Физика, основы теории

Механика, молекулярная физика и термодинамика. Перемещение точки и пройденный путь, скорость, вычисление пройденного пути, кинематика вращательного движения. Электризация тел, закон сохранения электрического заряда. Работа сил электростатического поля.

Рубрика Физика и энергетика
Вид шпаргалка
Язык русский
Дата добавления 29.11.2009
Размер файла 250,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

77

Механика. Молекулярная физика. Термодинамика

1. Основные понятия кинематики

Механика - это наука о движении и взаимодействии макроскопических тел.

Классическая механика состоит из трех частей: кинематики, динамики и статики.

Кинематика изучает движение тел, без учета причин, которыми обусловлено это движение.

Основными задачами кинематики являются:

Описание с помощью формул, таблиц и графиков совершаемых телом движений.

Определение кинематических величин, характеризующих это движение.

Для описания движений в кинематике вводится ряд специальных понятий (материальная точка, абсолютно твердое тело, система отсчета, траектория и т.д.) и величин (путь, перемещение, скорость, ускорение и т.д.)

Механическим движением называют изменение положения тела относительно других тел в пространстве с течением времени.

Тело, относительно которого рассматривается движение других тел, называется телом отсчета.

Систему координат и прибор для отсчета времени, связанные с телом отсчета, называют системой отсчета.

Тело, деформациями которого в данных условиях движения можно пренебречь, называют абсолютно твердым телом.

Тело, размерами которого в данных условиях движения можно пренебречь, называют материальной точкой.

Линию, описываемую материальной точкой при своем движении, называют траекторией.

Любое движение твердого тела можно разделить на два вида движения: поступательное и вращательное.

Поступательным называют такое движение, при котором любая прямая, связанная с движущимся телом, остается параллельной самой себе.

Вращательным называют такое движение, при котором все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. (Ось вращения может находиться и вне тела).

2. Перемещение точки и пройденный путь. Скорость. Вычисление пройденного пути

Расстояние от точки А до точки В, отсчитанное вдоль траектории, называют пройденным путем. Иными словами, пройденный путь - это длина траектории, которую описывает материальная точка за данный промежуток времени.

Перемещением называют вектор, соединяющий начальное положение материальной точки с её конечным положением .

Величины, для задания которых достаточно лишь численного значения, называются скалярами. (Примеры: путь, время, масса, работа, мощность и т.д.)

Величины, характеризующиеся численным значением и направлением, называются векторами. (Примеры: перемещение, скорость, ускорение, сила, импульс и т.д.)

Положение материальной точки в пространстве можно задать при помощи радиуса-вектора .

Если перемещение точки за время будет равно , то под скоростью точки в данный момент времени понимают предел, к которому стремится отношение при (при стремящемся к нулю).

=.

Вектор скорости направлен по касательной к траектории в соответствующей точке.

При различия между элементарным путем и модулем элементарного перемещения невелико, поэтому , т.е. .

Если задана зависимость скорости от времени, то пройденный путь можно найти, пользуясь формулой

В случае прямолинейного равномерного движения .

Прямолинейное равнопеременное движение. Ускорение. Физический смысл ускорения. Вычисление мгновенной скорости и пройденного пути при равнопеременном движении

Движение, при котором за любые равные промежутки времени скорость тела изменяется на одну и ту же величину, называется равнопеременным.

Быстрота изменения скорости материальной точки характеризуется ускорением

, или , т.е..

Физический смысл ускорения состоит в том, что оно является скоростью изменения скорости.

Если в начальный момент времени скорость тела равна , то в любой момент времени t модуль скорости тела

.

Если ускорение постоянно, то модуль мгновенной скорости

Пройденный путь (при равнопеременном движении) можно найти по формуле:

.

Для нахождения пройденного пути (в случае, если ускорение постоянно) также пользуются формулами:

и .

3. Ускорение при криволинейном движении

Нормальное, тангенциальное и полное ускорение

В случае движения материальной точки по криволинейной траектории различают нормальное и тангенциальное ускорения.

