Элементы теории представлений

Квантово-механическая система: теории представлений волновой функции (амплитудой вероятности). Обозначения Дирака: вектор состояния в n-мерном гильбертовом пространстве. Преобразование операторов от одного представления к другому, эрмитовы матрицы.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 31.03.2011
Размер файла 150,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Элементы теории представлений

1. Основы теории представлений. Различные представления волновой функции (различные представления состояний)

2. Обозначения Дирака

3. Преобразование операторов от одного представления к другому

Введение

Для создания новой физической теории необходимо cформулировать систему постулатов, найти математический аппарат, соответствующий физическому смыслу рассматриваемых проблем и установить связь физических фактов с математическим формализмом.

Для формулировки ньютоновской механики потребовалось развитие дифференциального и интегрального исчисления. В 20-м столетии произошли серьезные изменения в представлениях физиков о математических основах их науки. Закономерности микромира коренным образом отличаются от законов макроскопического мира, объектами которого мы являемся.

Одно из основных понятий квантовой механики - понятие состояния квантово-механической системы. Смысл этого понятия в квантовой и классической физике различен. Содержание понятия состояния квантово-механической системы будет выясняться постепенно в процессе изучения.

Информацию о состоянии системы получают в процессе измерения, т.е. при взаимодействии квантовой системы с макроскопическим прибором. Поэтому результаты измерения характеризуются теми же физическими величинами, которые используются в классической макроскопической физике. Физические величины в квантовой механике часто называют динамическими переменными или наблюдаемыми. В квантовой механике физические величины имеют иную математическую природу, чем в классической, потому что состояния квантово-механической системы и динамические переменные "взаимосвязаны весьма странным образом, который непостижим с классической точки зрения". [1, c31].

В квантовой механике изучаются такие явления, которые не могут быть объяснены с помощью известных ранее понятий. Ведь наш язык - это "слепок с обыденного опыта человека, он никогда не сможет выйти за пределы этого опыта. Классическая физика как раз и ограничивается рассмотрением явлений, которые имеют в языке адекватный словесный эквивалент". Бор.М. Атомная физика. - М.: Мир, 1965, с 119

При изучении явлений, происходящих на ином структурном уровне организации материи, на помощь приходит другой язык - математика. "Математика есть орудие, специально приспособленное для овладения всякого рода абстрактными понятиями и в этом отношении ее могущество беспредельно". [1, c13]. "Тем не менее, - считает П. Дирак, - математика есть лишь орудие, и нужно уметь владеть физическими идеями безотносительно к их математической форме". (Там же). Выбор математических методов, адекватных физической сущности задачи, возможно более полное прослеживание аналогий между понятиями и методами математики и физики способствует формированию современного физического мышления. В то же время освоение абстрактных математических объектов возможно только при их реализации физическими объектами.

Для описания квантовых свойств материи может быть использован различный математический аппарат. В 1925г. Вернером Гейзенбергом была создана матричная механика. В этом же году, но немного позже, Э. Шрёдингер создал волновую механику. Он доказал также, что обе формулировки эквивалентны. Наиболее изящная формулировка квантовой механики создана в 1930г английскими физиком П. Дираком. Именно эта формулировка сейчас чаще всего используется. Все формулировки квантовой механики эквивалентны, могут быть преобразованы друг в друга и приводят к одинаковым физическим результатам.

1. Основы теории представлений. Различные представления волновой функции (различные представления состояния)

Состояния квантово-механической системы характеризуется волновой функцией или амплитудой вероятности. Независимые переменные, функцией которой она является, могут быть различными. Например, декартовы координаты системы

,

значения ее импульса

и т. п. Буквы, обозначающие независимые переменные, называют индексом представления. Индекс волновой функции (в данном случае ) обозначает набор значений физических величин или соответствующих квантовых чисел, которые характеризуют данное состояние. Поэтому этот индекс обычно называют индексом состояния.

Если волновая функция зависит от координат, то описание состояния с помощью такой функции называют координатным представлением. Например, для свободной частицы, движущейся вдоль оси , в координатном представлении.

Волновую функцию , характеризующую состояние системы, можно разложить в ряд по собственным функциям оператора динамической переменной . Если этот оператор имеет дискретный спектр собственных значений, т. е.

