Разработка системы экспериментальных заданий по физике на примере раздела "Механика"

Определение роли экспериментальных заданий в школьном курсе физики. Анализ программы и учебников по использованию экспериментальных заданий. Методика проведения экспериментальных заданий по физики с помощью лего-констукторов на примере раздела "Механика".

Рубрика Педагогика
Вид курсовая работа
Язык русский
Дата добавления 19.08.2011
Размер файла 120,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • Введение
  • Глава 1. Теоретические основы использования экспериментального метода на уроках физики в старших классах
    • 1.1 Роль и значение экспериментальных заданий в школьном курсе физики (определение эксперимента в педагогике, психологии и в теории методике обучения физики)
    • 1.2 Анализ программ и учебников по использованию экспериментальных заданий в школьном курсе физики
    • 1.3 Новый подход в проведении экспериментальных заданий по физики с помощью Лего-констукторов на примере раздела «Механика»
    • 1.4 Методика проведения педагогического эксперимента на уровне констатирующего эксперимента
    • 1.5 Выводы по первой главе
  • Глава 2. Разработка и методика проведения экспериментальных заданий по разделу «Механика» для учащихся 10 классов общеобразовательного профиля
    • 2.1 Разработка систем экспериментальных заданий по теме «Кинематика точки». Методические рекомендации по применению на уроках физики
    • 2.2 Разработка систем экспериментальных заданий по теме «Кинематика твердого тела». Методические рекомендации по применению на уроках физики
    • 2.3 Разработка систем экспериментальных заданий по теме «Динамика». Методические рекомендации по применению на уроках физики
    • 2.4 Разработка систем экспериментальных заданий по теме «Законы сохранения в механике». Методические рекомендации по применению на уроках физики
    • 2.5 Разработка систем экспериментальных заданий по теме «Статика». Методические рекомендации по применению на уроках физики
  • 2.6 Выводы по второй главе
  • Заключение
  • Список литературы
  • Ответ на вопрос
  • Введение
  • Актуальность темы. Общепризнано, что изучение физики дает не только фактические знания, но и развивает личность. Физическое образование, несомненно, является сферой развития интеллекта. Последний, как известно, проявляется и в мыслительной, и в предметной деятельности человека.
  • В этой связи особое значение приобретает экспериментальное решение задач, которое с необходимостью предполагает оба вида деятельности. Как и любой вид решения задач, оно имеет общую для процесса мышления структуру и закономерности. Экспериментальный подход открывает возможности развития образного мышления.
  • Экспериментальное решение физических задач, в силу их содержания и методологии решения, может стать важным средством развития универсальных исследовательских навыков и умений: постановки эксперимента, опирающегося на определенные модели исследования, собственно экспериментирования, способности выделить и сформулировать наиболее существенные результаты, выдвинуть гипотезу, адекватную изучаемому предмету, и на ее основе построить физическую и математическую модель, привлечь к анализу вычислительную технику. Новизна содержания физических задач для учащихся, вариативность в выборе экспериментальных методик и средств, необходимая самостоятельность мышления при разработке и анализе физической и математической моделей создают предпосылки для формирования творческих способностей.
  • Таким образом, разработка системы экспериментальных заданий по физике на примере механики актуальна в плане развивающего и личностно - ориентированного обучения.
  • Объектом исследования является процесс обучения учащихся десятых классов.
  • Предметом исследования является система экспериментальных заданий по физике на примере механики, направленная на развитие интеллектуальных способностей, формирование исследовательского подхода, творческой активности учащихся.
  • Цель исследования - разработка системы экспериментальных заданий по физике на примере механики.
  • Гипотеза исследования - Если в систему физического эксперимента раздела «Механика» включить демонстрации учителя, связанные с ними домашние и классные опыты учащихся, а также экспериментальные задания для учащихся по элективным курсам, а познавательную деятельность учащихся при их выполнении и обсуждении организовать на основе проблемности, то у школьников появится возможность приобретать, наряду со знанием основных физических понятий и законов, информационные, экспериментальные, проблемные, деятельностные умения, что и приведет к повышению интереса к физике как предмету. Исходя из цели и гипотезы исследования, были доставлены следующие задачи:

1. Определить роль и значение экспериментальных заданий в школьном курсе физики (определение эксперимента в педагогике, психологии и в теории методике обучения физики).

2. Проанализировать программы и учебники по использованию экспериментальных заданий в школьном курсе физики.

3. Раскрыть сущность методики проведения педагогического эксперимента на уровне констатирующего эксперимента.

4. Разработать систему экспериментальных заданий по разделу «Механика» для учащихся 10 классов общеобразовательного профиля.

Научная новизна и теоретическая значимость работы заключается в следующем: Установлена роль экспериментального решения физических заданий как средства в развитии познавательных способностей, исследовательских навыков и творческой активности учащихся 10 - х классов.

Теоретическое значение исследований определяется разработкой и обоснованием методических основ технологии проектирования и организации учебного процесса по экспериментальному решению физических задач как средства развивающего и личностно-ориентированного обучения.

Для решения поставленных задач использовалась совокупность методов:

· теоретический анализ психолого-педагогической литературы и сравнительно-сопоставительный методы;

· системный подход к оценке результатов теоретического анализа, метод восхождения от абстрактного к конкретному, синтез теоретического и эмпирического материала, метод содержательного обобщения, логико-эвристическая разработка решений, вероятностное прогнозирование, прогностическое моделирование, мысленный эксперимент.

Работа состоит из введения, двух глав, заключения, библиографического списка, приложений.

Апробация разработанной системы заданий проводилась на базе школы - интерната № 30 Среднего Общего Образования Открытого Акционерного Общества «Российские Железные Дороги», адрес: город Комсомольск - на Амуре, проспект Ленина 58/2.