Нормальное (центростремительное) ускорение характеризует изменение скорости по направлению. Оно направлено к центру кривизны траектории.

Модуль нормального ускорения определяют по формуле , где R - радиус кривизны траектории

Тангенциальное (касательное) ускорение характеризует изменение скорости по величине. Оно направлено по касательной к траектории.

Модуль тангенциального ускорения определяют по формуле .

Модуль полного ускорения .

4. Кинематика вращательного движения

Тело, деформациями которого в данных условиях движения, можно пренебречь называют абсолютно твердым телом.

При вращательном движении радиус-вектор каждой точки поворачивается за одно и то время на один и тот же угол .

называют углом поворота тела.

Угловой скоростью тела называют величину

.

- аксиальный вектор (направлен вдоль оси вращения в сторону, определяемую правилом правого винта).

Равномерное вращение характеризуется периодом обращения Т.

Периодом обращения называют промежуток времени, за которое тело делает один полный оборот (поворачивается на угол 2р).

Модуль угловой скорости равномерного движения

.

Частотой обращения называют число оборотов точки за единицу времени .

Таким образом,

Угловое ускорение характеризует быстроту изменения угловой скорости (в случае неравномерного вращения)

.

Линейная скорость тела связана с угловой соотношением .

Модуль нормального ускорения

Модуль тангенциального ускорения .

5. Первый закон Ньютона. Инерциальные системы отсчета. Принцип относительности Галилея

Раздел механики, изучающий причины, вызывающие ускорение и способы его вычисления, называют динамикой.

Динамика базируется на трёх законах Ньютона.

Согласно первому закону Ньютона, существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела или действия этих тел уравновешены.

Явление сохранения скорости тела при компенсации внешних воздействий на него называю инерцией. Поэтому первый закон Ньютона часто называют законом инерции.

Системы отсчета, в которых выполняется первый закон Ньютона, называются инерциальными. Если одна система отсчета, найденная с помощью опыта, инерциальна, то инерциальными будут и все другие, движущиеся относительно её равномерно и прямолинейно (т.е. без ускорения). Землю с большой степенью точности можно считать инерциальной системой отсчета.

Если рассматривать движение данного тела в нескольких инерциальных системах отсчета, то это движение отличается только скоростью, а ускорение тела во всех инерциальных системах отсчета одинаково. Это положение обобщено Галилеем и сформулировано им в виде принципа относительности в механике: во всех инерциальных системах отсчета при одинаковых начальных условиях все механические явления протекают одинаково, т.е. подчиняются одним законам.

Другими словами, все инерциальные системы отсчета равноправны - любую из них можно считать неподвижной, а остальные - движущимися относительно данной равномерно и прямолинейно.

Никакими механическими опытами, поставленными внутри инерциальной системы отсчета, невозможно установить, покоится эта система или движется равномерно и прямолинейно.

По отношению к различным инерциальным системам отсчета скорость движения тела относительна, а ускорение абсолютно.

Инерциальные системы отсчета играют в физике исключительно важную роль, так как, согласно принципу относительности Эйнштейна, математическое выражение любого закона физики имеет одинаковый вид в любой инерциальной системе отсчета.

6. Масса тела. Сила. Второй и третий законы Ньютона

Свойство тела сохранять свою скорость неизменной, т.е. сохранять состояние покоя или равномерного прямолинейного движения при отсутствии внешних воздействий на это тело или их взаимной компенсации, называют его инертностью. Инертность тел приводит к тому, что мгновенно изменить скорость тела невозможно - действие на него другого тела должно длиться определенное время. Чем инертнее тело, чем меньше изменяется его скорость за данное время, т.е. тем меньшее ускорение получает это тело.

Скорость тела может изменяться только непрерывно.

Масса тела является мерой инертности тела, а также источником и объектом тяготения.

