и РаСО2. Анализ газов крови был включен в исследования для отделений ингаляционной терапии, а также часто использовался в операционных и лабораториях, исследовавших функцию легких.

Во время 70-х и начале 80-х гг. электроды Clark и John Severinghaus были адаптированы для чрескожного клинического применения. Пульсоксиметрия была открыта случайно Taku Aoyagi, в попытках измерить сердечный выброс с помощью окрашенного индикатора. Начиная с 1974 г. это исследование было принято как стандарт для клинических измерений в операционных и отделениях интенсивной терапии [Severinghaus J. W., Honda Y., 1987].

Для титрования концентрации кислорода E. J. Moran Campbell разработал в 1960 г. маску, обеспечивавшую высокопоточную контролируемую подачу кислорода. Воздушно-кислородные смесители были разработаны в середине 1970-х с дозированием кислорода и потока для использования в отделениях интенсивной терапии. В течение 1970-х было показано снижение смертности у пациентов, нуждавшихся в дополнительном кислороде [Nocturnal Oxygen Therapy Trial Group, 1980].

Преобразующие устройства, такие как резервуары (кислородные подушки), устройства импульсного потока и трахеальные катетеры были разработаны в 1980-х, в попытке сохранить стоимость продолжительной оксигенотерапии. Область респираторного ухода в настоящее время расширяется (сестринский уход на дому, самостоятельное обслуживание). В Соединенных Штатах в течение 1993 г. приблизительно 616.000 пациентов использовали кислород в домашних условиях [O'Donohue W. J.,Plummer A. L., 1994].

1.2. Клиническое использование механической вентиляции

Искусственная вентиляция легких была известна давно. Классическое описание этого метода есть в античной литературе [Гейронимус Т.В., 1975; Holy Bible]. Заслуживает внимания тот факт, что в эволюции метода ИВЛ можно выделить несколько выдающихся открытий, внесших вклад в развитие этого метода. Однако десятилетия, разделяющие эти открытия, характеризовались только крайним невежеством, распространением неправильных представлений и ложных впечатлений. Одним из ранних таких открытий является факт, установленный Андреем Везалием в середине XVI века. Он показал, что животным можно поддерживать жизнь ритмическими раздуваниями легких с помощью нагнетания в них воздуха кузнечными мехами. В середине XVII века Robert Hook повторил опыты Везалия и получил те же результаты [Faulconer A., Jr., Keys T. E., 1965], но прошло 100 лет, прежде чем эта идея была внедрена в практику.

К 1770 г. применение кузнечных мехов завоевало популярность при оживлении утонувших людей. Однако избыточный энтузиазм в применении этого метода часто брал верх над осторожностью. Большое усердие в данном случае нередко приводило к разрыву альвеол, пневмотораксу и смерти пострадавших. В результате к 1800 г. этот вид ИВЛ получил весьма дурную репутацию. В течение последующих 70 лет прогресса в данной области не было.

Устройства для механической вентиляции, более используемые, чем кузнечные меха, начали появляться после середины 1800-х. Самые ранние из них, такие как спирофор Woillez's, 1876 г. (рисунок 1-1), использовали помещение тела пациента в железный каркас с большой мембраной, создававшей субатмосферное давление.

Другие устройства напоминали подвижные кабинеты или телефонные будки. Схема отрицательного давления была рассмотрена с позиций физиологии, и попыток интубации трахеи не предпринималось до 1890-х гг. Хирургам нетерпелось использовать свои новые техники оперативных вмешательств на грудной клетке, но они осознавали проблему пневмоторакса. Имея такие периоперационные проблемы, началось рассмотрение вентиляции с положительным давлением. Для решения этой задачи требовались искусственные дыхательные пути. В 1900 г. стали доступны изгибаемые металлические трубки и в 1909 г. Meltzer произвел оральную интубацию.

Однако, в 1904 г., молодой германский хирург Ernеst Sauerbrush, работая тогда над методикой анестезии в торакальной хирургии, изобрел камеру, позволявшую оперировать при отрицательном давлении (рисунок 1-2).

Эта идея в дальнейшем послужила основанием для разработки и применения кирасного (панцирного) респиратора. Однако метод различных (положительного - отрицательного) давлений был подхвачен и продолжил свою популярность в Европе. В противоположность этому, многие американские хирурги и анестезиологи вернулись к эндотрахеальной интубации и прямому введению воздуха в легкие. В 1913 г., в Питсбурге, Chevalier Jackson разработал ларингоскоп и интратрахеальный катетер. Однако, вентиляция с положительным давлением через маску продолжалась, пока не уменьшилось мистическое отношение к технике интубации. Это произошло благодаря работе Ivan Magill с коллегами во время первой мировой войны [Morch E. T., 1990, Colice G. L., 1994].

Много устройств, создающих положительное давление было разработано для хирургии и реанимации. Аппарат Fell, модифицированный O'Dwyer 1888 г. был скомбинирован из ларингеальной трубки (изогнутая металлическая трубка, проводимая через голосовую щель) и мехов, приводимых в движение ногой (рисунок 1-3).