, то

Коэффициенты разложения определяются из выражения

(Здесь, как и раньше, - произведение дифференциалов независимых переменных). В § 2.4.2 был выяснен физический смысл этих коэффициентов: есть вероятность того, что в состоянии, описываемым -функцией, физическая величина, представляемая оператором , имеет значение . Таким образом имеет смысл амплитуды вероятности, если независимой переменной является величина . Совокупность амплитуд является волновой функцией в - представлении. Эту совокупность можно представить в виде матрицы с одним столбцом

Если спектр собственных значений оператора непрерывный, то аналогично имеем

Пример 1. Записать скалярное произведение двух функций и в - представлении.

Компоненты и в - представлении находим, раскладывая эти функции в ряд по собственным функциям оператора :

, (Й)

(ЙЙ)

(ЙЙЙ) (ЙV).

Подставляем разложение (Й) и (ЙЙ) в скалярное произведение функций:

.

Меняя местами знаки суммирования и интегрирования и учитывая ортонормированность собственных функций оператора получаем:

.

Чтобы получить такое выражение по правилу умножения матриц, следует перемножить матрицу-строку

(V)

на матрицу-столбец (ЙЙЙ):

Матрица (V) транспонирована по отношению к матрице (ЙV) и ее элементы комплексно сопряжены с элементами последней. Такая матрица называется сопряженной с и обозначается . Таким образом, комплексно сопряженной функции под знаком интеграла соответствует сопряженная матрица.

2. Обозначения Дирака

Проведена аналогия между собственными функциями эрмитовых операторов и ортами прямоугольных координатных осей. Продолжим ее обсуждение.

Вектор в - мерном пространстве задается совокупностью , вообще говоря, комплексных величин, называемых компонентами этого вектора

Аналогия между соотношениями и очевидна. Выражение определяет вектор через его проекции на оси координат в многомерном пространстве. Выражение является разложением -функции по собственным функциям некоторого оператора. Систему ортонормированных собственных функций , следовательно, можно рассматривать как базис в бесконечномерном пространстве, а величины - как компоненты -функции по осям этого базиса. В зависимости от выбора базиса (т. е. от выбора системы собственных функций, следовательно, от выбора представления) получается та или иная совокупность компонент .

Переход от одного представления к другому геометрически означает переход от системы координат, образованных базисными векторами (собственными функциями) одного оператора к системе координат, образованных базисными векторами (собственными функциями) другого оператора. Таким образом, квантовое состояние микрообъекта не обязательно должно характеризоваться волновой функцией в реальном пространстве. Квантовое состояние не сводится к одной какой-то совокупности амплитуд вероятности

и т. п. Каждая из этих совокупностей отражает одну из сторон понятия квантового состояния и является одной из возможных его реализаций. Аналогично, вектор в - мерном евклидовом пространстве может быть представлен совокупностью его проекций в различных системах координат:

,

и т. п. Здесь - базисные векторы (орты), например, в сферической системе координат, - в декартовой.

Данная аналогия привела П. Дирака к мысли характеризовать состояние системы вектором состояния в бесконечномерном гильбертовом пространстве. Вектор состояния он предложил обозначать символом . В середине скобки, по Дираку, должен помещаться индекс состояния, т. е. величина или набор величин, которые определяют состояние системы. Например, если система находится в состоянии с энергией , то записывают или . Этот вектор состояния называют кэт-вектором. Он характеризует состояние системы независимо от выбора представления. Кэт-вектору сопоставляется бра-вектор, обозначаемый зеркально отраженной скобкой . Бра-вектор связан с кэт-вектором соотношением =+. Например, если совокупность компонент кэт-вектора представлена в виде матрицы

=, то =+=.

Внутри скобки помещается индекс представления. Например, | означает, что используется координатное представление. Скалярное произведение кэт и бра-векторов обозначается полным скобочным выражением и представляет собой число. Например, волновая функция в - представлении с помощью скобок записывается так: . Волновая функция свободной частицы, находящейся в состоянии определенным значением импульса в координатном представлении (время фиксировано):

,

Название «бра» и «кэт» соответствуют двум частям английского слова «bracket» (скобка).

Волновая функция (амплитуда вероятности), как известно, характеризует вероятность результатов измерений, проводимых над системой. Скобочное выражение составлено так, что справа указывается начальное состояние, а слева - то, в которое переходит система при измерении, т. е. конечное. Таким образом, скобочная запись читается справа налево. Например, есть амплитуда вероятности того, что система будет иметь координату , если она находится в состоянии характеризуемом импульсом .

