Изобретательство как форма технического творчества. Теория решения изобретательских задач Г.С. Альтшуллера
Понятие и виды инженерного творчества, применение системного подхода в нем, классификация и формы реализации. Сущность и содержание теории решения изобретательских задач, ее информационные источники и существующие противоречия, критика и современность.
Рубрика | Философия |
Вид | реферат |
Язык | русский |
Дата добавления | 18.05.2015 |
Размер файла | 31,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Реферат
Изобретательство как форма технического творчества. Теория решения изобретательских задач Г.С. Альтшуллера
Введение
инженерный творчество изобретательский
Творчество - процесс человеческой деятельности, в результате которого создаются качественно новые материальные и духовные ценности. В процессе творчества принимают участие все духовные силы человека, в том числе воображение, а также приобретаемое в обучении и в практике мастерство, необходимое для осуществления творческого замысла. В изучении творчества, творческого мышления еще остается на сегодняшний день много загадок, ждущих своего вдумчивого исследователя.
Творческая деятельность в наше время, в условиях непростой экономической и социальной обстановки, особенно актуальна и способна придать человечеству новые силы на пути экономического, социального и духовного развития.
Виды творчества определяются характером созидательной деятельности человека (например, творчество изобретателя и рационализатора, организатора, научное и художественное творчество), однако, все виды творчества имеют между собой глубокую взаимосвязь. Например, изобретателю и рационализатору, ученому необходимо иметь также и способности к организаторскому творчеству для успешной организации проведения исследований в своей области.
Изобретательство - одна из форм творческой деятельности человека. Каждый образованный человек имеет право на эту деятельность и должен испытать себя в этой области интеллектуального труда. Ведь подлинная цель образования - дать человеку шанс раскрыть свои возможности, познать себя.
Возможно ли научиться изобретать более успешно, направленно, как-то учитывать весьма богатый изобретательский опыт предшественников, и если да, то в чём этот опыт состоит? Советский инженер-патентовед, изобретатель, писатель и учёный Генрих Альтшуллер был убеждён в возможности выявить из опыта предшественников устойчиво повторяющиеся приёмы успешных изобретений и возможности обучить этой технике всех заинтересованных и способных к обучению. С этой целью было проведено исследование более 40 тысяч авторских свидетельств и патентов и на основе выявленных закономерностей развития технических систем и приёмов изобретательства разработана Теория решения изобретательских задач (ТРИЗ), знаменем которой стал призыв превратить искусство изобретательства в точную науку[1].
1. Инженерное творчество
1.1 Виды инженерного творчества
Различают научное, научно-техническое и техническое творчество.
Научное творчество удовлетворяет потребности познания окружающего мира, т.е. это творчество в фундаментальных науках, результатом которого являются открытия.
Открытие - это установление неизвестных ранее объективно существующих закономерностей, свойств и явлений материального мира, вносящих коренные изменения в уровень познания.
Научно-техническое творчество заключается в исследовании закономерностей известных явлений с целью их использования в практике. В основе этого вида творчества лежат прикладные науки, различного рода отраслевые исследования, в результате которых разрабатываются новые технические и технологические решения. Результатом данного вида творческой деятельности являются преимущественно сложные изобретения.
Техническое творчество реализуется в результате инженерной деятельности, направленной на разработку новых технических решений на основании известных закономерностей. Результатом технического творчества являются простые изобретения, рационализаторские предложения и конструкторские разработки.
Изобретательство, как форма технического творчества может включать в себя все виды инженерного творчества, однако, для решения изобретательской задачи необходим системный подход.
1.2 Системный подход в инженерном творчестве
Системой называется такая совокупность элементов, обладающих различными свойствами, параметрами и пространственной структурой, которая обеспечивает выполнение какой-либо единой цели или функции.
Система - это совокупность элементов, связанных технологически, конструктивно, функционально.
Эффективное решение инженерной задачи возможно лишь на основе всестороннего, целостного рассмотрения разрабатываемой системы и ее развития (изменения) в процессе взаимодействия с окружающей средой.
Лишь такой системный подход способен привести к подлинно творческим новаторским решениям, вплоть до сложных изобретений и научных открытий.
Для систем рассматриваются три характерных типа задач.
Задача анализа - задана структура системы, необходимо определить ее функционирование (поведение).
