Преодоление психологических барьеров при изучении математики в 5-6 классах

Исследование особенностей познавательных процессов в обучении школьников математике. Описание методики преподавания математики в 5 классе средней школы с преодолением психологических барьеров, ее апробация в школе №1605 г. Москвы и анализ результатов.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 11.09.2011
Размер файла 160,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Однако следует особо подчеркнуть, что даже полностью отвечающая указанным условиям задача может не стать для школьников проблемной, если при ознакомлении с ней учителю не удастся создать у них "проблемной ситуации". Проблемная ситуация отражает субъективное принятие задачи, реальное участие каждого школьника (хотя бы мысленно) в процессе ее решения. Важно, чтобы ученик сам задумался над сформулированной в классе проблемой, сам себе задал тот же вопрос и попытался дать на него ответ.

Наиболее эффективное средства для создания у школьников проблемных ситуаций - использование противоречий, конфликта между усвоенными знаниями, знакомыми способами решения определенного класса задач и теми требованиями, которые предъявляет новая задача; школьники должны убедиться в том, что решение задач на основе уже имеющихся знаний приводит к ошибкам. Учителю необходимо заострить внимание учеников на данной проблеме, подчеркнуть возникающее противоречие, стимулировать учащихся на поиски выхода из создавшегося проблемной ситуации, разрешить противоречие.

Проблемные ситуации у школьников могут быть созданы тем, что в задачах с недостающими и избыточными данными им будет предложено найти ряд возможных вариантов решения и обоснованно выбрать наиболее эффективный; часть данных в них определяется по таблицам, на основе дополнительных измерений и т. д. Решение таких задач приближает школьное обучение к жизненной практике, повышает действенность знаний, поскольку последние приобретены в процессе более или менее самостоятельной активной мыслительной деятельности.

Конфликтные ситуации, используемые в проблемном обучении, как бы наталкивают учащихся на ошибки. В проблемном обучении при создании конфликтных ситуаций обычно используется материал, в основе усвоения которого лежит углубленное понимание основных отношений между его существенными признаками, закономерностей, общих принципов решения целого класса задач и т. д. Задачи-проблемы ставят ученика в условия неопределенности, и возникновение здесь ошибок вполне возможно. Такие ошибки не страшны, если преподаватель обратит на них внимание школьников и добьется понимания тех причин, которые породили ошибки, и способов их преодоления.

Основной путь открытия нового для человека способа решения проблем - "анализ через синтез". Он предполагает включение содержащихся в условии задачи основных и выводимых из них промежуточных данных во все новые и новые системы связей, благодаря чему в них выявляются не выделенные ранее свойства, отношения, раскрываются их возможности для достижения цели.

Возникнет ли в условиях обучения у того или иного учащегося проблемная ситуация, обратится ли он для ее решения к наиболее эффективному приему продуктивного мышления - "анализ через синтез" или же к механической манипуляции данными - зависит не только от объективных факторов, но и от факторов субъективных, и прежде всего - от умственного развития школьников. Поскольку школьники одного и того же возраста имеют весьма существенные различия в достигнутом ими уровне умственного развития, полная реализация принципа проблемности не может быть осуществлена без индивидуализации обучения.

Проблемность и другие принципы развития творческого мышления не могут быть реализованы без учета возрастных и индивидуально-типических особенностей мышления. Возрастным особенностям интеллектуального развития посвящено немало исследований. В них выявлена стадиальность развития интеллекта, дана характеристика каждой стадии в зависимости от ведущего вида мыслительной деятельности.

На первой стадии ведущим является наглядно-действенное, практическое мышление, которое осуществляется в конкретной ситуации, в процессе практических действий с реальными предметами.

На второй стадии преобладает наглядно-образное мышление; оно позволяет решать задачи на основе оперирования уже не реальными предметами, а образами восприятия и представлений, содержащимися в детском опыте. Связь мышления с практическими действиями хоть и сохраняется, но не является такой прямой, непосредственной, как раньше. чтобы решать задачи ребенок должен отчетливо воспринимать, наглядно представлять рисуемую в них ситуацию.

На третьей, высшей, ступени развития ведущую роль в мыслительной деятельности приобретает отвлеченное, абстрактно-теоретическое мышление. Мышление выступает здесь в форме отвлеченных понятий и рассуждений, отражающих существенные стороны окружающей действительности, закономерные связи между ними. Овладение в ходе усвоения основ наук понятиями, законами, теориями оказывает значительное влияние на умственное развитие школьников. Оно раскрывает возможности самостоятельного творческого приобретения знаний и широкого применения их на практике.

Под влиянием всевозрастающих требований к школьному образованию психологи начали исследовать "зону ближайшего развития" детей. Была поставлена задача выяснить, каковы возможности мышления детей, если так изменить содержание и методы обучения, чтобы они активизировали развитие отвлеченного, абстрактно-теоретического мышления (В. В. Давыдов, С. Ф. Жуйков, Л. В. Занков, А. В. Запорожец, А. А. Люблинская, Н. А. Менчинская, А. В. Скрипченко, Д. Б. Эльконин и др.).

Вместе с тем установка на более раннее развитие отвлеченного, понятийного мышления, на его формировании на основе движения "от абстрактного к конкретному" - вероятно, вследствие подчас ошибочного понимания сущности этого процесса - на практике нередко приводит к недооценке роли наглядности, конкретизации знаний, а также к значения деятельности и других видов мышления. Нельзя забывать о том, что и отвлеченное, абстрактно-теоретическое мышление, далеко выходя за пределы чувственного опыта, только тогда обладает действенной силой, позволяет проникать в суть познаваемой действительности, когда оно неразрывно связано с наглядно-чувственными данными. Развитие отвлеченного мышления, без достаточной конкретизации усваиваемого материала, без связи с наглядно-практическим и наглядно-образным мышлением может привести к формальному усвоению знаний, к образованию пустых абстракций, оторванных от живой действительности.