Уравнение собственных значений в обозначениях П. Дирака можно записать в виде:

Здесь собственный вектор состояний обозначается той же буквой, что и соответствующее собственное значение. Запишем, пользуясь этими обозначениями, выражение. Пусть вектор состояния системы, а - базисная система векторов. Тогда

>=, где

Вектор состояния системы - понятие более абстрактное, чем волновая функция. В зависимости от выбора независимых переменных (представления) вектору состояния могут соответствовать различные волновые функции: в координатном представлении - , в импульсном - , в энергетическом - и т.д. Т.е. волновая функция есть проекция вектора состояния на соответствующий базисный вектор.

Получим в обозначениях Дирака условие полноты ортонормированного базиса. Оно часто бывает полезным при использовании этого формализма.

Пусть - единичный оператор, который любому вектору состояния ставит в соответствие тот же вектор:

Представим в виде разложения по ортонормированному базису (т.е. по системе собственных векторов оператора ):

Подставляем это разложение в:

В силу произвольности вектора получаем

Это соотношение и является условием полноты в обозначениях Дирака.

Пример. Записать в обозначениях Дирака среднее значение физической величины представленной оператором , если состояние системы характеризуется вектором состояния . (Спектр собственных значений оператора считать дискретным).

Среднее значение дискретной случайной величины равно сумме произведений ее возможных значений на их вероятности:

Здесь - собственные значения оператора , - его собственные векторы и - волновая функция системы в - представлении. Преобразуем выражение для среднего значения, пользуясь свойством скалярного произведения

В последнем преобразовании использовано условие полноты

Таким образом, в обозначениях Дирака

квантовый представление волновой состояние

3. Преобразование операторов от одного представления к другому

Пусть оператор задан в координатном представлении и переводит функцию в функцию :

Разложим функции и в ряд по собственным функциям оператора . Спектр собственных значений этого оператора для определенности будем считать дискретным

:

Совокупность амплитуд есть волновая функция в -представлении, совокупность амплитуд - волновая функция в -представлении. Подставим разложение (3.3.2) и (3.3.3) в (3.3.1):

Умножим левую и правую части этого равенства на и проинтегрируем по всей области изменения независимых переменных. Знаки суммирования и интегрирования меняем местами. Поскольку собственные функции ортогональны и нормированы, т.е.

, имеем

Вводя обозначение

получаем

Если спектр оператора непрерывен, имеем аналогично

Таким образом, с помощью набора величин можно волновую функцию в - представлении, являющуюся совокупностью амплитуд, превратить в волновую функцию в том же представлении. Поэтому совокупность величин является оператором в - представлении. Его можно представить в виде матрицы:

Величины называют матричными элементами. В обозначениях Дирака

Итак, операторы квантовой механики могут быть представлены в матричной форме. Поскольку в квантовой механике применяются только эрмитовы операторы, удовлетворяющие условию, т о.

Такие матрицы называют самосопряженными или эрмитовыми.

Таким образом, каждой физической величине соответствует не один, а множество операторов. Вид оператора данной физической величины зависит от выбора независимых переменных. Зная оператор физической величины в одном представлении, можно найти его в других представлениях. Например, если известен вид оператора в -представлении, то для получения его в матричной форме в -представлении надо воспользоваться собственными функциями оператора в -представлении в соответствии с формулой (3.3.4). Свойства физической величины (эрмитовость ее оператора, спектр собственных значений, среднее значение и т.д.) не зависят от выбора представления. (Аналогия с принципом относительности Эйнштейна: законы природы инвариантны (неизменны) при переходе от одной инерциальной системы отчета к другой).

Пример. Найти матричные элементы оператора в его собственном представлении.

В этом случае в (3.3.4) - собственная функция оператора :

С помощью этого уравнения преобразуем выражение для матричного элемента (3.3.4):

Поскольку собственные функции ортогональны и нормированы, получаем: . Таким образом, в своем собственном представлении любой оператор в матричной форме является диагональной матрицей, диагональные элементы которой равны собственным значениям этого оператора:

Итак, чтобы найти собственные значения оператора, заданного в форме матрицы, нужно привести эту матрицу к диагональному виду.

Пример. Записать среднее значение физической величины, представляемой оператором , в матричной форме.

Пусть в выражении

волновая функция и оператор заданы в координатном представлении. Перейдем к - представлению. Воспользуемся разложением (3.3.2) функции в ряд по собственным функциям оператора . Подставляя в выражение для среднего значения и меняя местами знаки суммирования и интегрирования, получаем

Совокупность есть матрица с одним столбцом. Совокупность - сопряженная матрица с одной строкой. Поэтому (3.3.8) можно записать как произведение соответствующих матриц:

где - оператор в - представлении.

Вопросы для самопроверки

1. Что называют индексом состояния? индексом представления?