В 1907 г., в Германии, Heinrich Drager разработал свой Pulmotor, который в течение нескольких последующих десятилетий завоевал довольно большую популярность, особенно в практике работы пожарных и полиции. В 1910 г., американец Henry Janeway сконструировал анестезиологическое устройство.

Одна из первых эпидемий полиомиелита произошла в Нью-Йорке в 1916 г. К 1928 г. Philip Drinker, Charles McKhann и Louis Shaw в Гарварде разработали первые «железные легкие», которые получили широкое применение. В 1932 г. John H. Emerson разработал свои железные легкие, которые имели улучшенную конструкцию для пациента и прозрачный купол, обеспечивая вентиляцию с положительным давлением и при открытом корпусе (рисунок 1-4, а).

Около 1938 г. эпидемия полиомиелита коснулась и Англии, где обеспечение железными легкими не отвечало потребности. Эпидемическая вспышка в Скандинавии, Европе и Америке в 1950-х коснулась как взрослых, так и детей (рисунок 1-4, б). Эта катастрофически возросшая потребность в механической вентиляции, также как и возросшая необходимость в вентиляторах для анестезии, послужила своеобразным толчком прогрессу в развитии данной области на международном уровне.

Во время трагической эпидемии в Копенгагене в 1952 г., доктор Bjorn Ibsen изменил тактику и вместо железных легких использовал трахеостомию и вентиляцию положительным давлением. Из-за ограниченного количества аппаратов, около 1400 студентов-медиков проводили ручную вентиляцию. Мешок АМБУ (AMBU-bag, adult manual

breathing unit) был разработан Henning Ruben в 1954 г. Скандинавы изготовили устройства положительного давления, такие как Aga Pulmospirator, Engstrom и Morch (рисунок 1-5). Прототип Morch был сконструирован, используя цилиндр, сделанный из городской коллекторной трубы, во время оккупации Копенгагена Германией.

Британские анестезиологи произвели Beaver, Blease Pulmoflator и Barnet. В Германии, компания Drager разработала Poliomat. Этот международный опыт в использовании продленной вентиляции с положительным давлением привел к её использованию как в торакальной и сердечной хирургии, так и в послеоперационном периоде. Шведские хирурги Bjork и Engstrom работали в одном направлении с британскими врачами Macintosh и Mushin.

Несмотря на то, что европейцы отказались от железных легких, В Соединенных Штатах до середины 1950-х пациенты с полиомиелитом продолжали получать лечение в респираторах корпусного типа. Национальный Фонд младенческого паралича приложил огромные усилия в попытке ликвидировать полиомиелит. Была внедрена вакцина (Salk, позже Sabin) и выделены средства на развитие центров интенсивного ухода. После этого Соединенные Штаты последовали Скандинавии и Британии в послеоперационном использовании контролируемой вентиляции. В это время V. Ray Bennet (рисунок 1-6) внедрил TV-2P «assister» в 1948 г., а Forrest Bird разработал свой «клинический магнитный респиратор» в 1951 г. (рисунок 1-7).

В середине 1950-х поршневой вентилятор E. Trier Morch стал клинически доступным в Соединенных Штатах. Первое поколение вентиляторов с контролируемым давлением, таких как Bird Mark 7 и Bennett PR-1 было направлено в массовое производство в 1958 и 1961 гг. соответственно. Jack Emerson взял направление со своим объем/время-контролирующим аппаратом Post-Op или 3-PV в 1964 г. Доктор Thomas Petty с коллегами применили постоянное положительное давление дыхания (порог Alvan Barach's) для использования в вентиляторах. Они назвали это положительным давлением в конце выдоха (РЕЕР) в 1967 г. и поддержали терапевтическое использование этого метода в лечении респираторного дистресс-синдрома взрослых.

Через 10 лет последовала вторая генерация вентиляторов объемного типа (Puritan-Bennet MA-1, Ohio 560, Bourns Bear 1, Siemens 900B). Эти вентиляторы стали «рабочими лошадками» в растущем количестве отделений интенсивной терапии в Соединенных Штатах. Параллельно, среди врачей интенсивной терапии возрастала потребность в квалифицированных специалистах в области управления вентиляторами.

Также развивались режимы дыхания и методы контроля функции вентилятора. Раннее оборудование управлялось пневматическими ил7и основными механическими переключателями. Управление функциями модернизировалось с появлением жидкокристаллических и транзисторных технологий в 1970-х. В настоящее время нами используется техника третьего поколения, основанная на микропроцессорах,.

Разнообразие дыхательных режимов расширилось. Классификация 1960-х (Mushin W. W) была обновлена R. Chatburn, чтобы лучше различать увеличивающуюся сложность технологий вентиляторов [Сhatburn R. L., 1991]. Однако, это не устранило противоречий в терминологии режимов между производителями и клиницистами.