Глава 1. Теоретические основы использования экспериментального метода на уроках физики в старших классах

1.1 Роль и значение экспериментальных заданий в школьном курсе физики (определение эксперимента в педагогике, психологии и в теории методике обучения физики)

Роберт Вудвортс (R. S. Woodworth), опубликовавший свой классический учебник по экспериментальной психологии («Experimental psychology», 1938), определял эксперимент как упорядоченное исследование, в ходе которого исследователь непосредственно изменяет некий фактор (или факторы), поддерживает остальные неизменными и наблюдает результаты систематических изменений [7, с. 13].

В педагогике Сластенин В. определял эксперимент как исследовательскую деятельность с целью изучения причинно-следственных связей в педагогических явлениях [12, с. 102].

В философии Соколов В.В. описывает эксперимент, как метод научного познания [13, с. 98].

Основатель физики - Знаменский А.П. описывал эксперимент как вид познавательной деятельности, в которой ключевая для той или иной научной теории ситуация разыгрывается не в реальном действии [4, с. 43].

По Роберту Вудвортсу констатирующий эксперимент - это эксперимент, устанавливающий наличие какого-либо непреложного факта или явления [7, с. 17].

По Сластенину В. - констатирующий эксперимент проводится в начале исследования и направлен на выяснение состояния дел в школьной практике по изучаемой проблеме [12, с. 115].

По Роберту Вудвортсу формирующий (преобразующий, обучающий) эксперимент ставит своей целью активное формирование или воспитание тех или иных сторон психики, уровней деятельности и т.д.; используется при изучении конкретных путей формирования личности ребёнка, обеспечивая соединение психологических исследований с педагогическим поиском и проектированием наиболее эффективных форм учебно-воспитательной работы [7, с. 32].

По Сластенину В. - формирующий эксперимент, в процессе которого конструируются новые педагогические явления [12, с. 120].

По Сластенину В. - экспериментальные задания - это кратковременные наблюдения, измерения и опыты, тесно связанные с темой урока [12, с. 145].

Личностно ориентированное обучение - это такое обучение, где во главу угла ставится личность ребенка, ее самобытность, самоценность, субъектный опыт каждого сначала раскрывается, а затем согласовывается с содержанием образования. Если в традиционной философии образования социально-педагогические модели развития личности описывались в виде извне задаваемых образцов, эталонов познания (познавательной деятельности), то личностно ориентированное обучение исходит из признания уникальности субъектного опыта самого ученика, как важного источника индивидуальной жизнедеятельности, проявляемой, в частности, в познании. Тем самым признается, что в образовании происходит не просто интериоризации ребенком заданных педагогических воздействий, а «встреча» задаваемого и субъектного опыта, своеобразное «окультуривание» последнего, его обогащение, приращение, преобразование, что и составляет «вектор» индивидуального развития Признание ученика главной действующей фигурой всего образовательного процесса и есть личностно-ориентированная педагогика.

При проектировании образовательного процесса нужно исходить из признания двух равноправных источников: обучения и учения. Последнее не есть просто дериват первого, а является самостоятельным, личностно-значимым, а потому очень действенным источником развития личности.

Личностно-ориентированное обучение строится на принципе субъектности. Из него вытекает целый ряд положений.

Учебный материал не может быть одинаковым для всех учащихся. Ученику надо дать возможность выбрать то, что соответствует его субъектности при изучении материала, выполнении заданий, решении задач. В содержании учебных текстов возможны и допустимы противоречивые суждения, вариативность изложения, проявление разного эмоционального отношения, авторские позиции. Ученик не заучивает обязательный материал с заранее заданными выводами, а сам его отбирает, изучает, анализирует и делает собственные выводы. Упор делается не на развитие только памяти ученика, а на самостоятельность его мышления и самобытность выводов. Проблемность заданий, неоднозначность учебного материала подталкивают ученика к этому.

Формирующий эксперимент, - это специфический исключительно для психологии вид эксперимента, в котором активное воздействие экспериментальной ситуации на испытуемого должно способствовать его психическому развитию и личностному росту [14, с. 136].

Рассмотрим роль и значение экспериментальных заданий в психологии, педагогике, философии, и теории методики обучения физики.

Основным методом исследовательской работы психолога является эксперимент. Известный отечественный психолог С.Л. Рубинштейн (1889-1960) выделял следующие качества эксперимента, обуславливающие его значение для получения научных фактов: «1) В эксперименте исследователь сам вызывает изучаемое им явление, вместо того чтобы ждать, как при объективном наблюдении, пока случайный поток явления доставит ему возможность его наблюдать. 2) Имея возможность вызывать изучаемое явление, экспериментатор может варьировать, изменять условия, при которых протекает явление, вместо того чтобы, как при простом наблюдении, брать их таким, каким ему их доставляет случай. 3) Изомеруя отдельные условия и изменяя одно из них при сохранении неизменными остальных, эксперимент тем самым выявляет значение этих отдельных условий и устанавливает закономерные связи, определяющие изучаемый им процесс. Эксперимент, таким образом, очень мощные методическое средство для выявления закономерностей. 4) Выявляя закономерные связи между явлениями, эксперимент часто может варьировать не только самые условия в смысле их наличия или отсутствия, но и их количественные соотношения. В результате эксперимент устанавливает допускающие математическую формулировку качественные закономерности» [9, с. 118].

Наиболее ярким педагогическим направлением, призванным реализовать идеи «нового воспитания», выступает экспериментальная педагогика, ведущим стремлением которой является разработка научно обоснованной теории обучения и воспитания, способной развить индивидуальность личности. Возникшая в XIX в. экспериментальная педагогика (термин предложил Э. Мейман) ставила своей целью всестороннее исследование ребёнка и обоснование педагогической теории экспериментальным путём. Она оказала сильное влияние на ход развития отечественной педагогической науки. [11, с. 324].

Ни одна тема не должна быть пройдена чисто теоретически, как ни одна работа не должна быть проделана без освещения ее научной теории. Умелое сочетание теории с практикой и практики с теорией даст нужный воспитательный и образовательный эффект и обеспечит выполнение требований, которые предъявляет нам педагогика. Основное орудие обучения физике (ее практической части) в школе - демонстрационный и лабораторный эксперимент, с которым учащийся должен иметь дело в классе при объяснениях учителя, на лабораторных работах, в физическом практикуме, в физическом кружке и в домашних условиях.