Масса тела, являющаяся характеристикой его инерционных и гравитационных свойств, представляет собой величину, зависящую только от самого тела и не зависящую от того, в каких именно взаимодействиях с другими телами это тело участвует. Однако масса зависит от скорости движения тела. Эта зависимость обнаруживается только при движениях со скоростями, сравнимыми со скоростью света.

Массу тел определяют путем взвешивания на рычажных весах, кроме того, массу тела можно определить по взаимодействию этого тела с эталоном.

В СИ за единицу массы принимают килограмм (кг).

Действие одного тела на другое, в результате которого возникает ускорение тела или отдельных его частей, называется силой.

Причина ускорения тела - приложенная к нему сила.

Сила - векторная физическая величина. Действие силы на тело зависит от её модуля, направления и точки приложения.

Силу измеряют с помощью динамометров и пружинных весов.

Так как сила - величина векторная, то сложение сил производится по правилу сложения векторов.

Согласно второму закону Ньютона, равнодействующая всех сил, приложенных к телу, равна произведению массы тела на получаемое им ускорение: .

В СИ сила измеряется в ньютонах (Н).

Согласно третьему закону Ньютона, силы, с которыми два тела действуют друг на друга, направлены вдоль одной прямой, равны по модулю и противоположны по направлению:.

Силы всегда появляются парами и внутри каждой пары они всегда одной природы.

Силы, возникающие при взаимодействии, тел никогда не уравновешивают друг друга, поскольку приложены к разным телам.

7. Сила тяжести. Вес тела. Перегрузки. Невесомость

Силу, с которой тело притягивается к Земле под действием поля тяготения Земли, называют силой тяжести. По закону всемирного тяготения на поверхности Земли (или вблизи этой поверхности) на тело массой m действует сила тяжести

,

где М - масса Земли; R - радиус Земли.

Если на тело действует только сила тяжести, то оно совершает свободное падение. Модуль ускорения свободного падения g находят по формуле

.

Из данной формулы следует, что ускорение свободного падения не зависит от массы m падающего тела, т.е. для всех тел в данном месте Земли оно одинаково.

Модуль силы тяжести можно определить по формуле . Эта сила имеет гравитационную природу. Вектор силы тяжести приложен к центру тяжести тела.

Из закона всемирного тяготения следует, что сила тяжести и вызываемое ею ускорение свободного падения уменьшаются при увеличении расстояния от Земли. На высоте от поверхности Земли модуль ускорения свободного падения определяют по формуле

.

Силу, с которой вследствие притяжения к Земле тело действует на свою опору или подвес, называют весом тела.

Вес тела является упругой силой, приложенной к опоре или подвесу (т.е. к связи).

Если тело покоится или движется прямолинейно и равномерно, то его вес равен силе тяжести, т.е. .

Если тело движется ускоренно, то его вес зависит от этого ускорения и его направления относительно направления вектора ускорения свободного падения.

Если тело движется с ускорением а, направленным вертикально вверх, то его вес Увеличение веса тела, вызванное его ускоренным движением, называют перегрузкой.

Если тело движется с ускорением а, направленным вертикально вниз (т.е. совпадающим с направлением ускорения свободного падения), то его вес уменьшается. В этом случае он определяется по формуле

При свободном падении . Следовательно, в данном случае , т.е вес отсутствует. Если тело движется только под действием силы тяжести (свободно падает), то оно находится в состоянии невесомости. Характерным признаком этого состояния является отсутствие у свободно падающих тел деформаций и внутренних напряжений. Причина невесомости тел заключается в том, что сила тяжести сообщает свободно падающему телу и его опоре (или подвесу) одинаковые ускорения.

8. Импульс тела. Импульс силы. Закон сохранения импульса

Уравнение второго закона Ньютона можно представить в виде , или .

Внеся под знак дифференциала, получим .

Векторную величину, равную произведению массы тела на его скорость, называют импульсом тела. Таким образом, импульс тела определяется по формуле . Следовательно, , т.е. производная импульса материальной точки по времени равна равнодействующей всех сил, приложенных к точке.