Концепция перемежающейся принудительной вентиляции (IMV) первоначально была разработана Engstrom в середине 1950-х. Однако, в 1971 г. доктор Robert Kirby и соратники повторно ввели этот режим как первичный для вентиляции у младенцев с респираторным дистресс-синдромом, развивавшимся вторично у преждевременно рожденных. Доктор John Downs с коллегами применили этот режим у взрослых для облегчения отлучения от вентилятора. Клиницисты начали признавать этот режим. В середине 1980-х получил развитие режим вентиляции с поддержкой давлением (PSV). Доктор John Marini с коллегами начал исследование пациентов, находившихся на ИВЛ.

Другие первичные режимы вентиляции у взрослых были введены в 1980-х - 1990-х гг. Вентиляция с контролем давления (PCV) была рекомендована для снижения эффекта баротравмы дыхательных путей и повреждения альвеол, которые часто случались у пациентов с высоким легочным сопротивлением (ригидными легкими). Другое недавнее введение, чтобы снизить потребность в давлении, это вентиляция со свободным (сбрасываемым) давлением дыхательных путей (APRV).

Вентиляция с инвертированным отношением вдох/выдох (IRV) была предложена E. O. R. Reynolds в 1971 г. как метод улучшенной оксигенации у младенцев с респираторным дистресс-синдромом. Её применение распространилось и на взрослых пациентов с респираторным дистресс-синдромом, как вариант РЕЕР вентиляции с улучшенной оксигенацией и ограниченным давлением. Пропорционально вспомогательная вентиляция (режим PAV) появилась, обещая режим, в котором вентилятор генерирует давление пропорционально усилию пациента. В конце 1989 г., Respironics ввели понятие режима с двумя уровнями положительного давления (BiPAP), разработанный как неинвазивная альтернатива стандартной вентиляции и использующая назальную лицевую маску.

Глава 2. Некоторые технические аспекты механической вентиляции и классификации аппаратов ИВЛ

Вентиляторы развились в высоко сложные, управляемые микропроцессором устройства с широким диапазоном операционных характеристик. К сожалению, наша терминология и концептуальные модели, которые мы используем, для понимания работы вентилятора, не успевают сохранять темп технологического развития.

В 1980-х производительность вентилятора диктовалась механической движущей системой. Появление микропроцессора позволило отдельному вентилятору производить любое количество форм кривых, столь же безграничное как воображение оператора. В этой главе представлена схема классификации аппаратов ИВЛ в соответствии с технологией, принятой ведущими членами сообщества пульмональной медицины [Chatburn R. L., Branson R. D., 1992] и большинством авторов зарубежных изданий по искусственной вентиляции легких.

2.1. Основные концепции

Вентилятор - это система взаимосвязанных элементов, предназначенных для изменения, передачи и направления прикладной энергии предопределенным образом, чтобы исполнить полезную работу (поддержать или заменить мускулатуру пациента при выполнении акта дыхания). Образ любого вентилятора может быть представлен следующим набором составляющих:

* входящая энергия (вид энергии, используемой при работе вентилятора),

* схема контроля (управления) (включая передачу и преобразование энергии),

* производительность (давление, объем и поток).

Этот простой образ может быть расширен, добавлением множества деталей (таблица 2-1).

2.2. Схема контроля (управления)

Чтобы понимать, как механизм может обеспечивать прирост естественной функции дыхания, необходимо понимание механики дыхания. Изучение механики имеет дело с силами, перемещениями и шкалой изменения этих перемещений. В физиологии, сила измерена как давление (давление = сила x площадь), смещение измерено как объем (объем = площадь х смещение), и степень изменения измерена как поток (например, средний поток = изменение объема/изменение времени; мгновенный поток = производная объема относительно времени). Нас интересует давление, необходимое для движения потока газа через дыхательные пути и увеличения объема легких.

Как пример, сложная система органов дыхания может быть представлена простой графической моделью (соломинка, связанная с воздушным шаром). Простая графическая модель аналогична простой электрической цепи, в которых податливость (комплайнс) является аналогичным емкости, сопротивление потоку аналогично электрическому сопротивлению, и давление аналогично уровню напряжения. Подобие физической и электрической моделей позволяет заимствовать математические модели от электрической разработки, заменяя давление, объем и поток, соответственно, напряжением, нагрузкой и током (рисунок 2-1).