Без эксперимента нет и не может быть рационального обучения физике; одно словесное обучение физике неизбежно приводит к формализму и механическому заучиванию [3, с. 118].

Эксперимент в школьном курсе физики - это отражение научного метода исследования, присущего физике.

Постановка опытов и наблюдений имеет большое значение для ознакомления учащихся с сущностью экспериментального метода, с его ролью в научных исследованиях по физике, а так же в формировании умений самостоятельно приобретать и применять знания, развитии творческих способностей.

Сформированные умения в ходе проведения экспериментов являются важным аспектом для положительной мотивации учащихся на исследовательскую деятельность. В школьной практике эксперимент, экспериментальный метод и экспериментальная деятельность учащихся реализуются в основном при постановке демонстрационных и лабораторных опытов, в проблемно-поисковом и исследовательском методах обучения.

Отдельную группу экспериментальных основ физики составляет фундаментальные научные эксперименты. Ряд экспериментов демонстрируется на имеющемся в школе оборудовании, другие - на моделях, третьи, - просматривая кинофильмы. Изучение фундаментальных экспериментов позволяет активизировать деятельность учащихся, способствует развитию их мышления, вызывает интерес, побуждает к самостоятельным исследованиям.

Большое количество наблюдений и демонстраций не обеспечивает формирование у учащихся умения самостоятельно и целостно проводить наблюдение. Этот факт можно связать с тем, что в большинстве экспериментов, предлагаемых учащимся, определены состав и последовательность выполнения всех операций. Эта проблема еще более усугубилась после появления тетрадей для лабораторных работ на печатной основе. Учащиеся, выполнив по таким тетрадям только за три года обучения (с 9 по 11 классы) более тридцати лабораторных работ, не могут определить основные операции эксперимента. Хотя для учащихся с низким и удовлетворительным уровнями обучаемости они обеспечивают ситуацию успеха и создают познавательный интерес, положительную мотивацию. Что еще раз подтверждают исследования: более 30% школьников любят уроки физики за возможность самостоятельно выполнять лабораторные и практические работы.

Для того чтобы на уроках и лабораторных работах у учащихся формировались все элементы экспериментальных методов учебного исследования: измерений, наблюдения, фиксация их результатов, проведение математической обработки полученных результатов, и при этом их выполнение сопровождалось высокой степенью самостоятельности и эффективности, перед началом проведения каждого эксперимента учащимся предлагается эвристическое предписание «Учусь ставить эксперимент», а перед наблюдением эвристическое предписание «Учусь наблюдать». Они подсказывают учащимся, что нужно сделать (но не как) намечают направление движения вперед.

Большие возможности для организации самостоятельных экспериментов учащихся имеет «Тетрадь для экспериментальных исследований учащихся 10 классов» (авторы Н.И. Запрудский, А.Л. Карпук). В зависимости от способностей учащихся им предлагается два варианта проведения (самостоятельно с использованием общих рекомендаций по планированию и проведению эксперимента - вариант А или в соответствии с предложенными в варианте Б пошаговыми действиями). Выбор дополнительных к программным экспериментальных исследований и экспериментальных задач дает большие возможности для реализации интересов учащихся [7, с. 218].

В целом, в процессе самостоятельной экспериментальной деятельности учащиеся приобретают следующие конкретные умения:

· наблюдать и изучать явления и свойства веществ и тел;

· описывать результаты наблюдений;

· выдвигать гипотезы;

· отбирать, необходимые для проведения экспериментов, приборы;

· выполнять измерения;

· вычислять погрешности прямых и косвенных измерений;

· представлять результаты измерений в виде таблиц и графиков;

· интерпретировать результаты экспериментов;

· делать выводы;

· обсуждать результаты эксперимента, участвовать в дискуссии.

Учебный физический эксперимент является неотъемлемой, органической частью курса физики средней школы. Удачное сочетание теоретического материала и эксперимента дает, как показывает практика, наилучший педагогический результат [12, с. 210].

1.2 Анализ программ и учебников по использованию экспериментальных заданий в школьном курсе физики

В старшей школе (10 - 11 классах) распространены и используются в основном пять УМК.

УМК - «Физика 10-11» авт. Касьянов В.А.

10 класс. 1-3 часа в неделю. Учебник, авт. Касьянов В.А.

11 класс. 1-3 часа в неделю. Учебник, авт. Касьянов В.А.

Курс предназначен для учащихся общеобразовательных классов, для которых физика не является профильным предметом и должна изучаться в соответствии с базисным компонентом учебного плана. Основная цель - формирование у школьников представлений о методологии научного познания, роли, месте и взаимосвязи теории и эксперимента в процессе познания, об их соотношении, о структуре Вселенной и о положении человека в окружающем мире. Курс призван сформировать у учащихся мнение об общих принципах физики и основных задачах, которые она решает; осуществить экологическое образование школьников, т.е. сформировать у них представление о научных аспектах охраны окружающей среды; выработать научный поход к анализу вновь открываемых явлений. Данный УМК в плане содержания и методики изложения учебного материала доработан автором в большей степени, чем другие, но требует для изучения 3 и более часов в неделю (10-11 кл.) В комплект входят:

Методическое пособие для учителя.

Тетрадь для лабораторных работ к каждому из учебников.

УМК - «Физика 10-11», авт. Мякишев Г.Я., Буховцев Б. Б., Сотский Н. Н.

10 класс. 3-4 часа в неделю. Учебник, авт. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н.

11 класс. 3-4 часа в неделю. Учебник, авт. Мякишев Г.Я., Буховцев Б. Б.