Последнюю формулу можно представить в виде .

Приращение импульса за время равно

=.

При =. Величину , равную произведению силы на время её действия, называют импульсом силы.

Изменение импульса тела за время равно импульсу силы, действующей на тело в течение этого времени.

Рассмотрим систему, состоящую из N материальных точек (систему тел).

Силы, с которыми на данное тело действуют остальные тела системы, называют внутренними.

Силы, обусловленные воздействием тел, не принадлежащих системе, называют внешними.

В случае отсутствия внешних сил систему называют замкнутой.

Импульсом системы называют векторную сумму импульсов тел, образующих систему

.

Группу тел, взаимодействующих не только между собой, но и с телами, не входящими в состав этой группы, называют незамкнутой системой. Силы, с которыми на тела данной системы действуют тела, не входящие в эту систему, называю внешними (обычно внешние силы обозначают буквой , а внутренние силы - буквой .

Рассмотрим взаимодействие двух тел в незамкнутой системе. Изменение импульсов данных тел происходит как под действием внутренних сил, так и под действием внешних сил.

Согласно второму закону Ньютона, изменения импульсов рассматриваемых тел у первого и второго тел составляют

где t - время действия внешних и внутренних сил. Почленно сложив данные выражения, получим .

В этой формуле - полный импульс системы,

(согласно третьему закону Ньютона), - равнодействующая всех внешних сил, действующих на тела данной системы. С учетом вышеизложенного получаем формулу , из которой следует, что полный импульс системы изменяется только под действием внешних сил. Если же система замкнутая, т.е. , то и, следовательно, .

Закон сохранения импульса для замкнутой системы тел формулируется следующим образом: импульс замкнутой системы тел остается постоянным при любых взаимодействиях тел этой системы между собой.

На законе сохранения импульса основано реактивное движение.

9. Механическая работа и мощность

Если действующая на тело сила вызывает его перемещение , то действие силы характеризуется механической работой

, где - угол между направлением силы и перемещения. Формула справедлива для случая когда тело движется прямолинейно и действующая на него сила остается постоянной. Если сила изменяется, то .

Механическая работа является мерой изменения энергии. За единицу работы в системе Си принимают джоуль (Дж).

Средней мощностью называют величину, равную отношению работы к промежутку времени , за который она совершается

.

Мгновенная мощность определяется по формуле . Учитывая, что , получаем , где v - мгновенная скорость.

За единицу мощности в системе СИ принимают ватт (Вт).

На практике часто применяют внесистемную единицу мощности - лошадиную силу.

1 л.с. = 735 Вт

10. Кинетическая и потенциальная энергия

Физическая величина, характеризующая способность тела или системы тел совершать работу, называется энергией.

Энергия может быть обусловлена движением тела с некоторой скоростью (кинетическая энергия), а также нахождением тела в потенциальном поле сил (потенциальная энергия).

Кинетическая энергия

Рассмотрим случай, когда тело массой m под действием силы F изменяет свою скорость от до . Определим работу силы, приложенной к телу

.

.

Так как механическая работа является мерой изменения энергии, то величина представляет собой энергию, обусловленную движением тела.

Энергию, которой обладает тело вследствие своего движения называют кинетической .

Работа совершаемая силой при изменении скорости тела, равна изменению кинетической энергии тела

Потенциальная энергия тела в поле силы тяжести

При падении тела массой m с высоты до высоты над Землей сила тяжести совершает работу

или .

Сила тяжести является консервативной силой, а поле тяготения - потенциальным. Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком

.

Потенциальная энергия тела в поле силы тяжести .

Энергия, которая определяется взаимным расположением тел или частей одного и того же тела называется потенциальной.

11. Закон сохранения полной механической энергии

Рассмотрим движение тела в замкнутой системе, в которой действуют только консервативные силы. Пусть, например, тело массой m свободно падает. При переходе тела из состояния 1 в состояние 2 сила тяжести совершает работу

.