Параметры для классификации аппаратов ИВЛ

Таблица 2-1

Привод (источник энергии)

Пневматический

Электрический

Переменный ток

Постоянный ток (батарея)

Регуляция потока вдоха и формы кривой потока

Внешний компрессор

Внутренний компрессор

Поршень

Электрический двигатель / вращающееся колесо

Электрический двигатель / линейный (стойка и шестерня)

Пневматическая мембрана (диафрагма)

Ограничение переменных

Редуцирующий давление клапан

Измерительная трубка (типа Thorp)

Шаговый двигатель с ножничным клапаном (scissors-valve)

Пропорциональный соленоид (клапан)

Электромагнитный

Прямо соединенный с шаговым двигателем

Управляемая шаговым двигателем камера

Пропорционально разделенные управляемые клапаны

Схема контроля (управления)

Контроль контура (циркуляции)

Механический

Пневматический

Жидкостный

Электрический

Электронный

Контроль переменных и форм кривых

Давление

Объем

Поток

Время

Фазовые переменные

Переменная триггера

Переменная предельных значений

Переменная цикла

Переменная базовой линии (baseline)

Условные переменные

Работа вентилятора

Давление

Прямоугольная кривая

Экспоненциальная

Синусоидальная

Осциллирующая (колеблющаяся)

Объем

Рампообразная

Синусоидальная

Поток

Прямоугольная

Рампообразная

Восходящая

Нисходящая

Синусоидальная

Эффекты контура пациента

Системы тревог

Тревоги входящей энергии (питания)

Низкая электрическая энергия

Низкая пневматическая энергия

Тревоги контроля контура

Повреждение основных систем (вентилятор неуправляем)

Неправильные настройки вентилятора

Инверсионное отношение времени вдох/выдох

Тревоги выхода

Давление

Объем

Поток

Время

Высокая и/или низкая частота дыханий вентилятора

Высокое и/или низкое время вдоха

Высокое и/или низкое время выдоха (апноэ)

Вдыхаемый газ

Высокая и/или низка температура вдыхаемого газа

Высокое и/или низкое содержание О2

Результат выражается как уравнение движения для системы органов дыхания (упрощенная версия) [Chatburn R. L., Primiano F. P., Jr, 1988]:

Давление мышц + давление вентилятора

= эластичность х объем + сопротивление х поток

(1)

Давление Мышц + давление вентилятора

= эластическое наполнение + упругое наполнение

(2)

В этом упрощенном варианте давление мышц представляется как трансреспираторное давление (то есть, давление дыхательных путей минус давление поверхности тела), произведенное дыхательными мышцами, чтобы расширить грудную клетку и легкие. Можно сказать, что давление мышц является воображаемым (мнимым), потому что его невозможно непосредственно измерить. Давление вентилятора - это трансреспираторное давление, создаваемое им во время вдоха. Сочетание давления мышц и вентилятора создает объем и поток, доставляемые пациенту. Но усилие мускулатуры пациента увеличивает объем легкого за счет уменьшения давления относительно атмосферного, в то время как вентилятор увеличивает объем легкого, увеличивая давление относительно атмосферного давления. Общее давление - результат усилия пациента, вдыхающего газ в легкие и вентилятора, вдувающего газ в легкие. Давление, объем и поток, изменяются со временем и, следовательно, являются переменными. Эластичность и сопротивление приняты к константе, а их совместный эффект составляет наполнение, производимое вентилятором и дыхательными мышцами. Эластичность (комплайнс, податливость торакопульмональной системы) определена как отношение дыхательного объема к давлению в дыхательных путях (мл/см. вод. ст), а сопротивление (упругость, аэродинамическое сопротивление дыхательных путей и искусственных воздуховодов) определено, как отношение дыхательного объема к давлению за единицу времени (мл/см. вод. ст. /сек). Эластичное наполнение - давление, необходимое для преодоления эластичности (комплайнса) системы органов дыхания, упругое наполнение - давление, необходимое для преодоления сопротивления потоку в дыхательных путях (включая интубационную трубку) наряду с легкими и сопротивлением тканей грудной клетки.

Необходимо обратить внимание, что давление, объем и поток - все измерены относительно их начальных значений (то есть, их значений в конце выдоха). Это означает, что давление вдоха измерено как изменение в давлении дыхательных путей выше РЕЕР. Это причина того, например, что уровни поддержки давления измерены относительно РЕЕР. Объем измеренный как изменение легочного объема выше ФОЕ, и изменение легочного объема в течение дыхательного периода определено как дыхательный объем (ДО). Поток измерен относительно его конечно-экспираторного значения (обычно ноль). Когда давление, объем и поток представлены как функции времени, то для управляемой объемом вентиляции и управляемой давлением вентиляции имеются характерные формы кривых (рисунок 2-2).

Заштрихованные поля показывают давление, вызванное сопротивлением; открытые поля показывают давление, вызванное эластичностью («эластической отдачей»).

Заметьте, что, если дыхательная мускулатура пациента не функционирует, давление мышц равно нулю, и вентилятор должен произвести все давление, необходимое для доставки ДО и создания потока вдоха. Наоборот, если давление вентилятора будет равно нулю (то есть, давление дыхательных путей не нарастает выше нулевой линии во время вдоха) и пациент не дышит, то не имеется никакой вентиляционной поддержки. Между этими двумя крайностями имеется бесконечное разнообразие комбинаций давления, создаваемого дыхательной мускулатурой и поддержки вентилятором, которые являются теоретически возможными для частичной вентиляционной поддержки.