Гармоничное развитие личности предполагает активизацию всех видов мышления, их совершенствование.

Необходимость развивать различные виды мыслительной деятельности вытекает из специфики продуктивного, творческого мышления. Процесс открытия новых знаний и у ребенка, впервые познающего давно открытые человечеством истины, и у ученого, впервые проникающего за пределы известного, не происходят в виде строгих логических рассуждений, непосредственно опирающихся на знакомые закономерности. Решение проблемы нередко происходит интуитивно, и в этом процессе существенную роль играют и практическое и образное мышление, непосредственно связанное с чувственной опорой.

В практической жизни у детей не реализуются те знания, умения, навыки, которые они не знают для чего применять. "Навык возникает как сознательно автоматизируемое действие и затем функционирует как автоматизированный способ выполнения действия" (С.Л. Рубинштейн, 2000). Сознательный же акт направлен на осуществление определенной цели. Если навык формируется в отрыве от самого действия, тогда его невозможно реализовать в жизни. Поэтому необходимо, чтобы дети при социальных взаимодействиях знали, какое действие, к какому результату приводит. Поэтому необходимо разработать методику, по которой можно формировать цель действий у учащихся.

Осуществляя целенаправленное математическое развитие школьников, следует помнить, что задачи являются здесь наиболее естественным и наиболее эффективным средством.

Мышление психологически выступает как деятельность по решению задачи. А. В. Брушлинский пишет, что развитие мышления происходит "именно в ходе решения задач, когда человек сам наталкивается на посильные для него проблемы и вопросы, формулирует их и затем решает".

С. Л. Рубинштейн, характеризуя психическую природу мыслительного процесса, указывал: "Всякий мыслительный процесс является по своему внутреннему строению действием, направленным на разрешение определенной задачи. Задача эта заключает в себе цель для мыслительной деятельности индивида, соотнесенную с условиями, которыми она задана. Начальным моментом мыслительного процесса обычно является проблемная ситуация. Мыслить человек начинает, когда у него появляется потребность что-то понять. Мышление обычно начинается с проблемы или вопроса, с удивления или недоумения, с противоречия".

Развитие математического мышления и творческих способностей осуществляется в ходе размышлений учащихся над задачами. Самостоятельная деятельность учащихся по решению задач занимает главное место в обучении математике. Умение решать задачи - критерий успешности обучения математике.

Задача в теории обучения понимается в широком смысле. В это понятие можно включить любое задание, требующее осуществления какого-либо познавательного акта, любой учебный текст, подлежащий усвоению. Согласно А.Н.Леонтьеву, задача - это есть цель, данная в определенных условиях.

Рассмотрим систематизацию задач в зависимости от их функций. К. И. Нешков и А. Д. Семушин выделяют следующие типы задач: задачи с дидактическими функциями, задачи с познавательными функциями, задачи с развивающими функциями. Характеристика функций задач дана в работах Ю. М. Колягина и Е. И. Лященко. По мнению Ю. М. Колягина, функции задач должны соответствовать основным компонентам образования: обучению, воспитанию и развитию. Е. И. Лященко, анализируя требования к задачам, исходит из деления задач на дидактические, познавательные, развивающие.

К развивающим задачам, или задачам с развивающими функциями относятся:

1) задачи, для решения которых не требуются новые знания по предмету, надо применять имеющиеся знания в иной комбинации;

2) задачи, с помощью и на основе которых приобретаются знания по предмету.

Развивающие задачи, или задачи с развивающими функциями, - это задачи, содержание которых может отходить от основного курса математики с посильным осложнением некоторых из изученных ранее вопросов школьной программы; запоминание и усвоение этого материала всеми учащимися необязательно. При решении этих задач ученику недостаточно применять изученные теоретические сведения или уже известные методы решения задач, а необходимо проявить выдумку, сообразительность.

Задачи с развивающими функциями не должны быть объектом изучения. Это не означает, что они превращаются в задачи, необязательные для решения. Таких задач должно быть достаточно много в учебнике для каждого класса, начиная с 1-го. Задачи, несущие развивающие функции, в основном предназначены для развития мышления учащихся. Однако способности учащихся различны, и поэтому их успехи в решении таких задач, естественно, неодинаковы. Необходимо исходить из того, что не каждый ученик может решить любую задачу, не каждый ученик сумеет достаточно глубоко разобраться в некоторых готовых решениях. Задачи с развивающими функциями не должны быть случайными. Они должны быть связаны с изучаемым материалом и представлять посильные для учащихся трудности. Наибольшую пользу эти задачи приносят тогда, когда они решаются без предварительной подготовки и достаточно разнообразны по содержанию и способам решения. Если же, как это часто делается, решать с целью "развития" несколько однородных задач подряд до тех пор, пока учащиеся не усвоят способ решения, то эти задачи потеряют свои ценные развивающие качества.

Решение задач с развивающими функциями не доводится до навыка. Учащиеся - каждый по мере своих возможностей - должны просто решать эти задачи. И все же при их решении учащиеся будут получать не только знания, но и развитие, что непременно отразится на усвоении ими всего курса математики. При решении задач с развивающими функциями создаются благоприятные условия для проявления самостоятельности учащихся, особое значение приобретает индивидуальный подход к учащимся.

Задачи с развивающими функциями не пользуются популярностью у многих учителей по ряду причин. Обучение их решению требует большого напряжения со стороны учителя и не сразу дает внешне заметные результаты. Кроме того, эти важные результаты обучения довольно трудно выявить самому учителю (одну задачу решила одна группа учащихся, с другой справилась другая группа, и учитель постоянно испытывает тревогу, что решение не оставит следа в сознании всех учащихся).