Задача синтеза - заданы характер функционирования и другие требования к системе, необходимо определить структуру, которая удовлетворяет постановленным требованиям.
Задача «черного ящика» - задана система, структура которой неизвестна или частично, определить ее функционирование и, возможно, структуру.
В общем случае, для того чтобы любой объект можно было рассматривать как систему, необходимо определить его системные характеристики: функцию, структуру, свойства и связи с окружающей средой.
В задачу системного анализа объектов входят:
- разработка формализованных моделей, описывающих структуру, функцию и свойства систем;
- характеристика иерархического строения систем и взаимосвязей элементов различного уровня;
- определение интегральной функции системы на основе функций отдельных элементов;
- определение общих свойств системы, исходя из свойств составляющих ее элементов[3].
Системный подход к творческой деятельности ориентирует инженера применять научные методы там, где силы воображения и опыта недостаточно. Такой подход является предпосылкой изобретательской деятельности и эффективного проектирования и конструирования, а также позволяет отойти от устаревших традиций и шаблонов.
С развитием науки появляются новые знания, которые позволяют разработать новые материалы, технические решения и использовать их для создания нового технологического оборудования (объектов техники). Новая техника внедряется в производство с целью повышения его эффективности. Отсюда очевидно, что темпы развития науки должны опережать темпы развития техники и производства.
Освоение нового изделия или технологического является, как правило, результатом большой предварительной работы, включающей научные исследования, научное прогнозирование, патентный поиск, сравнение с лучшими образцами передовых отечественных предприятий и зарубежных фирм, предварительный расчет экономической эффективности капитальных затрат. Наибольший экономический эффект дают новые изделия или технологические процессы, разработанные на основе фундаментальных исследований, принципиально новых научных идей и направлений, технических решений, защищенных охранными документами (авторскими свидетельствами или патентами).
Важную роль в повышении эффективности инженерной деятельности и ее творческих результатов при поиске новых технических решений играют знание закономерностей развития технических систем, умение их анализировать и использовать для выявления резервов их развития, определения целесообразности совершенствования или создания принципиально новых технических систем.
Закономерности развития техники должны помогать находить ответы на ряд вопросов, которые могут возникать у творчески работающих конструкторов и инженеров, технологов. Это следующие вопросы:
Как для определенного класса технических систем и техники в целом происходит прогрессивная конструктивная эволюция, т.е. как со временем изменяются функциональная структура, принцип действия и техническое решение?
Как со временем изменяются производительность труда и другие критерии прогрессивного развития определенного класса технических систем?
Как возрастают со временем потребности и соответствующие им функции технических систем в смысле разнообразия и количественной характеристики?
Как возрастает со временем разнообразие технических систем, имеющих одинаковые или близкие функции, а также разнообразие технических систем в отрасли?
Как возрастает со временем сложность технических систем?
Как растут со временем затраты энергии, материалов и информации в расчете на одного человека?
Таким образом, инженер, приступая к разработке новой технической системы, должен, используя диалектический метод и системный подход как методическую основу технического творчества, проанализировать динамику развития и обоснованно сформулировать конкретную программу своих действий.
Исходя из того, что технический объект рассматривается как система, системный подход основывается на ряде принципов, раскрывающих его сущность. Рассмотрим некоторые из них.
Принцип целостности заключается в признании того, что некоторые совокупности объектов могут проявлять себя как нечто целое, обладающее такими свойствами, которые принадлежат именно всему целому (системе), а его составным частям элементам и подсистемам данной системы), и позволяют выделить эту совокупность из основного мира, составляющего окружающую среду данной системы.
Например, совокупность гладильной подошвы, нагревательного элемента в виде спирали, регулятора температуры, ручки, собранных определенным образом, образует электрический утюг, который рассматривается не как совокупность деталей, а как нечто целое, самостоятельное, обладающее свойствами, отличными от свойств своих частей. Из этого принципа следует важная особенность системного подхода, заключающаяся в требовании не ограничиваться при разработке новых машин, устройств анализом их частей и взаимодействии между ними, а обязательно постигать и учитывать свойства системы как целого.
Принцип совместимости элементов в системе указывает на то, что система, обладающая определенными системными свойствами, может быть построена не из любых элементов, а только из таких, свойства которых удовлетворяют требованиям совместимости. Это означает, что собственные свойства элементов (форма, размеры, контур, поверхность, цвет, физико - механические характеристики и др.) должны быть такими, чтобы обеспечивать взаимодействие их друг с другом как частей единого целого.