Концепция мышечного давления важна по следующей причине. Имеются много вентиляторов и прикроватных мониторов легочной функции, которые обеспечивают клинициста оценками комплайнса и сопротивления системы органов дыхания, основанных на трансреспираторном давлении системы (то есть, давлении вентилятора), объеме и потоке. Все из них делают вычисления на основе этой версии уравнения движения:

Давление Вентилятора = эластичность х объем + сопротивление х поток (3)

Оно не содержит выражения для давления мышц. Это подразумевает, что любое измерение механики системы органов дыхания имеет смысл при условии, если дыхательные мышцы бездействуют. Если пациент делает дыхательное усилие в течение вспомогательного дыхания, то он добавляет неизмеренное количество движущего давления к давлению, произведенному вентилятором. Таким образом, эластичность и сопротивление, основанные только на измерениях аппаратного датчика давления дыхательных путей, недооценивают истинные значения.

Анализ взаимодействия «вентилятор-пациент» на основе математической модели предполагает надлежащее использование слова «assist»(помогать), которое является другим, часто путаемым понятием. Словарь Вебстера определяет assist как «помогать; оказывать поддержку». Из уравнения движения следует, что всякий раз, когда давление дыхательных путей (то есть, давление вентилятора) повышается выше начального в течение вдоха, вентилятор работает на пациента. Таким образом, дыхание, как считают, является вспомогательным, независимо от других дыхательных характеристик (то есть, классифицируется ли дыхание как спонтанное или принудительное). Важно не путать это значение слова «помогать» с определенными названиями режимов вентиляции (например, ASSIST / CONTROL). Изготовители вентиляторов часто присваивают названия режимам вентиляции без рассмотрения последовательности или теоретической уместности.

В уравнении движения (3), форма любой из трех переменных (то есть, давления, объема или потока, выраженных как функции времени) может быть предопределена, делая это с помощью независимой переменной и двумя другими зависимыми переменными. Этим оперируют вентиляторы. Таким образом, в течение вентиляции управляемой давлением, давление - независимая переменная, и форма кривых объема и потока зависит от формы кривой давления, а также от сопротивления и комплайнса дыхательной системы. Наоборот, в течение поток-контролируемой вентиляции, мы можем определить форму кривой потока. Это делает поток независимой переменной, и форма кривой объема зависит от формы кривой потока. Форма кривой давления зависит от формы кривой потока также как от сопротивления и комплайнса.

Таким образом, имеется теоретическая основа для классификации вентиляторов контролируемых как по давлению, так и по объему, или потоку. На рисунке 2-3 представлены критерии, для определения переменной контроля (то есть, переменной, которая является независимой).

Если формы кривых для всех трех переменных не предопределены (то есть, ни одна из переменных не может рассматриваться независимо), то вентилятор контролирует только время инспираторной и экспираторной фазы и это называется контролем времени (или по времени). С практической точки зрения, из контролирующих только время, существует несколько типов высокочастотных вентиляторов. Это существенно для понимания и интерпретации у кровати пациента показателей легочной механики (например, сопротивления, комплайнса, константы времени, и т.п.), рассчитываемых многими вентиляторами.

Наиболее существенно, что объясняется уравнением движения, это то, что любой из используемых в настоящее время вентиляторов может непосредственно контролировать только одну переменную одновременно: давление, объем или поток. Поэтому, можно думать, что вентилятор это просто машина, которая контролирует либо кривую давления дыхательных путей, либо кривую объема вдоха, или кривую потока вдоха. Таким образом, давление, объем и поток упомянуты в этом контексте как переменные контроля. Время - это переменная, которая является подразумеваемой в уравнении движения. Как показано в следующих примерах, в некоторых случаях время рассматривается как контролируемая переменная. Эта концепция позволяет нам понимать любой режим, независимо от сложности, просто наблюдая, как контроль переключается от одной переменной к другой.

Сказав, что контролируется, можно исследовать, как это происходит. Вентилятор может управляться двумя различными способами:

1. Установить значения переменных и ждать результата работы вентилятора в течение некоторого периода.

2. Установить значения, наблюдать тенденцию в работе вентилятора и изменять установленные значения соответственно, чтобы достичь желаемого результата.

В обоих случаях изменение установленных значений приводит к изменению результата. В первом случае не имеется никакой информации о произведенной вентилятором работе, чтобы произвести новый цикл дыхания (закрыть петлю). Этот тип схемы контроля называется контролем с открытой петлей (или контролем открытой петли). Во втором случае, информация о проделанной вентилятором работе используется, чтобы изменять заданные значения, что в свою очередь улучшает результат. Эта схема контроля называется контролем с закрытой петлей (или контролем (управлением) с обратной связью). Контроль с обратной связью также называется серво-контролем. Рисунок 2-4 иллюстрирует модели управления с открытой и закрытой петлей.