Физика 10 класс. Рассчитан на 3, и более часов в неделю, к коллективу первых двух хорошо известных авторов Мякишеву Г.Я., Буховцеву Б.Б. добавился Сотский Н.Н., написавший раздел механики, изучение которого теперь стало необходимо в старшей профильной школе. Физика 11 класс. 3 - 4 часа в неделю. Авторский коллектив прежний: Мякишев Г.Я., Буховцев Б.Б. Этот курс переработан мало, по сравнению со «старым Мякишевым» почти не изменился. Имеет место незначительное перенесение отдельных частей в выпускной класс. Данный комплект является переработанным вариантом традиционных учебников (по ним учился почти весь СССР) для старшей школы тех же авторов.

УМК - «Физика 10-11», авт. Анциферов Л. И.

10 класс. 3 часа в неделю. Учебник, авт. Анциферов Л.И.

11 класс. 3 часа в неделю. Учебник, авт. Анциферов Л.И.

В основу программы курса положен циклический принцип построения учебного материала, предусматривающий изучение физической теории, ее использование при решении задач, применение теории на практике. Выделены два уровня содержания образования: базовый минимум, обязательный для всех, и учебный материал повышенной трудности, адресуемый школьникам, особо интересующимся физикой. Этот учебник написан известным методистом из г. Курска проф. Анциферовым Л.И. Многолетняя работа в педагогическом ВУЗе и чтение лекций студентам привела к созданию данного школьного курса. Эти учебники трудны для общеобразовательного уровня, требуют переработки и дополнительных методических материалов.

УМК - «Физика 10-11», авт. Громов С. В.

10 класс. 3 часа в неделю. Учебник, авт. Громов С. В.

11 класс. 2 часа в неделю. Учебник, авт. Громов С. В.

Учебники предназначены для старших классов общеобразовательных школ. Включают теоретическое изложение «школьной физики». При этом значительное внимание уделяется историческим материалам и фактам. Порядок изложения необычен: механика завершается главой СТО, далее следуют электродинамика, МКТ, квантовая физика, физика атомного ядра и элементарных частиц. Такая структура, по мнению автора курса, позволяет формировать в сознании учащихся более строгое представление о современной физической картине мира. Практическая часть представлена описаниями минимального числа стандартных лабораторных работ. Прохождение материала предполагает решение большого количества задач, приведены алгоритмы решения их основных типов. Во всех представленных выше учебниках для старшей школы должен реализоваться так называемый общеобразовательный уровень, но это во многом будет зависеть от педагогического мастерства учителя. Все эти учебники в современной школе вполне могут использоваться в классах естественнонаучного, технического и др. профилей, с сеткой 4-5 ч. в неделю.

УМК - «Физика 10-11», авт. Мансуров А. Н., Мансуров Н. А.

10-11 класс. 2 часа (1час) в неделю. Учебник, авт. Мансуров А. Н., Мансуров Н. А.

По данному комплекту работают единичные школы! Но он является первым учебником, для предполагаемого гуманитарного профиля физики. Авторы попытались сформировать представление о физической картине мира, последовательно рассматриваются механическая, электродинамическая и квантово-статистическая картины мира. В содержание курса включены элементы методов познания. Курс содержит фрагментарное описание законов, теорий, процессов и явлений. Математический аппарат почти не используется и заменен словесным описанием физических моделей. Решение задач и проведение лабораторных работ не предусмотрено. Дополнительно к учебнику изданы методические пособия и планирование [8, с. 69].

1.3 Новый подход в проведении экспериментальных заданий по физики с помощью Лего-констукторов на примере раздела «Механика»

физика школьный экспериментальный механика

Реализация современных требований к сформированности экспериментальных умений невозможна без использования новых подходов к проведению практических работ. Необходимо использовать методику, при которой лабораторные работы выполняют не иллюстративную функцию к изучаемому материалу, а являются полноправной частью содержания образования и требуют применения исследовательских методов в обучении. При этом возрастает роль фронтального эксперимента при изучении нового материала с использованием исследовательского подхода и максимальное количество опытов должно переноситься с демонстрационного стола учителя на парты учащихся. При планировании учебного процесса необходимо уделить внимание не только количеству лабораторных работ, но и видам деятельности, которые они формируют. Желательно переносить часть работ с проведения косвенных измерений на исследования по проверке зависимостей между величинами и построение графиков эмпирических зависимостей. При этом уделить внимание формированию следующих умений: конструировать экспериментальную установку исходя из формулировки гипотезы опыта; строить графики и рассчитывать по ним значения физических величин; анализировать результаты экспериментальных исследований, выраженных в виде экспериментальных исследований, выраженных в виде таблицы или графика, делать выводы по результатам эксперимента.

Федеральный компонент государственного образовательного стандарта по физике предполагает приоритет деятельностного подхода к процессу обучения, развития у учащихся умений проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач. Использование в учебном процессе Лего-технологий имеет огромное значение для реализации этих требований.

Использование Лего-конструкторов повышает мотивацию учащихся к обучению, т.к. при этом требуются знания практически из всех учебных дисциплин от искусств и истории до математики и естественных наук. Межпредметные занятия опираются на естественный интерес к разработке и постройке различных механизмов.

Современная организация учебной деятельности требует того, чтобы теоретические обобщения учащиеся дали на основе результатов собственной деятельности. Для учебного предмета «физика» - это учебный эксперимент.

Принципиально изменились роль, место и функции самостоятельного эксперимента при обучении физики: учащиеся должны овладевать не только конкретными практическими умениями, но и основами естественнонаучного метода познания, а это может быть реализовано только через систему самостоятельных экспериментальных исследований. Lego-конструкторы существенно мобилизируют такие исследования.

Особенностью преподавания учебного предмета «Физика» в 2009/2010 учебном году является использование образовательных Лего - конструкторов, которые позволяют в полной мере реализовать принцип личностно-ориентированного обучения, провести демонстрационные эксперименты и лабораторные работы, охватывающие практически все темы курса физики и выполняющие не столько иллюстративную функцию к изучаемому материалу, а требующие применения исследовательских методов, что способствует повышению интереса к изучаемому предмету.

На уроках физики рекомендуется использовать следующие наборы образовательных Лего - конструкторов:

1. Индустрия развлечений. ПервоРобот. В наборе: 216 ЛЕГО-элементов, включая RCX-блок и ИК передатчик, датчик освещенности, 2 датчика касания, 2 мотора 9 В.