Принцип структурности заключается в признании того, что элементы, из которых создается система, находятся в системе не произвольно, а образуют определенную, характерную для данной системы структуру, описываемую некоторым системообразующим отношением, выражающим взаимосвязь и взаимозависимость между элементами в системе.
Принцип нейтрализации дисфункций указывает на то, что в силу своих внутренних свойств или под воздействием внешней среды элементы системы могут приобретать свойства и функции, не соответствующие свойствами и функциям системы в целом. Поэтому при создании новых систем из определенной совокупности элементов с целью обеспечения устойчивости системы необходимо предусматривать «механизмы», на правильные на нейтрализацию дисфункций.
Принцип эволюции утверждает, что для различных технических систем характерно явление эволюции, поэтому необходимо использовать эволюцию как мощный инструмент технического творчества и не наносить вред будущему непродуманным вмешательством в эволюционные процессы развития.
Принцип специализации и интеграции функций указывает на то, что при развитии систем происходят два как бы противоположных и в то же время взаимодополняющих явления, способствующих повышению эффективности системы: с одной стороны, специализация элементов на выполнение определенных функций, с другой - сосредоточение родственных функций у определенных элементов, т.е. возникновение интегральных функций и иерархических структур.
Принцип лабилизации функций. С развитием системы появляется свойство быстрого изменения и приобретения новых функций при относительной стабильности состава и структуры системы.
Принцип адаптации. Техническая система, функционирующая в изменяющейся окружающей среде, должна обладать свойствами адаптации, т.е. свойством перестраивать свои структуру, параметры и функционирование с целью удовлетворения потребностей окружающей среды.
Необходимость создания адаптивных систем следует из самого факта изменчивости окружающей среды, а возможность адаптации достигается вследствие изменения параметров структуры и поведения системы, применения механизмов положительных и отрицательных обратных связей.
Принцип изоморфизма указывает на существование изоморфизмов в структуре, функционировании и развитии систем различной субстанционной природы. Поиск общих свойств и закономерностей в строении, функционировании и развитии различных систем позволяет использовать их в разработке новой техники и технологии.
Принцип полифункциональности заключается в признании полифункциональности в назначении и поведении технических систем, вытекающей из возможности существования системы нескольких целей или функций.
Принцип комплексности состоит в том, что при разработке новых технических систем целесообразно использовать комплексный подход, заключающийся в построении и синтезе разноаспектных моделей одной и той же системы, а также в привлечении к работе представителей разных специальностей с целью полноты охвата всех проблем и аспектов.
Принцип итеративности процесса разработки новых технических систем. Необходимость итераций вытекает из следующего: инженер, разрабатывая сложную техническую систему, не может охватить все возможные ситуации сразу, поэтому его знание оказывается неполным, нуждающимся в дополнениях, уточнениях, в сравнениях с действительностью для выявления и устранения упущений. Необходимая полнота знания полнота знания и понимания достигается лишь в результате ряда итераций.
Принцип учета вероятностных факторов. Любая достаточно сложная техническая система вследствие невозможности проследить все причинно - следственные связи в самой системе и в окружающей ее среде выступает как не вполне детерминированный объект. Отсюда при создании новых технических систем и технологических процессов встает необходимость статистического исследования и вероятностной оценки явлений, протекающих в системе и в окружающей среде путем сбора и обработки соответствующих статистических данных.
Принцип иерархической декомпозиции заключается в признании относительности понятий «система» и «элемент» в том смысле, что всякий элемент может быть рассмотрен как система при переходе к более детализированной страте анализа и всякая система может быть рассмотрена как подсистема или элемент более обширной системы.
Принцип вариантности указывает на существование различных альтернатив технического решения системы, различных путей достижения одной и той же цели. Отсюда вытекает стремление проанализировать все возможные варианты решений с целью выбора наиболее эффективного.
Принцип математизации. Для облегчения анализа и выбора решения при разработке технических систем с помощью количественных оценок вариантов целесообразно применять математические методы исследования операций, оптимизации и другой аппарат системного анализа.
Принцип имитации заключается в целесообразности построения и программирования на ЭВМ моделей, имитирующих функционирование (поведение) технической системы или ее элементов. В результате такого воспроизведения процессов, протекающих в системе, проверяется правильность принятых решений, заложенных в создаваемом объекте.