В то же время . Следовательно, . Преобразовав данное выражение, получим .

Сумма кинетической и потенциальной энергии тела называется полной механической энергией тела.

Согласно закону сохранения полной механической энергии: полная механическая энергия замкнутой системы тел, взаимодействующих друг с другом только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии в кинетическую и обратно.

Системы, в которых сохраняется полная механическая энергия, называются консервативными.

Системы, в которых полная механическая энергия не сохраняется называются диссипативными (диссипация - переход энергии в другой вид, например, механической во внутреннюю).

В общем случае закон сохранения энергии в природе формулируется следующим образом:

Энергия тел никогда не исчезает и не появляется вновь: она лишь превращается из одного вида в другой или переходит от одного тела к другому.

12. Основные положения молекулярно-кинетической теории и их опытное обоснование. Масса и размеры молекул

Теорию, объясняющую строение и свойства тел на основе закономерностей движения и взаимодействия частиц, из которых состоят тела, называют молекулярно-кинетической.

Основные положения молекулярно-кинетической теории (МКТ) формулируются следующим образом:

Любое вещество имеет дискретное (прерывистое) строение. Оно состоит из отдельных частиц (молекул, атомов, ионов), разделенных промежутками.

Частицы находятся в состоянии непрерывного хаотического движения, называемого тепловым.

Частицы взаимодействуют друг с другом. В процессе их взаимодействия возникают силы притяжения и отталкивания.

Справедливость МКТ подтверждается многочисленными наблюдениями и фактами.

Наличие у веществ проницаемости, сжимаемости и растворимости свидетельствует о том, что они не сплошные, а состоят из отдельных, разделенных промежутками частиц. С помощью современных методов исследования (электронные и ионные микроскопы) получены изображения наиболее крупных молекул.

Броуновское движение и диффузия свидетельствуют о том, что частицы находятся в непрерывном движении.

Наличие прочности и упругости тел, явления смачивания, поверхностного натяжения в жидкостях и т.д. доказывают существование сил взаимодействия между молекулами.

Масса и размеры молекул.

Размер молекул является величиной условной. Его оценивают следующим образом. Между молекулами наряду с силами притяжения действуют и силы отталкивания, поэтому молекулы могут сближаться лишь до некоторого расстояния. Расстояние предельного сближения центров молекул называют эффективным диаметром молекулы. (При этом условно считают, что молекулы имеют сферическую форму.)

С помощью многочисленных методов определения масс и размеров молекул установлено, что за исключением молекул органических веществ, содержащих очень большое число атомов, большинство молекул по порядку величины имеют диаметр 1· 10 - 10 м и массу 1· 10 - 26 кг.

Относительная молекулярная масса.

Относительной молекулярной (или атомной) массой Мr (или Аr) называют величину, равную отношению массы молекулы (или атома) mо этого вещества к 1/12 массы атома углерода mоС, т.е.

Относительная молекулярная (атомная) масса является величиной, не имеющей размерности.

Количество вещества. Молярная масса. Масса молекулы.

Количеством вещества н называют величину, равную отношению числа молекул (или атомов) N в данном теле к числу атомов NA в 0,012 кг углерода, т.е. н = N/ NA (NA - число Авогадро).

Молярной массой М какого-либо вещества называют массу 1 моль этого вещества.

М = mо NA

Следовательно, массу молекулы (атома) можно определить из соотношения

mо = М / NA

13. Идеальный газ. Основное уравнение МКТ идеального газа

Идеальным называют такой газ, при описании свойств которого делают следующие допущения: не учитывают собственный размер газовых молекул и не учитывают силы взаимодействия между ними.

Таким образом, моделью идеального газа является совокупность хаотически движущихся материальных точек, взаимодействующих между собой и со стенками содержащего газ сосуда только при непосредственном столкновении.