2. Автоматизированные устройства. ПервоРобот. В наборе: 828 ЛЕГО-элементов, включая Лего-компьютер RCX, инфракрасный передатчик, 2 датчика освещенности, 2 датчика касания, 2 мотора 9 В.

3. ПервоРобот NXT. В наборе: программируемый блок управления NXT, три интерактивных сервомотора, набор датчиков (расстояния, касания, звука, света и др.), аккумулятор, соединительные кабели, а также 407 конструктивных ЛЕГО-элементов - балки, оси, зубчатые колеса, штифты, кирпичи, пластины и др.

4. Энергия, работа, мощность. В наборе: четыре одинаковых, полностью укомплектованных мини-набора по 201 детали в каждом, включая моторы и электрические конденсаторы.

5. Технология и физика. В наборе: 352 детали, предназначенных для изучения основных законов механики и теории магнетизма.

6. Пневматика. В наборе: насосы, трубы, цилиндры, клапаны, воздушный ресивер и манометр для построения пневматических моделей.

7. Возобновляемые источники энергии. В наборе: 721 элемент, в том числе микромотор, солнечная батарея, различные шестеренки и соединительные провода.

Наборы ПервоРобот на базе блоков управления RCX и NXT предназначены для создания программируемых роботизированных устройств, которые позволяют производит сбор данных с датчиков и их первичную обработку.

Образовательные Лего-конструкторы серии «EDUCATIONAL» (образование) могут быть использованы при изучении раздела «Механика» (блоки, рычаги, виды движения, преобразование энергии, законы сохранения). При достаточной мотивации и методической подготовке с помощью тематических комплектов Lego возможно охватить основные разделы физики, что сделает занятия интересными и эффективными, а, следовательно, осуществлять качественную подготовку учащихся [11, с. 217].

1.4 Методика проведения педагогического эксперимента на уровне констатирующего эксперимента

Есть два варианта построения педагогического эксперимента.

Первый - когда в эксперименте участвуют две группы детей, одна из которых занимается по экспериментальной программе, а вторая - по традиционной. На третьем этапе исследования будут сравниваться уровни знаний и умений обеих групп.

Второй - когда в эксперименте участвует одна группа детей, и на третьем этапе сравнивается уровень знаний до формирующего эксперимента и после.

В соответствии с гипотезой и задачами исследования был разработан план педагогического эксперимента, который включал три этапа.

Констатирующий этап проводился в месяц, год. Целью его явилось изучение особенностей / знаний / навыков и т.д. ... у детей ... возраста.

На формирующем этапе (месяц, год), проводилась работа по формированию ..., с использованием ....

Контрольный этап (месяц, год) ставил своей целью проверку усвоения детьми ... возраста экспериментальной программы знаний/умений.

Эксперимент проводился в .... В нем участвовало кол-во детей (указать возраст).

На первом этапе констатирующего эксперимента изучались представления/знания/умения детей о ....

Была разработана серия заданий для изучения знаний детей ....

1 задание. Цель:

Анализ выполнения задания показал: ...

2 задание. Цель:

Анализ выполнения задания...

3 задание. ...

От 3 до 6 заданий.

Результаты анализа заданий стоит разместить в таблицах. В таблицах указывают кол-во детей или процент от общего их количества. В таблицах можно указывать уровни развития данного умения у детей, или кол-во выполненных заданий, и т.д. Пример таблиц:

Таблица №....

Количество детей №№

Абсолютное число

%

1 задание (на определенные знания, умения)

2 задание

3 задание

Или такая таблица: (в этом случае необходимо указать, по каким критериям дети относятся к тому или иному уровню)

Для выявления у детей уровня ..., нами были разработаны следующие критерии:

Были выделены три уровня .... :

Высокий: ...

Средний: ...

Низкий: ...

В таблице № представлено соотношение количества детей контрольной и экспериментальной групп по уровням.

Таблица №....

Уровень знаний/умений

Количество детей №№

Абсолютное число

%

Высокий

Средний

Низкий

Полученные данные свидетельствуют о том, что ....

Проведенная экспериментальная работа дала возможность определить пути и средства... [8, с. 24].

1.5 Выводы по первой главе

В первой главе нами рассмотрена роль и значение экспериментальных заданий при изучении физики в школе. Даны определения: эксперимента в педагогике, психологии, философии, методике обучения физике, экспериментальных заданий в этих же областях.

Проанализировав все определения, можно сделать следующий вывод о сути экспериментальных заданий. Разумеется, определение этих заданий как исследовательских, имеет несколько условный характер, так как возможность школьного кабинета физики и уровень подготовленности учащихся даже в старших классах делают задачу проведения физических исследований не выполнимой. Поэтому к исследовательским, творческим следует отнести те задания, в которых ученик может открыть новые, неизвестные для него закономерности или для решения которых, он должен сделать какие - то изобретения. Такое самостоятельное открытие известного в физике закона или изобретение способа измерения физической величины не является простым повторением известного. Это открытие или изобретение, обладающее лишь субъективной новизной, для ученика является объективным доказательством его способности к самостоятельному творчеству, позволяет приобрести необходимую уверенность в своих силах и способностях. И все же можно решить эту задачу.

Проанализировав программы и учебники «Физика» 10 класс по использованию экспериментальных заданий в разделе «Механика». Можно сказать о том, что лабораторных работ и опытов в данном курсе проводится недостаточно для того, чтобы полноценно воспринимать весь материал по разделу «Механика».

Также рассмотрен новый подход в преподавании физики - использование Лего - конструкторов, позволяющих развивать творческое мышление учащихся.

Глава 2. Разработка и методика проведения экспериментальных заданий по разделу «Механика» для учащихся 10 классов общеобразовательного профиля

2.1 Разработка систем экспериментальных заданий по теме «Кинематика точки». Методические рекомендации по применению на уроках физики

На изучение темы кинематика точки отводится 13 часов.