2. Как, зная волновую функцию системы в одном представлении, найти ее в другом представлении?

3. Как, зная вид оператора в одном представлении, найти его в другом представлении?

4. Определите понятие матричного элемента оператора.

5. Что представляет собой матричные элементы оператора в его собственном представлении?

6. Что такое вектор состояния, кэт-вектор, бра-вектор? Какая связь между и ?

7. Какая связь между вектором состояния системы и ее волновой функцией?

8. Записать в обозначениях Дирака волновую функцию системы в - представлении и в - представлении, если ее вектор состояния .

9. Изменяется ли среднее значение физической величины при переходе к другому представлению?

10. Записать в матричной форме (в - представлении) выражение для среднего значения величины, соответствующей оператору .

Упражнения

3.1 Найти операторы координаты и импульса в импульсном представлении.

Решение. Для простоты рассматриваем одномерное движение вдоль оси . В координатном представлении

, (см §2.7).

В импульсном (т.е. в своем собственном) представлении . Найдем оператор координаты.

Способ 1. Воспользуемся тем, что среднее значение физической величины не зависит от используемого представления:

(I)

В левой части равенства все величины даны в координатном представлении, в правой - в импульсном. Связь между волновыми функциями в координатном и импульсном представлениях определяется соотношением

,

Где

- собственная функция оператора в координатном представлении. Поэтому

(II)

Подставляем это выражение в левую часть равенства (I):

(III)

Множитель в подынтегральном выражении правой части равенства найдем из соотношения:

.

Получаем:

.

Пользуясь этим соотношением, преобразуем правую часть равенства (III):

(IV)

При интегрировании по получаем

,

так как и . (Состояние с бесконечно большим импульсом невозможно.) Учитывая этот результат, перепишем равенство (IV):

(V)

Так как

=

правую часть соотношения (V) можно переписать в виде

Используя свойство -функции (2.6.3) находим интеграл по :

Учитывая сделанные преобразования, переписываем равенство (V):

Сравнивая это выражении с соотношением (I) получаем

Способ 2. В матричной форме оператор координаты в импульсном представлении является бесконечной непрерывной матрицей с матричными элементами:

Здесь - собственная функция оператора импульса в координатном представлении

Подставляя значение функции в формулу для матричного элемента, получаем

Соотношение

показывает как оператор в матричной форме переводит одну функцию в импульсном представлении в другую также в импульсном представлении (См(3.3.6)). Подставляем в правую часть этого соотношения значение матричного элемента и интегрируем по частям:

Первое слагаемое в правой части равно нулю, поскольку импульс не может быть бесконечно большим. Второе слагаемое преобразовываем, используя свойство -функции (2.6.3):

Поэтому

Следовательно, координате в импульсном представлении соответствует дифференциальный оператор

4. Задания, для контрольной проверки знаний

I. Проверить, коммутируют ли приведенные ниже операторы?

1. и

2. и

3. и , где

4. и

5. и

II. Найти операторы, сопряженные с приведенными ниже. Определить какие операторы являются эрмитовыми.

1.

2.

3.

4.

5.

III. Доказать:

1. если операторы и эрмитовы и коммутируют, то оператор также эрмитов;

2. если операторы и эрмитовы и некоммутирующие, то оператор эрмитов;

3. если операторы и эрмитовы и некоммутирующие, то оператор эрмитов;

4. если операторы и эрмитовы и некоммутирующие, то оператор не эрмитов;

5. если оператор линейный, то оператор эрмитов;

IV. 1. Найти собственные функции и собственные значения оператора

,

если

,

где - постоянная величина

2. Найти собственные функции и собственные значения оператора

(Оператор задан в сферических координатах).

3. Найти собственные функции и собственные значения оператора

(Оператор задан в сферических координатах).

4. Найти собственные функции и собственные значения оператора

,

если .

5. Найти собственные функции и собственные значения оператора

V. 1. Вычислить среднее значение для одномерного гармонического осциллятора, состояние которого описывается функцией

, где

2. Вычислить среднее значение кинетической энергии

линейного гармонического осциллятора, если состояние его описывается функцией

, где

3. Волновая функция состояния частицы имеет вид

,

где - вещественная функция. Найти средний импульс частицы в этом состоянии.

4. В некоторый момент времени частица находится в состоянии

,

где и - постоянные. Найти среднее значение ее координаты .

5. Найти среднее значение физической величины, представляемой оператором

,

если состояние частицы описывается функцией .

VI. Определить возможные значения физической величины, представляемой оператором

и их вероятности для системы, находящейся в состоянии:

1.