Решение проблемы в словесном плане, на основе теоретических рассуждений развертывается постепенно, звено за звеном. человеку невозможно при этом охватить все необходимые звенья, что затрудняет установление взаимосвязи между ними. Включение в этот процесс наглядно-образного мышления дает возможность сразу, "одним взглядом" охватить все входящие в проблемную ситуацию компоненты, а практические действия позволяют установить взаимосвязь между ними, раскрыть динамику исследуемого явления и тем самым облегчают поиск решения.

Преобладание практических, образных или понятийных видов мыслительной деятельности определяется не только спецификой решаемой проблемы, но и индивидуальными особенностями самих людей.

Одним из важнейших принципов развития творческого мышления является оптимальное (отвечающее целям обучения и психическим особенностям индивида) развитие разных видов мыслительной деятельности: абстрактно-теоретического, наглядно-образного, наглядно-действенного, практического мышления.

Как обучать детей нахождению способа решения математической задачи? Этот вопрос - центральный в методике преподавания математики. Для ответа на него в литературе предложено немало практических приемов, облегчающих поиск способа решения задачи. Однако теоретические положения относительного нахождения пути решения задачи остаются мало разработанными.

Особенности текста задачи могут определить ход мыслительного процесса при ее решении. Как сориентировать детей на эти особенности? Знание ответов на них составляют теоретико-методические положения, на основе которых можно строить конкретную методику обучения; они помогут определить методические приемы поиска способов решения задачи, в том числе решения различными способами.

Решение задач занимает в математическом образовании огромное место. Умение решать задачи является одним из основных показателей уровня математического развития, глубины освоения учебного материала.

Математику любят в основном те ученики, которые умеют решать задачи. Если научить детей владеть умением решения задачи, тем самым мы повысим интерес к предмету, на развитие мышления и речи.

Математические знания усваиваются детьми в определенной, приспособленной к их пониманию системе, в которой отдельные положения логически связаны одно с другим, вытекают одно из другого. При сознательном усвоении математических знаний учащиеся пользуются основными операциями мышления в доступном для них виде: анализом и синтезом, сравнением, абстрагированием и конкретизацией, обобщением; ученики делают индуктивные выводы, проводят дедуктивные рассуждения. Сознательное усвоение учащимися математических знаний развивает математическое мышление учащихся. Овладение мыслительными операциями в свою очередь помогает учащимся успешнее усваивать новые знания.

В процессе решения задачи ученик под руководством учителя, прежде всего, анализирует содержание задачи, расчленяя его на числовые данные, условия и вопрос.

При решении составных арифметических задач требуется применить более сложный и более тонкий анализ и синтез. Анализ содержания составной задачи, так же как и простой, сводится к расчленению его на числовые данные, условия и вопрос. Однако сами данные, условие и искомое должны подвергнутся дополнительно анализу, расчленению на составляющие их элементы.

В процессе обучения математике находит своё применение приём сравнения, то есть выделение сходных и различных признаков у рассматриваемых чисел, арифметических примеров, арифметических задач.

Основную часть времени на уроке ученик проводит, решая задачи, и во многом от их особенностей (сложности, многогранности, сюжетной формы, последовательности и др.) и зависит, насколько успешным будет процесс обучения математике. Но что же мы имеем на самом деле? На практике получается, что чаще всего процесс решения задач на уроке обладает некоторой рутинностью и оставляет ученику мало возможностей для творчества . Со временем такая специфика задач вырабатывает у ученика некоторый неправильный стереотип мышления, относящийся к решению задач. Ученик просто ищет стандартную ситуацию, к которой можно было бы применить известные формулы и теоремы, и теряется, когда предложенная задача требует даже несложного нестандартного подхода.

По мнению Л.Фридмана, одной из основных в обучении математике функций задач является функция формирования и развития у учащихся общих умений решений любых математических (в том числе и прикладных) задач.

Учащиеся же в настоящее время не получают никаких специальных знаний, на базе которых возможно такое формирование. Более того, в настоящее время эти общие умения формируются чисто стихийно, а не в результате целенаправленного, систематического обучения. Считается, что эти умения могут возникнуть лишь благодаря решению большого числа математических задач.

После решения задач учащиеся сравнивают, каким действием решается та или другая задача: одна сложением, другая умножением, а затем сопоставляют способы решения с различиями в условиях задач. Такое сопоставление помогает учащимся лучше осознать смысл выражений "больше на несколько единиц" и "больше в несколько раз" и прочнее установить связь между условием каждой задачи и способом её решения.

Сравнение основано на анализе и синтезе: необходимо расчленить каждую задачу на составляющие её элементы, а затем мысленно соединить сходные элементы, выделив при этом существенные различия.

При объяснении учащимся новой для них по способам решения задачи с многозначными числами часто используется приём аналогии: учитель предлагает решить аналогичную задачу с небольшими числами, вычисления над которыми можно выполнить устно.

Используя в обучении математике различные методы, учитель применяет их так, чтобы они содействовали активизации мышления учащихся, и тем самым способствовали его развитию.

Одним из эффективных средств преодоления психологических барьеров учащихся является решение математических задач. Математические задачи отражают различные стороны жизни, несут много полезной информации, поэтому их решение является одним из звеньев в системе воспитания вообще, патриотического, нравственного и трудового в частности.

Хорошо подобранные и правильно методически расположенные задачи помогают ученику усвоить теоретический материал, делают курс математики более интересным, вызывают потребность в новых знаниях и умении самостоятельно их приобретать. Приступая к решению задачи, ученик сначала знакомится с ее формулировкой, решение же пока остается вне поля его деятельности. Поэтому очень важно, чтобы содержание задачи вызывало живой интерес. Полезно, когда тексты задач обращены не только к уму, но и к эмоциям детей, вызывая у них чувство причастности к решению актуальных проблем, стоящих перед нашей страной. При этом воспитательное воздействие содержания задач осуществляется не только через условие задачи, но и непроизвольно, через подтекст материала. С усвоением любой информации связано формирование отношения к ней. Отсюда понятно значение содержания решаемой задачи.