Системный подход может и должен широко использоваться для решения разнообразных поисковых задач в технике, он предполагает рассмотрение объекта как системы, имеющей многообразные связи между ее элементами. И в этом его основное отличие от традиционных требований классической науки, которые направляют умственную деятельность на отыскание простых элементарных основ всякого объекта, т.е. требуют сведения сложного к простому.
Системный подход не дает конкретных рекомендаций в поисковой деятельности, но, являясь не очень жестко связанной совокупностью познавательных правил, помогает найти общее направление поиска, увидеть задачу более полно и глубоко.
2. Теория решения изобретательских задач Г.С. Альтшуллера
2.1 История создания метода
Г.С. Альтшуллер начал изобретать с раннего возраста. В 17 лет он получил своё первое авторское свидетельство (9 ноября 1943), а к 1950 году число изобретений перевалило за десять. Широко распространено мнение, что изобретения приходят неожиданно, с озарением, но Альтшуллер, будучи учёным и инженером, задался целью выявить, как делаются изобретения, и есть ли у творчества свои закономерности. Для этого он за период с 1946 по 1971 исследовал свыше 40 тысяч патентов и авторских свидетельств, классифицировал решения по 5 уровням изобретательности и выделил 40 стандартных приёмов, используемых изобретателями. В сочетании с алгоритмом решения изобретательских задач (АРИЗ), это стало ядром ТРИЗ.
Первоначально «методика изобретательства» мыслилась в виде свода правил типа «решить задачу - значит найти и преодолеть техническое противоречие».
В дальнейшем Альтшуллер продолжил развитие ТРИЗ и дополнил его теорией развития технических систем (ТРТС), в явном виде сформулировав главные законы развития технических систем[2]. За 60 лет развития, благодаря усилиям Альтшуллера, его учеников и последователей, база знаний ТРИЗ-ТРТС постоянно дополнялась новыми приёмами и физическими эффектами, а АРИЗ претерпел несколько усовершенствований. Общая же теория была дополнена опытом внедрения изобретений, сосредоточенном в его жизненной стратегии творческой личности (ЖСТЛ). Впоследствии этой объединённой теории было дано наименование общей теории сильного мышления (ОТСМ).
2.2 Основы ТРИЗ
Изобретательская ситуация и изобретательская задача
Когда техническая проблема встаёт перед изобретателем впервые, она обычно сформулирована расплывчато и не содержит в себе указаний на пути решения. В ТРИЗ такая форма постановки называется изобретательской ситуацией. Главный её недостаток в том, что перед инженером оказывается чересчур много путей и методов решения. Перебирать их все трудоёмко и дорого, а выбор путей на удачу приводит к малоэффективному методу проб и ошибок.
Поэтому первый шаг на пути к изобретению - переформулировать ситуацию таким образом, чтобы сама формулировка отсекала бесперспективные и неэффективные пути решения. При этом возникает вопрос, какие решения эффективны, а какие - нет?
Г. Альтшуллер предположил, что самое эффективное решение проблемы - такое, которое достигается «само по себе», только за счёт уже имеющихся ресурсов. Таким образом, он пришёл к формулировке идеального конечного результата (ИКР): «Некий элемент (X-элемент) системы или окружающей среды сам устраняет вредное воздействие, сохраняя способность выполнять полезное воздействие».
На практике идеальный конечный результат редко достижим полностью, однако, он служит ориентиром для изобретательской мысли. Чем ближе решение к ИКР, тем оно лучше.
Получив инструмент отсечения неэффективных решений, можно переформулировать изобретательскую ситуацию в стандартную мини-задачу: «согласно ИКР, всё должно остаться так, как было, но либо должно исчезнуть вредное, ненужное качество, либо появится новое, полезное качество». Основная идея мини-задачи в том, чтобы избегать существенных (и дорогих) изменений и рассматривать в первую очередь простейшие решения.
Формулировка мини-задачи способствует более точному описанию задачи:
Из каких частей состоит система, как они взаимодействуют?
Какие связи являются вредными, мешающими, какие - нейтральными, и какие - полезными?
Какие части и связи можно изменять, и какие - нельзя?
Какие изменения приводят к улучшению системы, и какие - к ухудшению?