Чтобы выполнять контроль закрытой петли, результат работы вентилятора должен быть измерен и сравнен с рекомендованными значениями. Эти измерение и сравнение может выполнять человек. Но в современных вентиляторах, преобразователи давления и потока, и электронная схема требуют автоматического контроля закрываемой петли. Контроль закрытой петли обеспечивает преимущество более последовательной работы вентилятора в присутствие непредвиденных изменений (которые могли бы затрагивать давление, объем и поток, включая конденсацию или утечку в контуре циркуляции, обструкцию интубационной трубки, и изменения в сопротивлении системы органов дыхания и комплайнса).

Вентиляторы используют контроль закрываемой петли, чтобы поддерживать последовательно дыхательное давление, кривые объема или потока при изменении значений. Значения, представленные дыхательной системой изменяются часто как результат патологии легких. Проект вентилятора развился от простого контроля открытой петли до двойной закрытой петли или двойному контролю. Эта схема была развита, чтобы получить преимущества и управляемой давлением и управляемой объемом вентиляции. Двойной контроль обеспечивает преимущество контроля давления (то есть, ограничивая пиковое дыхательное давление, по крайней мере, в пределах установленного диапазона, избегать перерастяжения легких), в то же время поддерживая преимущества контроля объема (то есть, доставка постоянного минутного объема, даже если изменяется механика внешнего дыхания).

В настоящее время имеются два основных подхода к двойному контролю. Первый состоит в том, чтобы регулировать (приспосабливать) форму кривой давления между дыханиями. Эта схема была внедрена Siemens с режимом Volume Support (поддержка объемом) на Siemens Servo 300. Вдох - это давление, контролируемое в пределах дыхания, но предел давления автоматически регулируется для достижения заданного целевого дыхательного объема (рисунок 2-5, вверху). Начальный предел давления (то есть, изменение в давлении дыхательных путей выше РЕЕР) установлен автоматически, основанный на расчетном значении для комплайнса системы органов дыхания (также автоматически полученный из теста дыхания):

Начальный предел давления = установленный ДО / комплайнс (4)

Если фактический ДО, основанный на начальном пределе давления, отличается от установленного ДО, предел давления регулируется (выше или ниже, но не больше, чем на 3 см H2O) для близкого соответствия установленному ДО. Этот процесс повторяется более чем несколько дыхательных циклов, пока доставленный ДО не равняется установленному. Подобный подход используется в режиме PRVC (контроль объема, регулируемый давлением) на Siemens 300.

Другой основной подход состоит в том, чтобы внести изменения в пределах дыхания, чтобы достичь заданного объема. Это демонстрируется в режиме PRESSURE AUGMENT (нарастающего давления) на Bear 1000 и VAPS (объем обеспеченный поддержкой давлением) на Bird 8400 Sti или Tbird. Здесь, вентилятор может переключаться между контролем давления и контролем потока в пределах цикла дыхания в зависимости от того, был ли выполнен заданный ДО (рисунок 2-5, внизу).

Вариация этого подхода иллюстрирована особенностью Pmax на Drager Evita 4, в котором вентилятор начинает вдох с контролем потока в установленном пределе. Когда давление дыхательных путей достигает установленного значения Pmax, вентилятор включает контроль давления в пределе заданного, в то время как ДО уже проверен. Вентилятор пытается увеличивать время потока вдоха (то есть, период от начала до конца инспираторного потока) пока доставляется ДО, при условии, что установленного времени вдоха (то есть, период от начала инспираторного потока до начала экспираторного потока) достаточно. Если установленный ДО не доставлен в установленное время вдоха, то активизируется тревога.

Переменные фаз

W. Mushin с коллегами предложил, что время дыхательного цикла охватывает четыре разделенные фазы:

(1) изменения от выдоха до вдоха,

(2) фаза вдоха,

(3) изменения от вдоха до выдоха,

(4) фаза выдоха.

Это важно для понимания того, как вентилятор запускает, выдерживает и останавливает вдох и что происходит между вдохами. В каждой фазе специфическая переменная измеряется и используется для того, чтобы начать, выдержать, и закончить фазу. В этом контексте, давление, объем, поток и время рассматриваются как фазовые переменные. Критерии для определения фазовых переменных представлены на рисунке 2-6.

Рис.2-6. Критерии для определения фазовых переменных во время ИВЛ.

Базовая линия (baseline)

Переменная, которая контролируется в течение времени выдоха, это базовая линия. Экспираторное время определено как временной интервал от начала потока выдоха до начала потока вдоха. Как и со временем вдоха, полезно отличать компоненты времени выдоха: время потока выдоха, определенное как интервал от начала потока выдоха до его окончания, и время паузы выдоха (экспираторной паузы), определенное как интервал между окончанием потока выдоха и началом потока вдоха. Экспираторная пауза часто введена, чтобы измерить autoРЕЕР.

Необходимо помнить, что в уравнении движения, давление, объем и поток измерены относительно давления в конце выдоха или начальных значений и, таким образом, первоначально являются нулем. Хотя начальное значение любой из этих переменных теоретически будет контролироваться, контроль давления наиболее практичный и осуществляется обычно всеми используемыми вентиляторами.