Учебная работа школьников на уроках математики, наряду с рассмотренными направлениями усиления воспитательной направленности школьного обучения, также очень важна. Необходимость убедительной аргументации по ходу решения задач способствует развитию таких волевых качеств, как настойчивость, самостоятельное преодоление трудностей, критическое отношение к себе и к окружающему. Поиски и нахождение самостоятельных путей решения задач и доказательства теорем способствуют развитию творческого подхода к выполняемой работе, духа новаторства. Поэтому учащиеся не должны выступать на уроках в роли пассивных слушателей. На уроке должны использоваться разнообразные виды самостоятельной учебной работы, рациональные приемы учебы. Такая организация обучения математике способствует пониманию того, что смысл жизни человека состоит в труде, что только творческий труд дает удовлетворение всегда, будь то деятельность ученого или ученика.

Тексты задач должны не только давать материал для ума, но и вызывать у детей чувство сопричастности к текущим событиям, желание преодолевать трудности. Однако в учебных пособиях число задач, действующих на эмоции ученика, создающих проблемную ситуацию, невелико.

В процессе решения математических задач учащиеся усваивают конкретный смысл арифметических действий, знакомятся со знаками для записи выполняемых действий; изучаемые правила сразу же подтверждаются в решении задач. Такие задачи предусмотрены программой каждого года обучения.

В школе невозможно рассматривать все виды математических задач. Сколько бы задач ни решали в школе, всё равно учащиеся в своей будущей работе встретятся с новыми видами задач. Поэтому школа должна вооружать учащихся общим подходом к решению любых задач.

Система в подборе задач и расположении их по времени построена с таким расчетом, чтобы обеспечить наиболее благоприятные условия для сопоставления, сравнения, противопоставления задач, сходных в том или ином отношении, а также задач взаимно обратных. При этом имеется в виду, что в процессе изучения математики дети все время будут встречаться с задачами различных видов. Это исключает возможность выработки штампов и натаскивания в решении задач: дети с самого начала будут поставлены перед необходимостью каждый раз производить анализ задачи, устанавливая связь между данными и искомым, прежде чем выбрать то или иное действие для ее решения.

Математические задачи являются тем материалом, на котором будет решаться важнейшая задача преподавания математики - развитие мышления и творческой активности учащихся.

Важно научить всех детей самостоятельно находить путь решения предложенной задач, применять общие подходы к их решению. Дети учатся анализировать содержание задачи, точно объясняя, что известно в решаемой задаче и что неизвестно, что следует из условия задачи, какие арифметические действия и в какой последовательности должны быть выполнены для получения ответа на вопрос задачи; обосновывать выбор каждого действия и пояснять полученные результаты; составлять по задаче выражение и вычислять его значение; устно давать полный ответ на вопрос задач и проверять правильность решения задачи. Необходимо, чтобы учащиеся знали о возможности различных способов решения некоторых задач и сознательно выбирали наиболее рациональный из них.

В процессе работы над задачами дети упражняются в самостоятельном составлении задач по различным заданиям учителя. Числовой и сюжетный материал для составления задач берется из окружающей действительности с использованием особенностей той местности, в которой живут дети. Составление и решение такого рода задач способствует не только лучшему осознанию особенностей структуры и хода решения задач различных видов, но и развитию творческой самостоятельности детей, расширению их кругозора, усилению связи обучения с жизнью.

Таким образом, в процессе решения математических задач реализуются образовательные, воспитательные и развивающие цели. Решение задач способствует формированию у детей полноценных знаний, определяемых программой. Задачи дают возможность связать теорию с практикой, обучение с жизнью. Решение задач позволяет углубить и расширить представления детей о жизни, формирует у них практические умения (подсчитать стоимость покупки, ремонта квартиры).

Однако своеобразным психологическим барьером в решении задач будет то, что при предложении учителем новой задачи после решения предыдущей, ученик, зная алгоритм решения предыдущей задачи, не будет стараться найти новые способы решения и подходы к осмыслению задачи. Барьером будет и необходимость отказа от старых алгоритмов решения задач при переходе к новым видам задач (психологический барьер прошлого опыта).

Поэтому проблему математического образования в школе нельзя сводить только к передаче учащимся определенной суммы знаний и навыков по этому предмету. Перед учителями математики стоит и другая, не менее важная задача Если в недавнем прошлом основной задачей, стоящей перед учителем, была передача ученикам определенной суммы знаний, то в настоящее время на первый план выдвигается задача развития учащихся в процессе обучения.

Глава 2. Методика преподавания математики в 5 классе средней школы с преодолением психологических барьеров

2.1 Описание методики

С целью практического обоснования выводов, полученных в ходе наблюдения за деятельностью учащихся пятых классов средней школы № 1605 г. Москвы, было проведено исследование.

Работа велась с ноября 2010 г. по апрель 2011 г. и включала несколько этапов. На первом этапе проводилось исследование, которое позволило выявить наличие психологических барьеров у учащихся данного класса в процессе обучения математике. Вторым этапом работы было проведение экспериментальных занятий, направленных на формирование у учащихся рациональных приемов познавательной деятельности и преодоление барьеров. Заключительный этап исследования, проводился теми же методами, что и первый. Целью этого этапа было - выявить какие-либо индивидуальные изменения у учащихся класса в преодолении барьеров.

После чего были подведены итоги исследования.