Движение с постоянным ускорением.

Для этой темы разработано экспериментальное задание:

Для выполнения работы используется машина Атвуда.

Для выполнения работы машина Атвуда должна быть установлена строго вертикально, что легко проверить по параллельности шкалы и нити.

Цель опыта: Проверка закона скоростей

Измерения

1. Проверяют вертикальность установки машины Атвуда. Балансируют грузы.

2. Укрепляют на шкале кольцевую полочку П1. Регулируют ее положение.

3. Накладывают на правый груз перегрузок в 5-6 г.

4. Двигаясь равноускоренно из верхнего положения до кольцевой полочки, правый груз проходит путь S1 за время t1 и приобретает к концу этого движения скорость v. На кольцевой полочке груз сбрасывает перегрузок и дальше движется равномерно со скоростью, которую он приобрел в конце разгона. Для определения ее следует измерить время t2 движения груза на пути S2. Таким образом, каждый опыт состоит из двух измерений: сначала измеряется время равноускоренного движения t1, а затем груз повторно запускается для измерения времени равномерного движения t2.

5. Проводят 5-6 опытов при различных значениях пути S1 (с шагом 15-20 см). Путь S2 выбирается произвольно. Полученные данные заносят в таблицу отчета.

Методические особенности:

Несмотря на то, что основные уравнения кинематики прямолинейного движения имеют простую форму и не вызывают сомнения, экспериментальная проверка этих соотношений весьма сложна. Трудности возникают в основном по двум причинам. Во-первых, при достаточно больших скоростях движения тел необходимо с большой точностью измерять время их движения. Во-вторых, в любой системе движущихся тел действуют силы трения и сопротивления, которые трудно учесть с достаточной степенью точности.

Поэтому необходимо проводить такие эксперименты и опыты, которые снимают все трудности.

2.2 Разработка систем экспериментальных заданий по теме «Кинематика твердого тела». Методические рекомендации по применению на уроках физики

На изучение темы Кинематика отводится 3 часа, и включает в себя следующие разделы:

Механическое движение и его относительность. Поступательное и вращательное движение твердого тела. Материальная точка. Траектория движения. Равномерное и равноускоренное движение. Свободное падение. Движение тела по окружности. По этой теме нами предложено следующее экспериментальное задание:

Цель работы

Экспериментальная проверка основного уравнения динамики вращательного движения твердого тела вокруг закрепленной оси.

Идея эксперимента

В эксперименте исследуется вращательное движение закрепленной на оси системы тел, у которой может меняться момент инерции (маятник Обербека). Различные моменты внешних сил создаются грузами, подвешенными на нити, намотанной на шкив.

Экспериментальная установка

Ось маятника Обербека закреплена в подшипниках, так что вся система может вращаться вокруг горизонтальной оси. Передвигая грузы по спицам, можно легко изменять момент инерции системы. На шкив виток к витку наматывается нить, к которой привязана платформа известной массы. На платформу накладываются грузы из набора. Высота падения грузов измеряется с помощью линейки, укрепленной параллельно нити. Маятник Обербека может быть снабжен электромагнитной муфтой - пускателем и электронным секундомером. Перед каждым опытом маятник следует тщательно отрегулировать. Особое внимание необходимо обратить на симметричность расположения грузов на крестовине. При этом маятник оказывается в состоянии безразличного равновесия.

Проведение эксперимента

Задание 1. Оценка момента силы трения, действующей в системе

Измерения

1. Устанавливают грузы m1 на крестовине в среднее положение, размещая их на равном расстоянии от оси таким образом, чтобы маятник находился в положении безразличного равновесия.

2. Накладывая небольшие грузы на платформу, определяют приближенно минимальную массу m0 , при которой маятник начнет вращаться. Оценивают момент силы трения из соотношения

Мтр = m0gR

где R - радиус шкива, на который намотана нить.

Дальнейшие измерения желательно проводить с грузами массой m 10m0.

Задание 2. Проверка основного уравнения динамики вращательного движения

Измерения

1. Укрепляют грузы m1 на минимальном расстоянии от оси вращения. Балансируют маятник. Измеряют расстояние r от оси маятника до центров грузов.

2. Наматывают нить на один из шкивов. По масштабной линейке выбирают начальное положение платформы, производя отсчет, например, по ее нижнему краю. Тогда конечное положение груза будет находиться на уровне поднятой приемной платформы. Высота падения груза h равна разности этих отсчетов и может быть оставлена во всех опытах одинаковой.

3. Кладут на платформу первый груз. Расположив груз на уровне верхнего отсчета, фиксируют это положение, зажимая нить электромагнитной муфтой. Подготавливают к измерению электронный секундомер.

4. Отпускают нить, предоставив грузу возможность падать. Это достигается отключением муфты. При этом автоматически включается секундомер. Удар о приемную платформу останавливает падение груза и останавливает секундомер.

5. Измерение времени падения при одном и том же грузе выполняется не менее трех раз.

6. Проводят измерения времени падения груза m при других значениях момента Мн. Для этого либо добавляют на платформу дополнительные перегрузки, либо перебрасывают нить на другой шкив. При одном и том же значении момента инерции маятника необходимо провести измерения не менее чем с пятью значениями момента Мн .

7. Увеличивают момент инерции маятника. Для этого достаточно симметрично переместить грузы m1 на несколько сантиметров. Шаг такого перемещения должен быть выбран таким образом, чтобы получить 5-6 значений момента инерции маятника. Проводят измерения времени падения груза m (п.2-п.7). Все данные заносят в таблицу отчета.

2.3 Разработка систем экспериментальных заданий по теме «Динамика». Методические рекомендации по применению на уроках физики

На изучение темы Динамика отводится 18 часов.

Силы сопротивления при движении твердых тел в жидкостях и газах.

Для этой темы нами было предложено следующее экспериментальное задание:

Цель эксперимента: Показать, как скорость воздуха влияет на полет самолета.

Материалы: маленькая воронка, мячик для настольного тенниса.