Противоречия в ТРИЗ
После того, как мини-задача сформулирована и система проанализирована, обычно быстро обнаруживается, что попытки изменений с целью улучшения одних параметров системы приводят к ухудшению других параметров. Например, увеличение прочности крыла самолёта может приводить к увеличению его веса, и наоборот - облегчение крыла приводит к снижению его прочности. В системе возникает конфликт, противоречие.
ТРИЗ выделяет 3 вида противоречий (в порядке возрастания сложности разрешения):
административное противоречие: «надо улучшить систему, но я не знаю как (не умею, не имею права) сделать это». Это противоречие является самым слабым и может быть снято либо изучением дополнительных материалов, либо принятием административных решений.
техническое противоречие: «улучшение одного параметра системы приводит к ухудшению другого параметра». Техническое противоречие - это и есть постановка изобретательской задачи. Переход от административного противоречия к техническому резко понижает размерность задачи, сужает поле поиска решений и позволяет перейти от метода проб и ошибок к алгоритму решения изобретательской задачи, который либо предлагает применить один или несколько стандартных технических приёмов, либо (в случае сложных задач) указывает на одно или несколько физических противоречий.
физическое противоречие: «для улучшения системы, какая-то её часть должна находиться в разных физических состояниях одновременно, что невозможно». Физическое противоречие является наиболее фундаментальным, потому что изобретатель упирается в ограничения, обусловленные физическими законами природы. Для решения задачи изобретатель должен воспользоваться справочником физических эффектов и таблицей их применения.
Информационный фонд ТРИЗ
Информационный фонд в ТРИЗ состоит из:
- приёмов устранения противоречий и таблицы их применения;
- системы стандартов на решение изобретательских задач (типовые решения определённого класса задач);
- технологических эффектов (физических, химических, биологических, математических, в частности, наиболее разработанных из них в настоящее время - геометрических) и таблицы их использования;
- ресурсов природы и техники и способов их использования.
Анализ многих тысяч изобретений позволил выявить, что при всём многообразии технических противоречий большинство из них решается 40 основными приёмами.
Работа по составлению списка таких приёмов была начата Г.С. Альтшуллером ещё на ранних этапах становления теории решения изобретательских задач. Для их выявления понадобился анализ более 40 тысяч авторских свидетельств и патентов[4]. Приёмы эти и сейчас представляют для изобретателей большую эвристическую ценность. Их знание во многом позволяет облегчить поиск ответа.
Но эти приёмы показывают лишь направление и область, где могут быть сильные решения. Конкретный же вариант решения они не выдают. Эта работа остаётся за человеком.
Система приёмов, используемая в ТРИЗ, включает простые и парные.
Простые приёмы позволяют разрешать технические противоречия. Среди простых приёмов наиболее популярны 40 основных приёмов.
Парные приёмы[4] состоят из приёма и антиприёма, с их помощью можно разрешать физические противоречия, так как при этом рассматривают два противоположных действия, состояния, свойства.
Стандарты на решение изобретательских задач представляют собой комплекс приёмов, использующих физические или другие эффекты для устранения противоречий. Это своего рода формулы, по которым решаются задачи. Для описания структуры этих приёмов Альтшуллером был создан вещественно-полевой (вепольный) анализ.
Система стандартов состоит из классов, подклассов и конкретных стандартов. Эта система включает 76 стандартов. С помощью этой системы можно не только решать, но выявлять новые задачи и прогнозировать развитие технических систем.
Технологический эффект - это преобразование одних технологических воздействий в другие. Могут требовать привлечения других эффектов - физических, химических и т.п.
Известно около пяти тысяч физических эффектов и явлений. В разных областях техники могут применяться различные группы физических эффектов, но есть и общеупотребительные. Их примерно 300-500.
Химические эффекты - это подкласс физических эффектов, при котором изменяется только молекулярная структура веществ, а набор полей ограничен в основном полями концентрации, скорости и тепла. Ограничившись лишь химическими эффектами, зачастую можно ускорить поиск приемлемого решения.
Биологические эффекты - это эффекты, производимые биологическими объектами (животными, растениями, микробами и т.п.). Применение биологических эффектов в технике позволяет не только расширить возможности технических систем, но и получать результаты, не нанося вреда природе. С помощью биологических эффектов можно выполнять различные операции: обнаружение, преобразование, генерирование, поглощение вещества и поля и другие операции.