В методике моделировалось обучение, непосредственно направленное на преодоление психологических барьеров. Эта методика была построена в виде обучающего эксперимента, в котором школьники включаются в проблемные ситуации, рассчитанные на самостоятельное решение новых для них учебных задач. Остановимся кратко на характеристике структуре экспериментов и способов обработки получаемых на их основе данных.

Первый этап - выявление у учащихся психологических барьеров при обучении. Изучение проходило во время занятий, когда упомянутые выше барьеры проявлялись при выполнении определенных заданий учителя или при самостоятельной работе. Во время наблюдения было зафиксировано несколько таких барьеров:

1) трудность преодоления имеющихся комплексов от неудачных решений предыдущих задач;

2) отсутствие мотивации к решению задач и упражнений по математике, отсутствие мотивации к познавательной деятельности вообще;

3) боязнь выглядеть хуже других перед одноклассниками;

4) трудности в решении новых задач из-за использования алгоритмов решения, применявшихся к старым задачам;

5) несамостоятельность в переходе от старых алгоритмов решения задач к новым.

Так же во время наблюдения были выявлены некоторые причины возникновения тех или иных трудностей:

· Несформированность мыслительной операции "анализ через синтез"

· Недостаточное развитие анализа пространственных отношений

· Несформированность понятий "больше", "меньше"

· Несформированность умения перехода из конкретного плана действий в абстрактный

· Недостаточное развитие смысловой памяти

· Недостаточная гибкость мыслительной деятельности

· Недостаточная отдифференцированность понятий "сложения", "вычитания", "умножения", "деления"

· Недостатки в развитии процессов произвольного внимания

· Низкий уровень сформированности внутреннего плана действий

· Сниженный уровень интеллектуальной деятельности

· Сниженная работоспособность

В исследовании принимало участие 24 ученика класса 5.3 средней школы № 1605 г.Москвы. Психологические барьеры среди них распределились следующим образом (см. приложение 1):

Рис. 1 Распределение психологических барьеров среди учащихся класса 5.3 средней школы №1605 г.Москвы

На этом этапе все наблюдаемые барьеры фиксировались, каждому ученику присваивался индивидуальный номер.

После завершения первого этапа была проведена обучающую часть исследования, которая заключалась в проведение со школьниками ряда занятий по методике решения математических задач.

2.2 Апробация методики преодоления психологических барьеров в классе 5.3 средней школы № 1605 г. Москвы

Обучающий эксперимент включал три этапа: предварительный, основной и вспомогательный. На предварительном этапе экспериментатор обеспечивал школьникам исходный минимум знаний; т.е. устранение тех причин, которые вызвали тот или иной психологический барьер, создавалась установка на решение новой проблемы, вызывалось желание решить ее как можно лучше, без боязни ошибиться при поисках решения. С этой целью на ряде простых арифметических задач экспериментатор напоминал школьникам о прямой и обратной зависимости.

Для дальнейшего эффективного преодоления психологических барьеров при изучении математики на предварительном этапе школьникам предлагалось решить задачи, которые помогли бы им устранить причины, которые повлекли за собой возникновение того или иного психологического барьера (см.приложение 3).

Остановимся теперь на характеристике тех показателей, по которым при анализе собранного экспериментального материала мы судили о преодолении психологических барьеров школьников, давая их качественную характеристику.

Самостоятельность (преодоление барьера № 5) учащихся определялась по тому, как справился он с решением проблемы на основном этапе, или ему дополнительная помощь со стороны учителя. По степени помощи, необходимой испытуемому для выделения искомой закономерности определялись потенциальные возможности учащегося в решении проблемы.

Преодоление трудностей в решении новых задач из-за использования алгоритмов решения, применявшихся к старым задачам (барьер № 4), отражающее степень существенности абстрагируемых признаков и степени их обобщенности, определялась на основе анализа суждений испытуемых при их попытках сформулировать искомую закономерность для каждого нового цикла задач.

О преодолении боязни выглядеть хуже других перед одноклассниками, "смелости" мыслительной деятельности и характере ее реализации можно судить по соотношению хода практического решения задач с высказываниями испытуемых вслух о тех закономерностях, по которым, по их мнению, можно решить задачу. Отсутствие боязни дает основание для утверждения о преодолении барьера № 3; присутствие боязни говорит об осознанности этой деятельности. Примером данного психологического барьера может служить боязнь учащегося решать задачу у доски. Преодоление данного психологического барьера было разделено на несколько этапов. В начале ученику, имеющий психологический барьер данного типа предлагалось решить задачу у доски, естественно он отказывался выходить к доске из-за боязни выглядеть хуже других, аргументируя это тем, что он не знает, как решить данную задачу. Тогда ему предлагалась помощь, но не со стороны учителя, а со стороны учащихся и сообщалось, что за неправильное решение плохая оценка ставиться не будет. Помощь со стороны класса состояла в том, что они помогали найти верный ход решения задачи, предлагая различные варианты (в том числе свой вариант предлагал и ученик у доски). Далее ученик мог остановиться на том варианте, который предлагали одноклассники или на том, который предложил он. Наблюдения показали, что в дальнейшем у учеников, имеющих психологический барьер данного вида, при совместной деятельности пропала боязнь. Но при совместной деятельности может возникнуть другая проблема несамостоятельность. Для этого ученикам , имеющим этот барьер предлагалась инструкция, которая могла бы помочь им при решении задачи.

Алгоритм решения для ученика:

1. Пользуясь "деревом рассуждения", составь и запиши план решения задачи.

2. Выполни модель задачи.

3. Составь к задаче "дерево рассуждения".

4. Пользуясь "деревом рассуждения", составь план решения.

5. Измени задачу так, чтобы она имела разные способы решения и отрази это на модели задачи.