Процесс:

Переверните воронку широкой частью вниз.

Вложите мячик в воронку и поддерживайте его пальцем.

Дуйте в узкий конец воронки.

Перестаньте поддерживать пальцем мячик, но продолжайте дуть.

Итоги: Мячик остается в воронке.

Почему? Чем быстрее мимо мяча проходит воздух, тем меньше давления он оказывает на мяч. Давление воздуха над мячом гораздо меньше, чем под ним, поэтому мячик поддерживается находящимся под ним воздухом. Благодаря давлению движущегося воздуха крылья самолета как бы подталкиваются вверх. Благодаря форме крыла воздух быстрее передвигается над его верхней поверхностью, чем под нижней. Поэтому возникает сила, которая толкает самолет вверх - подъемная сила. [5, с. 26].

2.4 Разработка систем экспериментальных заданий по теме «Законы сохранения в механике». Методические рекомендации по применению на уроках физики

На тему законы сохранения в механике отводится 16 часов.

Закон сохранения импульса. (5 часов)

Для этой темы нами было предложено следующее экспериментальное задание:

Цель: изучение закона сохранения импульса.

Каждый из Вас наверное сталкивался с такой ситуацией: Вы бежите с определенной скоростью по коридору и сталкиваетесь со стоящим человеком. Что происходит с этим человеком? Действительно, он начинает двигаться, т.е. приобретает скорость.

Проделаем опыт по взаимодействию двух шаров. На тонких нитях висят два одинаковых шарика. Отведем в сторону левый шар и отпустим. После столкновения шаров левый остановится, а правый придет в движение. Высота, на которую поднимется правый шар, будет совпадать с той, на которую до этого был отклонен левый шар. То есть левый шар передает правому весь свой импульс. На сколько уменьшится импульс первого шара, на столько же увеличится импульс второго шара. Если же говорить о системе 2-х шаров, то импульс системы остается неизменным, то есть сохраняется.

Такое соударение называется упругим (слайды № 7-9).

Признаки упругого соударения:

- Нет остаточной деформации и, следовательно, выполняются оба закона сохранения в механике.

- Тела после взаимодействия движутся совместно.

- Примеры подобного вида взаимодействия: игра в теннис, хоккей и т. п.

- Если масса подвижного тела больше массы неподвижного (m1 > m2), то оно уменьшает скорость, не меняя направления.

- Если наоборот, то первое тело от него отражается и движется в противоположную сторону.

Существует также неупругое соударение

Понаблюдаем: возьмем один большой шарик, один маленький. Маленький шарик покоится, а большой приводим в движение по направлению к маленькому.

После столкновения шарики движутся вместе с одной скоростью.

Признаки упругого соударения:

- В результате взаимодействия тела движутся совместно.

- У тел появляется остаточная деформация, следовательно, механическая энергия превращается во внутреннюю энергию.

- Выполняется только закон сохранения импульса.

- Примеры из жизненного опыта: столкновение метеорита с Землёй, удары молотком по наковальне и т. п.

- При равенстве масс (одно из тел неподвижно) теряется половина механической энергии,

- Если m1 много меньше m2, то теряется её большая часть (пуля и стена),

- Если наоборот, передается незначительная часть энергии (ледокол и маленькая льдина).

То есть существует два вида столкновений: упругие и неупругие. [9, с. 325].

2.5 Разработка систем экспериментальных заданий по теме «Статика». Методические рекомендации по применению на уроках физики

На изучение темы «Статика. Равновесие абсолютно твердых тел» отводится 3 часа.

Для этой темы нами было предложено следующее экспериментальное задание:

Цель эксперимента: Найти положение центра тяжести.

Материалы: пластилин, две металлические вилки, зубочистка, высокий стакан или банка с широким горлом.

Процесс:

Скатайте из пластилина шарик диаметром около 4 см.

Воткните в шарик вилку.

Вторую вилку воткните в шарик под углом в 45 градусов по отношению к первой вилке.

Воткните зубочистку в шарик между вилками.

Зубочистку поместите концом на край стакана и двигайте к центру стакана, пока не наступит равновесие.

Итоги: При определенном положении зубочистки вилки уравновешиваются.

Почему? Поскольку вилки расположены под углом друг к другу, то их вес как бы сосредоточен в определенной точке палочки, находящейся между ними. Эта точка называется центром тяжести.

Методические рекомендации: Если равновесия достичь не удается, уменьшите угол между ними [13, с. 55].

2.6 Выводы по второй главе

Во второй главе нами были представлены экспериментальные задания по теме «Механика».

Было выяснено, что каждый эксперимент, выработка понятий, допускающих качественные характеристики в форме числа. Чтобы из наблюдений сделать общие выводы, выяснить причины явлений, надо установить количественные зависимости между величинами. Если такая зависимость получается, то найден физический закон. Если найден физический закон, то нет необходимости ставить в каждом отдельном случае опыт, достаточно выполнить соответствующие вычисления.

Изучив экспериментально количественные связи между величинами, можно выявить закономерности. На основе этих закономерностей развивается общая теория явлений.

Заключение

Уже в определении физики как науки заложено сочетание в ней как теоретической, так и практической частей. Считается важным, чтобы в процессе обучения учащихся физике учитель смог как можно полнее продемонстрировать своим ученикам взаимосвязь этих частей. Ведь когда учащиеся почувствуют эту взаимосвязь, то они смогут многим процессам, происходящим вокруг них в быту, в природе, дать верное теоретическое объяснение. Это может являться показателем достаточно полного владения материалом.

Какие формы обучения практического характера можно предложить в дополнение к рассказу преподавателя? В первую очередь, конечно, это наблюдение учениками за демонстрацией опытов, проводимых учителем в классе при объяснении нового материала или при повторении пройденного, так же можно предложить опыты, проводимые самими учащимися в классе во время уроков в процессе фронтальной лабораторной работы под непосредственным наблюдением учителя. Еще можно предложить: 1)опыты, проводимые самими учащимися в классе во время физического практикума; 2)опыты-демонстрации, проводимые учащимися при ответах; 3)опыты, проводимые учащимися вне школы по домашним заданиям учителя; 4)наблюдения кратковременных и длительных явлений природы, техники и быта, проводимые учащимися на дому по особым заданиям учителя.