Условные переменные

Для каждого дыхания, вентилятор создает определенную структуру контроля и фазовых переменных (рисунок 2-7). Вентилятор может сохранять этот образец (паттерн) постоянным для каждого дыхания, или может вводить другие (например, один для принудительного и один для спонтанного дыханий). В сущности, вентилятор должен решить какую структуру контроля осуществить и какие фазовые переменные использовать перед каждым дыханием, в зависимости от значения некоторых заданных условных переменных. Об условных переменных можно думать как введении условной логики в форме инструкций «если - тогда». То есть, если значение условной переменной достигает некоторого заданного порога, то некоторое действие происходит, чтобы изменить структуру вентиляции. В данном контексте давление, объем и поток в момент их измерения вентилятором являются фазовыми переменными, но они же являются условными переменными, когда их значения устанавливаются клиницистом на пользовательском интерфейсе вентилятора.

Рис.2-7. Принцип управления вентилятором. Эта модель показывает, что во время вдоха, вентилятор способен контролировать только одну переменную во времени (т.е., давление, объем или поток).

Простым примером является NPB MA 1 в режиме контроля. Каждое дыхание вызвано триггером времени, поток ограничен и объем цикличен. Триггер, предел и переменные цикла имеют заданные значения (например, триггер частоты = 20 циклов/мин, предел потока вдоха до 60 л/мин, и циклический дыхательный объем = 750 мл). Однако, каждые несколько минут будет вводиться вздох, который отличается от установленных фазовых переменных (например, триггер частоты = 2 вздоха каждые 15 минут с дыхательным объемом = 1500 мл). Как вентилятор делает это? Концептуально, мы можем говорить, что перед каждым дыханием выбирается образец, вентилятор проверяет значение некоторой условной переменной, чтобы определить, достигло ли это заданного порогового значения. Если пороговое значение достигнуто, то выбирается один образец, если нет, то другой. В случае с NPB MA-1, условной переменной было бы время: если заданный интервал времени истек (то есть, интервал вздоха), то вентилятор отключается от образца вздоха.

Другой пример, это переключение между вызванными пациентом и вызванными машиной дыханиями в режимах SIMV и MMV.

До настоящего момента термины принудительные и непосредственные использовались без объяснения. Клиницисты интуитивно понимают значения этих терминов. Но в связи с тем, что они играют центральную роль в определении и понимании режимов вентиляции, должны быть обеспечены формальные определения. Спонтанные (непосредственные) дыхания - это те, которые начаты и закончены пациентом. То есть пациент вызывает дыхание и участвует в цикле дыхания. Если вентилятор определяет начало или конец вдоха, то дыхание рассматривается как принудительное. Дыхание, вызванное триггером времени, всегда рассматривается как принудительное дыхание. Дыхание, вызванное пациентом, но при этом время или объем цикличны (то есть, пациент не играет роль в критериях цикла), также является принудительным дыханием.

Обозначение типов дыхания очень важно для понимания режимов вентилятора. Существующая система классификации требует, чтобы дыхание просто различали только как принудительное или спонтанное. Конференция экспертов (которая точно не достигла согласия) полагала, что четыре типа дыхания были необходимы для описания. Группа консенсуса [Consensus statement on the essentials of mechanical ventilators, 1992] добавила термины вспомогательное (assisted) дыхание и поддерживаемое (supported) дыхание. Вспомогательное дыхание это принудительное дыхание, которое вызвано пациентом. Поддерживаемое дыхание это спонтанное дыхание, которое имеет давление вдоха большее, чем начальное давление. Тем не менее, предпочтительнее думать о вспомогательном дыхании как типе принудительного дыхания и о поддерживаемом как типе спонтанного дыхания. Таблица 1-2 описывает различия между этими дыханиями.

Сравнение типов дыхания

Таблица 1-2.

ТИП ДЫХАНИЯ

ТРИГГЕР

ПРЕДЕЛ

ЦИКЛ

Принудительное

Вентилятор (время)

Вентилятор (давление или поток)

Вентилятор (время, поток, объем)

Вспомогательное

Пациент (давление, поток, объем, сопротивление, движение)

Вентилятор (давление или поток)

Вентилятор (время, поток, объем)

Спонтанное

Пациент (давление, поток, объем, сопротивление, движение)

Вентилятор (давление или поток)

Давление вдоха = давлению baseline

Пациент

Поддерживаемое

Пациент (давление, поток, объем, сопротивление, движение)

Вентилятор (давление или поток)

Давление вдоха > давления baseline

Пациент

Хотя два новых типа дыхания различны клинически (дыхание, вызванное триггером времени, существенно отличается от дыхания, вызванного пациентом), в техническом аспекте они не отличаются.

Рисунок 2-8 иллюстрирует эти определения в алгоритме. Обратите внимание, что если вентилятор находится в цикле дыхания по времени или объему, то дыхание рассматривается как принудительное, потому что закончено вентилятором. Однако, если вентилятор подает поток после активации вдоха пациентом, как в режиме поддержки давлением, дыхание будет рассматриваться спонтанным (поддерживаемым).