Преодоление имеющихся комплексов от неудачных решений предыдущих задач (барьер № 2) проявляется в возможности формулировки двух вариантов искомой закономерности в совершенствовании раз сформулированного суждения, в переходе к суждениям более высокой степени обобщенности, введении в них новых научных терминов вместо житейских, в легкости отказа от ошибочности суждений и т. д.

Мотивация к решению задач и к познавательной деятельности вообще (барьер № 1) найдет свое выражение в воспроизведении и целесообразной ориентации на найденный в процессе анализа значимый признак закономерности для решения задачи.

В работе не приводиться описание каждого проведенного урока. Хочу обратить внимание, лишь на некоторые методические приемы, использованные на уроках математики для активизации познавательной, творческой и мыслительной деятельности учащихся, и их теоретическом обосновании.

Воспитание в процессе обучения, развитие мотивации и интереса к обучению у учащихся в процессе изучения ими математики является одной из актуальных задач, стоящих перед учителями математики в современной школе. Основным средством такого воспитания и развития математических способностей учащихся являются задачи. Не случайно известный современный математик и методист Д. Пойа пишет: "Что значит владение математикой? Это есть умение решать задачи, причем не только стандартные, но и требующие известной независимости мышления, здравого смысла, оригинальности, изобретательности".

При обучении математике на решение задач отводится большая часть учебного времени. Можно сделать вывод, что учебное время, отводимое на решение задач в школе, используется неэффективно, а это отрицательно сказывается на качестве обучения математике в целом.

Одна из главных причин затруднений учащихся, испытываемых ими при решении задач, заключается в том, что математические задачи, содержащиеся в основных разделах школьных учебников, как правило, ограничены одной темой. Их решение требует от учащихся знаний, умений и навыков по какому-нибудь одному вопросу программного материала и не предусматривает широких связей между различными разделами школьного курса математики. Роль и значение таких задач исчерпываются в течении того непродолжительного периода, который отводится на изучение (повторение) того или иного вопроса программы. Функция таких задач прежде всего сводится к иллюстрации изучаемого теоретического материала, к разъяснению его смысла. Поэтому учащимся нетрудно найти метод решения данной задачи. Метод решения иногда подсказывается названием раздела учебника или задачника, темой, изучаемой на уроке, указаниями учителя и т. д. Самостоятельный поиск метода решения учеником здесь минимален. При решении задач на повторение, требующих знания нескольких тем, у учащихся, как правило, возникают определенные трудности.

К сожалению, в практике обучения математике решение задач чаще всего рассматривается лишь как средство усвоения школьниками программного материала. Задачи повышенной трудности из дидактических материалов, сборников задач, в основном закрепляют умения и навыки учащихся в решении стандартных задач, задач определенного типа. А между тем функции задач очень разнообразны: обучающие, развивающие, воспитывающие, контролирующие. В связи с этим задачи могут использоваться и как средство преодоления психологических барьеров.

Любая предлагаемая учителем задача для решения учащимся должна служить конкретным целям обучения. И все же главная цель задач - развить творческое мышление учащихся, заинтересовать их математикой, привести к "открытию" математических фактов.

Достичь этой цели с помощью одних стандартных задач невозможно, хотя стандартные задачи, безусловно, полезны и необходимы, если они даны вовремя и в нужном количестве. Следует избегать большого числа стандартных задач как на уроке, так и во внеклассной работе, так как в этом случае сильные ученики могут потерять интерес к предмету, а у слабых учеников выработаться шаблонность.

Ознакомление учащихся лишь со специальными способами решения отдельных типов задач создают, опасность того, что учащиеся ограничатся усвоением одних шаблонных приемов и не приобретут умения самостоятельно решать незнакомые задачи. При первом знакомстве с задачей они будут говорить, что такие задачи в классе не решали.

В системе задач школьного курса математики, необходимы задачи, направленные на отработку того или иного математического навыка, задачи иллюстративного характера, тренировочные упражнения, выполняемые по образцу. Но не менее необходимы задачи, направленные на воспитание у учащихся устойчивого интереса к изучению математики, творческого отношения к учебной деятельности математического характера. Необходимы специальные упражнения для обучения школьников способам самостоятельной деятельности, обучение общим приемам решения задач, для овладения ими методами научного познания реальной действительности и приемам продуктивной умственной деятельности Такими задачами могут служить задачи различного типа.

Осуществляя целенаправленное обучение школьников решению задач, с помощью специально подобранных упражнений, можно научить их наблюдать, пользоваться аналогией, индукцией, сравнениями, и делать соответствующие выводы. Так же прививать учащимся прочные навыки творческого мышления.

В школьных учебниках математики мало задач, с помощью которых можно показать учащимся роль наблюдения, аналогии, индукции, эксперимента.

Такого типа задачи необходимо решать на уроке со всеми учащимися, а не только с отдельными учениками. Решение проводить в процессе изучения или повторения учебного материала предусмотренного программой. Для развития навыков преодоления психологических барьеров необходимо несколько изменять условия задач, встречающихся в школьных и других учебниках.

Полезно предложить учащимся самим установить с помощью наблюдений и индукции формулы для решения задач.

На уроках математики необходимо систематически использовать задачи, способствующие целенаправленному развитию творческого мышления учащихся, их математическому развитию, формированию у них познавательного интереса и самостоятельности. Такие задачи требуют от школьников наблюдательности, творчества и оригинальности.

Эффективное развитие математических способностей у учащихся и преодоление психологических барьеров невозможно без использования в учебном процессе задач на сообразительность, задач-шуток, математических ребусов.

Как показывают исследования, рассмотрение на уроке задач такого типа, для решения которого недостаточно известного учащимся материала, вызывает естественный интерес к новой теме, осознание необходимости ее изучения и соответствующий настрой к преодолению предстоящих на пути приобретения новых знаний трудностей.