Основное уравнение МКТ идеального газа устанавливает зависимость между параметрами молекул и давлением. Давление газа возникает вследствие столкновений молекул со стенками сосуда, в котором находится газ.

Давление идеального газа

m0 - масса молекулы; n - концентрация молекул, - квадрат средней квадратичной скорости молекул.

=

Формулу основного уравнения МКТ идеального газа можно представить в виде

,

где - средняя кинетическая энергия поступательного движения молекул.

14. Абсолютная температура и её физический смысл

Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона)

Под понятием «температура» подразумевают степень нагретости тела.

Существует несколько температурных шкал. В абсолютной (термодинамической) шкале температура измеряется в кельвинах (К). Нуль в этой шкале называют абсолютным нулем температуры, приблизительно равен - 2730С. при абсолютном нуле прекращается поступательное движение молекул.

Термодинамическая температура Т связана с температурой по шкале Цельсия следующим соотношением:

Т = (t0 + 273)K

Для идеального газа существует пропорциональная зависимость между абсолютной температурой газа и средней кинетической энергией поступательного движения молекул:

,

где k - постоянная Больцмана, k = 1,38· 10 - 23 Дж/К

Таким образом, абсолютная температура является мерой средней кинетической энергии поступательного движения молекул. В этом заключается её физический смысл.

Подставляя в уравнение p = n выражение для средней кинетической энергии

= kT, получим

p = n · kT = nkT

Из основного уравнения МКТ идеального газа p = nkT при подстановке

,

можно получить уравнение

, или A · kT

NA· k = R - универсальная газовая постоянная, R = 8,31

Уравнение называют уравнением состояния идеального газа (уравнением Менделеева-Клапейрона).

15. Газовые законы. Графики изопроцессов.

Изотермический процесс (Т = const) подчиняется закону Бойля - Мариотта: для данной массы газа при постоянной температуре произведение давления на объём есть величина постоянная.

, или , или

P

0 V

Изотерма идеального газа в координатных осях P,V представлена на графике.

Изобарный процесс (р = const) подчиняется закону Гей-Люссака: для данной массы газа при постоянном давлении отношение объема газа к абсолютной температуре есть величина постоянная.

, или , или

V

0 T

Изобара идеального газа в координатных осях V, T представлена на графике.

Изохорный процесс (V = const) подчиняется закону Шарля: для данной массы газа при постоянном объеме отношение давления газа к абсолютной температуре есть величина постоянная.

, или или

P

0 T

Изохора идеального газа в координатных осях P, T изображена на графике.

Внутренняя энергия идеального газа. Способы изменения внутренней энергии.

Количество теплоты. Работа в термодинамике

Внутренней энергией называют сумму кинетической энергии хаотического движения молекул и потенциальной энергии их взаимодействия.

Так как молекулы идеального газа не взаимодействуют друг с другом, то внутренняя энергия U идеального газа равна сумме кинетических энергий хаотически движущихся молекул:

, где .

Таким образом,

,

где .

Для одноатомного газа i = 3, для двухатомного i = 5, для трех (и более)атомного i = 6.

Изменение внутренней энергии идеального газа

.

Внутренняя энергия идеального газа является функцией его состояния. Внутреннюю энергию можно изменить двумя способами:

путем теплообмена;

путем совершения работы.

Процесс изменения внутренней энергии системы без совершения механической работы называют теплообменом или теплопередачей. Существуют три вида теплопередачи: теплопроводность, конвекция и излучение.

Количеством теплоты называют величину, являющуюся количественной мерой изменения внутренней энергии тела в процессе теплопередачи.

Количество теплоты, необходимое для нагревания (или отдаваемое телом при охлаждении) определяется по формуле:

где с - удельная теплоемкость вещества

Работа в термодинамике

Элементарная работа d A = p dV. При p = const

16. Состояние системы. Процесс. Первый закон (первое начало) термодинамики

Системой тел называют совокупность рассматриваемых тел. Примером системы может быть жидкость и находящийся в равновесии с ней пар. В частности, система может состоять из одного тела.