Среди математических эффектов наиболее разработанными являются геометрические. Геометрические эффекты - это использование геометрических форм для различных технологических преобразований. Широко известно применение треугольника, например, использование клина или скользящих друг по другу двух треугольников.
Изучая изменения (эволюцию) технических систем во времени, Альтшуллер выявил Законы развития технических систем, знание которых помогает инженерам предсказывать пути возможных дальнейших улучшений продуктов. Впервые сформулированные Г.С. Альтшуллером в книге «Творчество как точная наука» (М.: «Советское радио», 1979,), законы были сгруппированы в три условные блока:
Статика - законы, определяющие условия возникновения и формирования ТС;
Кинематика - законы, определяющие закономерности развития вне зависимости от воздействия физических факторов. Важны для периода начала роста и расцвета развития ТС;
Динамика - законы, определяющие закономерности развития ТС от воздействия конкретных физических факторов. Важны для завершающего этапа развития и перехода к новой системе.
Самый важный закон рассматривает «идеальность» (одно из базовых понятий в ТРИЗ) системы.
В своих работах Г.С. Альтшуллер определяет структуру и суть алгоритма решения изобретательских задач. Алгоритм решения изобретательских задач (АРИЗ) - пошаговая программа (последовательность действий) по выявлению и разрешению противоречий, то есть решению изобретательских задач (около 85 шагов).
АРИЗ включает:
- собственно программу,
- информационное обеспечение, питающееся из информационного фонда
- методы управления психологическими факторами, которые входят составной частью в методы развития творческого воображения.
Критика ТРИЗ
После смерти Г.С. Альтшуллера ТРИЗ испытала застой в развитии. В нём, а также в сложности практического применения теории, по мнению критиков виновны следующие проблемы: [5]
- не существует методологии решения задач, несмотря на попытки сформировать её исходя из некоторых закономерностей развития техники,
- искажение диалектического подхода из-за введения некоторых новых понятий,
- появление новых модификаций АРИЗ усложняло алгоритм вместо устранения допущенных неточностей,
- не было найдено пригодных для реальных задач механизмов переходов от сформулированного противоречия к его разрешению,
- множество инструментов ТРИЗ представляли собой перебор вариантов несмотря на декларацию отказа от них,
- использование в анализе физических полей, существование которых не доказано,
- невозможность внедрения ТРИЗ в производство по причине сильной зависимости от личного выбора человека.
Современная ТРИЗ
Современная ТРИЗ включает в себя несколько школ, развивающих классическую ТРИЗ и добавляющих новые разделы, отсутствующие в классике. Глубоко проработанное техническое ядро ТРИЗ остаётся практически неизменным, и деятельность современных школ направлена в основном на переосмысление, реструктурирование и продвижение ТРИЗ, то есть имеет больше философский и рекламный, чем технический, характер. В связи с этим современные школы ТРИЗ нередко упрекаются (как со стороны, так и взаимно) в бесплодии и пустословии. ТРИЗ активно применяется в области рекламы, бизнеса, искусства, раннего развития детей и так далее, хотя изначально был рассчитан на техническое творчество.
Классическая ТРИЗ является общетехнической версией. Для практического использования в технике необходимо иметь множество специализированных версий ТРИЗ, отличающихся между собой номенклатурой и содержанием информационных фондов. Некоторые крупные корпорации применяют элементы ТРИЗ, адаптированные к своим областям деятельности.
В настоящее время отсутствуют специализированные версии ТРИЗ для стимуляции открытий в области наук (физики, химии, биологии и так далее).
Главное препятствие в развитии ТРИЗ - отсутствие методологии анализа исходной проблемной ситуации, диагностирования и прогнозирования проблем как источника постановки целей усовершенствований социотехнических систем. На преодоление данного недостатка направлена разработка современной методологии футуродизайна - «проектирования решений, адекватных Будущему».
Одной из тенденций технического прогресса является обострение борьбы за авторские права разработчиков продукции. Поэтому растёт спрос на инновационную деятельность персонала и, соответственно, на методическое и программное обеспечение этих работ. Под этим углом зрения нужно расширять базу данных с полным спектром теоретических подходов. Между тем, продолжатели дела Альтшуллера отторгают любые отклонения от позиции в первоисточнике. Альтернативой является лояльность к новым подходам, поддерживающим на плаву ТРИЗ в качестве бренда теоретических разработок. Новые аспекты моделирования инновационного процесса могут, во избежание избыточных споров, обрести новое имя, тем более, что ТРИЗ состоит из слов, известных до рождения Г.С. Альтшуллера.