Процесс обучения предполагает целенаправленное управление мыслительной деятельностью учащихся, что приводит к продвижению учеников в их умственном развитии. Чтобы развить мышление учащихся, нужно показать им как функционирует мышление на практике. Развитие происходит в деятельности, поэтому необходимо создавать ученикам условия соответствующей деятельности, нужно демонстрировать сложную картину поиска решения, всю трудность этой работы. В этом случае ученики становятся активными участниками процесса поиска решения, начинают понимать источники возникновения решения. Как результат - ими легче осваиваются причины ошибок, затруднений, оценивается найденный способ решения и ход логических мыслей, а без этого знания не могут перейти в убеждения.

Системное развитие логического мышления должно быть неотрывно от урока, каждый ученик должен принимать участие в процессе решения не только стандартных заданий, но и задач развивающего характера (активно или пассивно).

На уроках учитель должен моделировать ту умственную деятельность, которая нужна на данном этапе развития (учить анализировать задачи, делать чертежи, выявлять отношения объектов и т.д.). Это имеет обучающее и воспитывающее значение: учащиеся приобщаются к методу поиска, ориентируются не только на результат, но и на процесс его достижения, т.е. учатся мыслить логически.

Можно выделить два подхода к формированию и становлению логико-математического мышления:

1. традиционное обучение, приводящее в зависимости от воздействия и других объективных причин к формированию либо эмпирического, либо теоретического мышления.

2. специально организованное обучение, ориентированное на формирование учебной деятельности, приводящее к становлению теоретического мышления.

Для формирования логического мышления приоритетным является второй подход, который и был положен в основу формирования технологии.

Для осуществления формирования логического мышления учащихся 5-6 классов была составлена система развивающих заданий по темам:

· аналогия;

· исключение лишнего;

· "в худшем случае";

· классификация;

· логические задачи;

· перебор;

· задачи с геометрическим содержанием;

· задачи "на переливание";

· задачи-шутки;

· ребусы и кросснамберы;

· занимательные задания.

Эти задачи можно разделить на группы, учитывая их воздействие на мыслительную деятельность учащихся.

Формирование гибкости ума, освобождение мышления от шаблонов происходит при решении задач-шуток, занимательных заданий, задач на перебор вариантов, т.к. в большинстве своем эти задачи не привязаны к темам и не требуют особой теоретической подготовки.

Задачи на переливание, логические задачи, ребусы, задачи на классификацию учат школьников умению рассуждать, формируют математический стиль мышления, развивают логико-лингвистические способности детей, которые приводят к умению четко мыслить, полноценно логически рассуждать и ясно излагать свои мысли.

Задачи на аналогию и исключение лишнего используются для формирования умений поиска решения задач, интуиции, требуют знания теории и нешаблонного подхода к решению.

Задачи с геометрическим содержанием нацелены на знание геометрических фигур и их свойств как основы для формирования пространственных и изобразительных умений школьников, на расширение кругозора.

Учитель, преподающий в 5-6 классах, может развивать логическое мышление учащихся с помощью созданной системы заданий. Для этого необходимо учитывать следующее:

1. выбранные задания должны быть посильными для детей;

2. задания, отобранные для одного урока, должны быть разнообразными для воздействия на различные компоненты мышления;

3. если ученики не справляются с заданием, то целесообразно оставить его на обдумывание до следующего урока;

4. ученикам можно дать необязательное домашнее задание по составлению аналогичных задач;

Система развивающих заданий

Аналогия

Аналогия - это сходство между объектами в некотором отношении. Использование аналогии в математике является одной из основ поиска решения задач. Задачи этой серии направлены на отработку таких познавательных приемов, как проведение словесных аналогий и нахождение аналогий между фигурами.

Например:

1. уменьшаемое - разность, множитель - …?

2. продолжите ряд: 1, 5, 13, 29, …

7, 19, 37, 61, …

Исключение лишнего

В каждой задаче этой серии указаны четыре объекта, из которых три в значительной мере сходны друг с другом, и только один отличается от всех остальных.

Например,

1. Сумма, разность, множитель, частное

2. 9, 12, 8, 15

3. см, дм, м2, км.

В худшем случае

Это прием решения задачи, где для доказательства какого-либо утверждения можно рассмотреть самый неудобный, худший случай, в котором утверждение выполняется. Если мы докажем утверждение для худшего случая, то тем более оно будет верно и в остальных случаях. Главное - правильно определить этот худший случай.

Например:

1.В классе 37 человек. Докажите, что среди них найдутся четыре человека, родившиеся в один и тот же месяц.

2.Есть три ключа от трех замков. Какое наименьшее количество проб нужно осуществить, чтобы подобрать ключи к замкам?

Классификация

Классификация - это общепознавательный прием мышления, суть которого заключается в разбиении данного множества объектов на попарно непересекающиеся подмножества (классы). Число таких подмножеств, а также их состав зависит от основания классификации (т.е. признака, существенного для данных объектов), которое может принимать различные значения.

Например:

Что объединяет слова длина, площадь, масса? Какое слово к ним подходит: секунда, центнер, величина, метр?

Логические задачи

Логические задачи - это задачи, требующие умения проводить доказательные рассуждения, анализировать.

Например:

1.Ира, Даша, Коля и Митя собирали ягоды. Даша собрала ягод больше всех, Ира - не меньше всех. Верно ли, что девочки собрали ягод больше, чем мальчики?

2.Наташа произнесла истинное утверждение. Лена повторила его дословно и оно стало ложным. Что сказала Наташа?

Перебор

Сущность этого приема заключается в проведении организованного разбора и анализа всех случаев, которые потенциально возможны в ситуации, описанной в задаче.

Например:

1. Сколько имеется двузначных чисел, у которых среди цифр есть хотя бы одна пятерка?