Всякая система может находиться в различных состояниях, отличающихся температурой, давлением, объемом и т.д. Величины, характеризующие состояние системы, называют параметрами состояний.

Не всегда какой-либо параметр системы имеет определенное значение. Если, например, температура в разных точках тела неодинакова, то телу нельзя приписать определенное значение температуры. В этом случае состояние системы называют неравновесным.

Равновесным состоянием системы называют такое состояние, при котором все параметры системы имеют определенные значения, остающиеся при неизменных внешних условиях постоянными сколь угодно долго.

Процессом называют переход системы из одного состояния в другое.

Внутренняя энергия является функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Изменение внутренней энергии системы при её переходе из одного состояния в другое (независимо от пути, по которому совершается переход) равно разности значений внутренней энергии в этих состояниях.

Согласно первому началу термодинамики количество теплоты, сообщенное системе, идет на приращение внутренней энергии системы и на совершение системой работы над внешними телами.

Применение первого закона термодинамики к процессам в газах. Адиабатный процесс.

Изотермический процесс (Т=const)

, т.к. .

Работа газа в изотермическом процессе

.

Изохорный процесс (V=const)

, так как Следовательно

Изобарный процесс (p=const)

.

Адиабатный процесс (Q = 0).

Адиабатным называют процесс, протекающий без теплообмена с окружающей средой.

Уравнение адиабаты (уравнение Пуассона) имеет вид .

В соответствии с первым законом термодинамики Следовательно, .

При адиабатном расширении , поэтому (газ охлаждается).

При адиабатном сжатии , поэтому (газ нагревается). Адиабатное сжатие воздуха применяют для воспламенения топлива в дизельных ДВС.

17. Тепловые двигатели

Под тепловым двигателем понимают устройство, преобразующее энергию сгоревшего топлива в механическую энергию. Тепловой двигатель, у которого рабочие части периодически возвращаются в исходное положение, называют периодическим тепловым двигателем.

К тепловым двигателям относятся:

паровые машины,

двигатели внутреннего сгорания (ДВС),

реактивные двигатели,

паровые и газовые турбины,

холодильные машины.

Для работы периодического теплового двигателя необходимо выполнение следующих условий:

наличие рабочего тела (пара или газа), которое, нагреваясь при сгорании топлива и расширяясь, способно совершить механическую работу;

использование кругового процесса (цикла);

наличие нагревателя и холодильника.

Второе начало термодинамики

Схема теплового двигателя имеет вид, изображенный на рисунке. количество теплоты, полученное рабочим телом от нагревателя, - количество теплоты, отданное рабочим телом холодильнику.

Из схемы видно, что тепловой двигатель совершает работу только за счет передачи теплоты в одном направлении, а именно от более нагретых тел к менее нагретым, причем вся теплота, взятая от нагревателя, не может быть

превращена в механическую работу. Это не случайность, а результат объективных закономерностей, существующих в природе, которые отражены во втором начале термодинамики. Второе начало термодинамики показывает, в каком направлении могут протекать термодинамические процессы, и имеет несколько равнозначных формулировок. В частности, формулировка Кельвина такова: невозможен такой периодический процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу.

КПД теплового двигателя. Цикл Карно.

Коэффициентом полезного действия (КПД) теплового двигателя называют величину, равную отношению количества теплоты, превращенной двигателем в механическую работу, к количеству теплоты, полученной от нагревателя:

КПД теплового двигателя всегда меньше единицы.

Для определения максимально возможного значения КПД теплового двигателя французский инженер С. Карно рассчитал идеальный обратимый цикл, состоящий из двух изотерм и двух адиабат. Он доказал, что максимальное значение КПД идеальной тепловой машины, работающей без потерь на обратимом цикле

.

Любая реальная тепловая машина, работающая с нагревателем при температуре и холодильником при температуре не может иметь КПД, превышающий КПД идеальной тепловой машины с теми же температурами.