Вывод
Несмотря на противоречия и критику, автором ТРИЗ была проделана колоссальная работа, направленная на помощь инженерам, изобретателям и просто находчивым людям в вопросе решения инженерных задач и создания изобретений. Ошибочно было бы утверждать, что глубокое знание всей теории необходимо для успешной изобретательской деятельности, однако, нельзя не подчеркнуть, что оно весьма полезно и может стать мощной опорой для мыслящих людей на пути к успехам в решении изобретательских задач.
Список литературы
1. Альтшуллер Г.С. Творчество как точная наука. 2 изд., дополн. - Петрозаводск: Скандинавия, 2004. - 208 с.
2. Альтшуллер Г.С. Алгоритм изобретения, Москва: «Московский рабочий», 1973. - 296 с.
3. Черный А.А. Основы изобретательства и научных исследований: Учеб. пособие - Пенза: Пенз.гос. ун-т, 2010. - 253 с.
4. Приемы | ТРИЗ | Работы | Официальный Фонд Г.С. Альтшуллера | [Электронный ресурс] - Режим доступа: www.altshuller.ru, свободный.
5. Барышков А.А. Что есть ТРИЗ? [Электронный ресурс] - Режим доступа: http://inventech.ru/pub/methods/triz/, свободный.
Размещено на Allbest.ru
Подобные документы
Роль технического творчества в создании новой техники. Виды научного познания, классификация технических систем. Противоречия и закономерности развития технических систем. Оценка творческой работы, роль коллектива и личности в техническом творчестве.
контрольная работа [98,0 K], добавлен 05.02.2011Мировоззренческие и философские подходы к определению понятия "творчество" различных исторических эпох. Виды и функции творчества, стадии творческого мышления. Взаимосвязь и соотношение творчества и познания, эволюционные процессы активного творчества.
реферат [27,6 K], добавлен 25.10.2009Содержание понятия творчества в философии Ницше. Соотношение концепции творчества с другими идеями немецкого философа. Идея сверхчеловека как высшего человека, истинного гения, творца жизни. Рассмотрение творчества как целостного жизненного феномена.
дипломная работа [102,7 K], добавлен 13.02.2013Принципы системного подхода. Объект как система и одновременно элемент более крупной, объемлющей его системы. Системное познание и преобразование мира. Противоположные свойства системы: отграниченность и целостность. Логические основы системного подхода.
контрольная работа [140,0 K], добавлен 10.02.2011Общая характеристика творчества Юргена Хабермаса. Содержание теории коммуникативного действия. Философия коммуникативного дискурса как согласие людей друг с другом. Значение теории коммуникативного пространства для средств массовой коммуникации.
курсовая работа [48,5 K], добавлен 17.05.2009Закон тождества, (не) противоречия, исключенного третьего, достаточного основания. Формы познания. Понятие как форма мышления. Структура и виды понятия. Логические отношения между сравнимыми понятиями. Логические операции с понятиями. Классификация.
реферат [16,7 K], добавлен 22.02.2009Зарождение перспективистской теории в раннем, романтическом периоде творчества Фридриха Ницше. Перспективизм в "Человеческое слишком человеческое". Перспективистская концепция истины как законченная теория в позднем периоде творчества Фридриха Ницше.
контрольная работа [59,0 K], добавлен 04.09.2016Философские смыслы творчества в эпохах, предшествующих Ницше. Особенности взаимосвязи понятия "сверхчеловек" с понятием "творчество". Основные философские смыслы творчества по Ницше. Влияние концепции "вечного возвращения" на понимание творчества.
дипломная работа [105,0 K], добавлен 29.01.2013Общенаучный характер системного подхода. Понятия структуры и системы, "множество отношений". Роль философской методологии в формировании общенаучных понятий. Содержательные признаки и общие свойства систем. Основные содержательные признаки систем.
реферат [21,6 K], добавлен 22.06.2010Логическая характеристика понятий. Определение отношения между понятиями и выражение их с помощью круговых схем. Классификация суждений, изображение отношения между ними при помощи кругов Эйлера. Анализ энтимемы. Требования формально-логического закона.
контрольная работа [260,1 K], добавлен 04.05.2010