2. В числе 48352 зачеркните такие две цифры, чтобы число, образованное оставшимися цифрами в том же порядке было наибольшим (наименьшим).

3. Сколько чисел от 1 до 100 не делится ни на 2, ни на 3?

Задачи с геометрическим содержанием

1. Нарисуйте два треугольника так, чтобы их общей частью были: а) шестиугольник; б) пятиугольник; в) четырехугольник; г) отрезок; д) точка.

2. Разрезать квадрат на две равные фигуры (10 способов).

3. Деревянный куб покрасили со всех сторон, потом распилили на 27 одинаковых кубиков. Сколько кубиков имеют 3 окрашенные грани, 2 окрашенные грани? Сколько кубиков не окрашено?

Задачи на переливание

1. В первый сосуд входит 10 литров воды. Как, используя еще два пустых сосуда по 5 и 7 литров, разделить воду на две части?

2. Восьмилитровый бидон наполнен водой. Как с помощью трехлитровой и пятилитровой банок отлить 1л воды?

Задачи-шутки

1. Гусь стоит 20 рублей и еще половину того, сколько он на самом деле стоит. Сколько стоит гусь?

2. Сколько концов у двух палок, у трех палок, у пяти с половиной палок?

3. Какой математический знак нужно поставить между 5 и 6, чтобы полученное число было больше 5, но меньше 6?

4. Один поезд отправляется из Москвы в Пермь, одновременно с ним выходит поезд из Перми в Москву, скорость которого в два раза больше. Какой из поездов в момент встречи будет находиться дальше от Москвы?

5. Крышка стола имеет 4 угла. Один угол отпилили. Сколько углов осталось?

Занимательные задачи

1. Чему равно произведение ?

2. Вдоль всей траектории забега поставили 15 столбов. После начала забега спортсмен был у третьего столба через три минуты. За сколько минут он пробежит весь путь? (Скорость спортсмена считать постоянной).

Проведенная работа по формированию логического мышления у учащихся 5-6 классов позволяет сделать следующие выводы:

· логическое мышление развивается интенсивнее, если создавать на уроке атмосферу уважения, поощрять инициативу и стимулировать творчество учащихся;

· система развивающих заданий позволяет привить интерес к предмету, дает более глубокое и полное понимание изучаемых тем, развивает мышление учащихся, помогает преодолеть трудности при решении

Результативность. Система заданий является средством повышения уровня логического мышления учащихся 5-6 классов, развивает интеллект. Повышается успеваемость учащихся, прививается интерес к предмету, помогает учащимся справиться с трудностями при решении нестандартных задач.

Нестандартные задачи - это такие задачи, для которых в курсе математики не имеется общих правил и положений, определяющих точную программу их решения".

Однако следует заметить, что понятие "нестандартная задача" является относительным. Одна и та же задача может быть стандартной и нестандартной, в зависимости от того, знаком решающий со способами решения задач такого типа или нет. Задача является для учащихся нестандартной до тех пор, пока учащиеся не познакомились со способами решения таких задач. Но если после решения этой задачи учащимся предложить несколько аналогичных задач, такие задачи становятся для них стандартными.

Можно сделать вывод, что нестандартная задача - это задача, алгоритм решения которой учащимся неизвестен, то есть учащиеся не знают заранее ни способа ее решения, ни того, на какой учебный материал опирается решение.

К сожалению, иногда учителя единственным способом обучения решению задач считают показ способов решения определенных видов задач, после чего следует отработка учащимися алгоритмов решения. Нельзя не согласиться с мнением известного американского математика и методиста Д. Пойа, что, если преподаватель математики "заполнит отведенное ему учебное время натаскиванию учащихся в шаблонных упражнениях, он убьет их интерес, затормозит их умственное развитие и упустит свои возможности".

Как же помочь учащимся научиться решать нестандартные задачи? Как помочь им преодолевать психологические барьеры в решении этих задач? Универсального метода, позволяющего решить любую нестандартную задачу, к сожалению, нет, так как нестандартные задачи в какой-то степени неповторимы. Однако опыт работы многих передовых учителей, добивающихся хороших результатов в математическом развитии учащихся как у нас в стране, так и за рубежом, позволяет сформулировать некоторые методические приемы обучения учащихся способам решения нестандартных задач.

Хочется сказать, что научить учащихся решать задачи (в том числе и нестандартные) можно только в том случае, если у учащихся будет желание их решать, то есть если задачи будут содержательными и интересными с точки зрения ученика. Поэтому проблема первостепенной важности, стоящая перед учителем, - вызвать у учащихся интерес к решению той или иной задачи. Необходимо тщательно отбирать интересные задачи и делать их привлекательными для учащихся. Как это сделать - решать самому учителю. Наибольший интерес вызывают у учащихся задачи, взятые из окружающей их жизни, задачи, естественным образом связанные со знакомыми учащимся вещами, опытом, служащие понятной ученику цели.

Учитель должен уметь находить интересные для учащихся задачи и своевременно предлагать их. Приведем примеры.

Конечно, нельзя приучать учащихся решать только те задачи, которые вызывают у них интерес. Так же нельзя забывать, что такие задачи учащийся решает легче и свой интерес к решению одной или нескольких задач он может в дальнейшем перенести и на "скучные" разделы, неизбежные при изучении любого предмета, в том числе и математики. И можно будет достигнуть полного преодоления психологических барьеров.

Таким образом, учитель, желающий научить школьников решать задачи, должен вызвать у них интерес к задаче.

Задачи не должны быть слишком легкими, но и не должны быть слишком трудными, так как учащиеся, не решив задачу или не разобравшись в решении, предложенном учителем, могут потерять веру в свои силы. Не следует предлагать учащимся задачу, если нет уверенности, что они смогут ее решить.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.