Следовательно, во время режима поддержки давлением, вентилятор пытается соответствовать дыхательному требованию пациента, и это действительно пациент заканчивает дыхание, которое считается спонтанным.

Общие характеристики для режимов вентиляции

Таким образом, режим вентиляции представляет набор характеристик дыхания (переменных контроля, фазовых переменных и условных переменных), которые являются важными для клинициста. Иногда мы должны передать только наиболее общую информацию. Иногда, характер взаимодействия пациент/вентилятор должен быть определен весьма точно. Система классификации должна обеспечивать эту гибкость. Практический способ сделать это может состоять в том, чтобы основать систему классификации на образце принудительных дыханий. При этом образец должен определять следующий минимальный набор характеристик:

1 - переменная контроля (то есть, давление, объем или двойной контроль);

2 - образец принудительных версий спонтанных дыханий (то есть, CMV, SIMV и РSV);

3 - фазовые переменные для принудительных дыханий, в частности триггер и переменные цикла;

4 - имеется ли поддержка спонтанных дыханий;

5 - условные переменные.

Наиболее подходящий путь описания режима это сформулировать переменную контроля и образец, как в управляемой по давлению перемежающейся принудительной вентиляции (PC - IMV). Это говорит нам, что и принудительные и непосредственные дыхания допустимы, и что давление предопределено для принудительных дыханий. Если необходимо большее количество деталей, мы можем сказать, что принудительные дыхания являются вызванными или пациентом или триггером времени (циклом). Следующая деталь может включать факт, что спонтанные дыхания поддерживаются давлением. Наконец, мы можем добавить, что условные переменные определяют, что непосредственные дыхательные усилия могут вызывать принудительное дыхание только в пределах специфического окна триггера, как определено установленной принудительной частотой дыхания.


Подобные документы

  • Искусственная вентиляция легких (ИВЛ) как метод протезирования внешнего дыхания. Основные виды ИВЛ, показания к ее применению и контроль эффективности. Принципы работы аппаратов. Варианты вентиляции, дыхательные контуры. Параметры вентиляции легких.

    презентация [479,5 K], добавлен 12.02.2017

  • Объем искусственной вентиляции легких и объем спонтанного дыхания, альвеолярная вентиляция. Использование номограмм зависимости между поверхностью тела, ростом, массой тела и уровнем обмена, методы обеспечения заданного объема исскуственной вентиляции.

    реферат [177,7 K], добавлен 19.02.2010

  • Понятие и назначение искусственной вентиляции легких, технология и основные правила ее проведения. Классификация современных методов проведения искусственной вентиляции легких, их отличительные особенности и возможности практического применения.

    реферат [13,7 K], добавлен 14.11.2010

  • Виды гипоксических состояний при отравлении токсичными веществами. Лечение нарушений функций органов дыхания. Аппараты искусственной вентиляции легких. Правила безопасности при работе с аппаратами ИВЛ и оксигенотерапии. Аппаратура кислородной терапии.

    курсовая работа [60,6 K], добавлен 15.09.2011

  • Физиологические основы вентиляции легких. Некоторые аспекты физиологии дыхания. Обзор существующих аппаратов. Способы проведения искусственной вентиляции. Принцип работы аппарата. Медико-технические требования к аппарату ИВЛ.

    дипломная работа [306,8 K], добавлен 29.11.2006

  • Сущность метода восстановления и поддерживания нарушенных функции легких — вентиляции и газообмен. Физиологические аспекты и роль формы кривой инспираторного потока. Показания к ИВЛ, объемный, осцилляторный и струйный способы высокочастотной ИВЛ.

    реферат [24,1 K], добавлен 05.09.2009

  • Методы перехода на самостоятельное дыхание и факторы его затрудняющие. Выбор метода прекращения респираторной поддержки. Усталость дыхательной мускулатуры. Осложнения искусственной вентиляции легких. Принцип и методика искусственного кровообращения.

    реферат [24,3 K], добавлен 05.10.2009

  • Изучение методов (кирасный, гравитационный, вдувание газа), отличительных черт, отрицательных эффектов (воздействие на кровообращение, повышение давления, легочный кровоток, баротравма) и показателей к применению искусственной вентиляции легких.

    реферат [27,6 K], добавлен 14.02.2010

  • Классификация режимов вентиляции. Особенности контролируемой и вспомогательной вентиляции. Дифференциация режима по контролируемому параметру и принципу переключения фаз дыхательного цикла. Режимы механической, принудительной, высокочастотной вентиляции.

    реферат [27,4 K], добавлен 05.10.2009

  • Реанимация как совокупность неотложных медицинских мероприятий. Понятие интенсивной терапии. Сущность сердечно-легочной реанимации человека. Комплекс мер проведения искусственной вентиляции легких. Техника и правила непрямого и прямого массажа сердца.

    презентация [970,5 K], добавлен 23.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.