Опыт же не только учит он увлекает ученика заставляет лучше понимать то явление, которое он демонстрирует. Ведь известно, что человек заинтересованный в конечном результате добивается успеха. Так и в данном случае заинтересовав ученика, пробудем тягу к знаниям.

Список литературы

1. Блудов М.И. Беседы по физике. - М.: Просвещение, 2007. -112 с.

2. Буров В.А. и др. Фронтальные экспериментальные задания по физике в средней школе. - М.: Академия, 2005. - 208 с.

3. Галлингер И.В. Экспериментальные задания на уроках физики // Физика в школе. - 2008. -№ 2 . - С. 26 - 31.

4. Знаменский А.П. Основы физики. - М.: Просвещение, 2007. - 212 с.

5. Иванов А.И. и др. Фронтальные экспериментальные задания по физике: для 10 класса. - М.: Вузовский учебник, 2009. - 313 с.

6. Иванова Л.А. Активизация познавательной деятельности учащихся на уроках физики при изучении нового материала. - М.: Просвещение, 2006. - 492 с.

7. Исследование в психологии: методы и планирование / Дж. Гудвин. СПб.: Питер, 2008. - 172 с.

8. Кабардин О.Ф. Педагогический эксперимент // Физика в школе. - 2009. -№ 6 . - С. 24-31.

9. Мякишев Г.Я, Буховцев Б.Б, Сотский Н.Н Физика. 10 класс. Учебник: Учебник. - М.: Гардарика, 2008. - 138 с.

10. Программы для общеобразовательных учреждений. Физика. Составители Ю.И. Дик, В.А. Коровин. - М.: Просвещение, 2007. -112 с.

11. Рубинштейн С.Л. Основы психологии. - М.: Просвещение, 2007. - 226 с.

12. Сластенин В. Педагогика. - М.: Гардарики, 2009. - 190 с.

13. Соколов В.В. Философия. - M.: Высшая школа, 2008. - 117 с.

14. Теория и методика обучения физике в школе. Общие вопросы. Под ред.С.Е.Каменецкого, Н.С.Пурышевой. - М.: ГЕОТАР Медиа, 2007. - 640 с.

15. Харламов И.Ф. Педагогика. Изд. 2-е перераб. и доп. - М.: Высшая школа, 2009 - 576с.

16. Шилов В.Ф. Домашние экспериментальные задания по физике. 9 - 11 классы. - М.: Знание, 2008. - 96 с.

Ответ на вопрос

Отношение реального и возможного, отношение между “есть” и “может быть” - вот та интеллектуальная инновация, которая, согласно классическим исследованиям Ж.Пиаже и его школы, становится доступной детям после 11-12 лет. Многочисленные критики Пиаже пытались показать, что возраст 11-12 лет является весьма условным и может быть сдвинут в любую сторону, что переход на новый интеллектуальный уровень совершается не рывком, а проходит целый ряд промежуточных стадий. Но никто не оспаривал сам факт того, что на границе младшего школьного и подросткового возраста в интеллектуальной жизни человека появляется новое качество. Подросток начинает анализ вставшей перед ним задачи с попытки выяснить возможные отношения, применимые к имеющимся в его распоряжении данным, а потом пытается путем сочетания эксперимента и логического анализа установить, какие из возможных отношений здесь реально имеются.

Фундаментальная переориентация мышления с познания того, как устроена реальность, на поиск потенциальных возможностей, лежащих за непосредственной данностью, именуется переходом к гипотетико-дедуктивному мышлению.

Новые гипотетико-дедуктивные средства постижения мира резко раздвигают границы внутренней жизни подростка: его мир наполняется идеальными конструкциями, гипотезами о себе, окружающих, человечестве в целом. Эти гипотезы далеко выходят за границы наличных взаимоотношений и непосредственно наблюдаемых свойств людей (себя в том числе) и становятся основой экспериментального опробования собственных потенциальных возможностей.

Гипотетико-дедуктивное мышление основывается на развитии комбинаторики и пропозициональных операций. Первый шаг когнитивной перестройки характеризуется тем, что мышление становится менее предметным и наглядным. Если на стадии конкретных операций ребенок сортирует предметы только по признаку тождества или сходства, теперь становится возможной классификация неоднородных объектов в соответствии с произвольно выбранными критериями высшего порядка. Анализируются новые сочетания предметов или категорий, отвлеченные высказывания или идеи сопоставляются друг с другом самыми разнообразными способами. Мышление выходит за рамки наблюдаемой и ограниченной действительности и оперирует произвольным числом каких угодно комбинаций. Комбинируя предметы, теперь можно систематически познавать мир, обнаруживать возможные в нем изменения, хотя подростки пока еще не способны выразить формулами скрывающиеся за этим математические закономерности. Однако сам принцип такого описания уже найден и осознан.

Пропозициональные операции - умственные действия, осуществляемые, в отличие от конкретных операций, не с предметными представлениями, а с отвлеченными понятиями. Они охватывают суждения, которые комбинируются с точки зрения их соответствия илинесоответствия предложенной ситуации (истинности или неистинности). Это не просто новый способ увязывать факты, а логическая система, которая гораздо богаче и вариабельнее конкретных операций. Проявляется возможность анализировать любую ситуацию независимо от реальных обстоятельств; подростки впервые обретают способность систематически строить и проверять гипотезы. Одновременно идет дальнейшее развитие конкретных мыслительных операций. Абстрактные понятия (типа объема, веса, силы и т.д.) теперь обрабатываются в уме независимо от конкретных обстоятельств. Становится возможной рефлексия по поводу собственных мыслей. На ней основаны умозаключения, уже не нуждающиеся в проверке на практике, поскольку в них соблюдены формальные законы логики. Мышление начинает подчиняться формальной логике.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.