2.

3.

4.

5.

(Оператор задан в сферических координатах)

Литература

1. Дирак П. Принципы квантовой механики.- М: Наука, 1979.

2. Вакарчук І.О. Квантова механіка: Підручник.- Львів: ЛДУ ім.. І. Франка, 1998.

3. Блохинцев Д.И. Основы квантовой механики. М.: Наука, 1983.

4. Давыдов А.С. Квантовая механика. М.: Наука, 1973.

5. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория. М.: Наука, 1989.

6. Юхновський І.К. Квантова механіка. Київ: Либідь, 1995.

7. Федорченко А.М. Теоретична фізика. Київ: Вища школа, 1993, т. 2.

8. Фок В.А. Начала квантовой механики. М.: Наука, 1976.

9. Шифф Л. Квантовая механика. М.: Из-во иностр. лит., 1959.

10. Мессиа А. Квантовая механика: в 2-х томах, М.: Наука, 1978, т. 1.

11. Иродов И.Е. Задачи по квантовой физике. М.: «Высшая школа», 1991.

12. Галицкий В.М., Карнаков Б.М., Коган В.И. Задачи по квантовой механике. М.: Наука, 1981.

13. Арфкен Г. Математические методы в физике. М.: Атомиздат, 1970.

14. Рихтмайер Р. Принципы современной математической физики, М.:1982.

Размещено на Allbest.ru


Подобные документы

  • Состояние квантовомеханической системы. Волновая функция (амплитуда вероятности). Операторы динамических переменных. Собственные функции и значения операторов. Дельта-функция Дирака. Операторы координаты и импульса, соотношение неопределенности.

    курсовая работа [446,6 K], добавлен 31.03.2011

  • Экспериментальные основы и роль М. Планка в возникновении квантовой теории твердого тела. Основные закономерности фотоэффекта. Теория волновой механики, вклад в развитие квантово-механической теории и квантовой статистики А. Гейзенберга, Э. Шредингера.

    доклад [473,4 K], добавлен 24.09.2019

  • Возникновение неклассических представлений в физике. Волновая природа электрона. Эксперимент Дэвиссона и Джермера (1927 г.). Особенности квантово-механического описания микромира. Матричная механика Гейзенберга. Электронное строение атомов и молекул.

    презентация [198,3 K], добавлен 22.10.2013

  • Опыт Майкельсона и крах представлений об эфире. Эксперименты, лежащие в основе специальной теории относительности. Астрономическая аберрация света. Эффект Доплера, связанный с волновыми движениями. Принцип относительности и преобразования Лоренца.

    курсовая работа [214,7 K], добавлен 24.03.2013

  • Эффект Холла и магнетосопротивление в модели Друде. Высокочастотная электропроводность металла. Распределение Ферми-Дирака и его применение. Сравнительный анализ статистики Максвелла-Больцмана и Ферми-Дирака. Недостатки теории свободных электронов.

    курсовая работа [723,0 K], добавлен 21.10.2014

  • История зарождения квантовой теории. Открытие эффекта Комптона. Содержание концепций Резерфорда и Бора относительно строения атома. Основные положения волновой теории Бройля и принципа неопределенности Гейзенберга. Корпускулярно-волновой дуализм.

    реферат [37,0 K], добавлен 25.10.2010

  • Решение уравнений состояния. Вычисление функции от матрицы по формуле Бейкера. Формирование разных уравнений состояния. Интегрирование при постоянных источниках. Уравнения состояния и матрицы коэффициентов. Вектор входных и выходных переменных.

    презентация [152,9 K], добавлен 20.02.2014

  • Корпускулярная и волновая теории света. Представления Макса Планка о характере физических законов. Явление интерференции и дифракции. Распространение импульсов в упругом светоносном эфире согласно теории Гюйгенса. Закон отражения и преломления света.

    реферат [25,1 K], добавлен 22.11.2012

  • Особенности определения энергии и волновых функций 3-го и 4-го стационарных состояний электрона в потенциальной яме. Порядок вычисления вероятности обнаружения электрона в каждом из секторов ямы. Понятие и сущность оператора Гамильтона в квантовой теории.

    курсовая работа [262,7 K], добавлен 03.06.2010

  • История развития квантовой теории. Квантово-полевая картина мира. Основные принципы квантово-механического описания. Принцип наблюдаемости, наглядность квантово-механических явлений. Соотношение неопределенностей. Принцип дополнительности Н. Бора.

    реферат [654,4 K], добавлен 22.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.