ЭЛЕКТРОМАГНЕТИЗМ

1. Электризация тел. Закон сохранения электрического заряда. Закон Кулона

Многие частицы и тела способны взаимодействовать между собой с силами, которые, как и силы тяготения пропорциональны квадрату расстояния между ними, но во много раз больше сил тяготения. Этот вид взаимодействия частиц называют электромагнитным.

Принято считать, что элементарные частицы, способные к электромагнитным взаимодействиям, имеют электрический заряд.

Следовательно, электрический заряд есть количественная мера способности частиц к электромагнитным взаимодействиям.

Существует два вида электрических заряда, условно называемых положительными и отрицательными. Одноименные заряды отталкиваются, а разноименные притягиваются.

Экспериментально установлено, что заряд любого тела состоит из целого числа элементарных зарядов, т.е. электрический заряд дискретен. Элементарный заряд обычно обозначают буквой е. Заряд всех элементарных частиц (если он не равен нулю) одинаков по абсолютной величине.

|e| = 1,6·10 -19 Кл

Любой заряд, больше элементарного, состоит из целого число элементарных зарядов

q = ± Ne (N = 1, 2, 3, …)

Электризация тел всегда сводится к перераспределению электронов. Если тело имеет избыток электронов, то оно заряжено отрицательно, если - недостаток электронов, то тело заряжено положительно.

В изолированной системе алгебраическая сумма электрических зарядов остается постоянной (закон сохранения электрического заряда):

q1 + q2 +…+ qN = ?qi = const

Закон, которому подчиняется сила взаимодействия точечных неподвижных зарядов установлен Кулоном (1785 г.)

Точечным зарядом называют заряженное тело, размерами которого можно пренебречь по сравнению с расстояниями от этого тела до других тел, несущих электрический заряд.

Согласно закону Кулона сила взаимодействия двух неподвижных точечных зарядов в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

F = k

|q1| ·|q2|

r2

k - коэффициент пропорциональности.

В СИ k =

1

4ре0

k = 9·109 Н·м2/Кл2 е0 = 8,85·10-12 Кл2/Н·м2 0 - электрическая постоянная).

2. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей

Электрическое поле - вид материи, посредством которого происходит взаимодействие электрических зарядов.

Силовой характеристикой электрического поля является напряженность электрического поля.

Напряженность электрического поля в данной точке равна отношению силы, с которой поле действует на пробный заряд, помещенный в данную точку поля, к величине этого заряда.

.

Напряженность электрического поля измеряется в или в .

Напряженность поля точечного заряда .

Согласно принципу суперпозиции (наложения) полей напряженность поля системы зарядов равна векторной сумме напряженностей полей, которые создавал бы каждый из зарядов системы в отдельности.

+q1 -q2

Электрические поля могут быть изображены графически с помощью линий напряженности (силовых линий) электрического поля.

Линией напряженности электрического поля называют линию, касательная к которой в каждой точке совпадает с направлением вектора напряженности в этой точке.

Густота линий выбирается так, чтобы количество линий, пронизывающих единицу площади поверхности, перпендикулярной к линиям площадки было равно численному значению вектора .

3. Работа сил электростатического поля. Потенциал электростатического поля

F

dr б dl

1 q? 2

r1 r2

q

Сила, действующая на точечный заряд, находящийся в поле другого заряда, является центральной. Центральное поле сил является потенциальным. Если поле потенциально, то работа по перемещению заряда в этом поле не зависит от пути, по которому перемещается заряд а зависит от начального и конечного положения заряда и .

Работа на элементарном пути

= .

Из данной формулы следует, что силы, действующие на заряд в поле неподвижного заряда , являются консервативными, т.к. работа по перемещению заряда действительно определяется начальным и конечным положением заряда.

Из курса механики известно, что работа консервативных сил на замкнутом пути равна нулю.

Циркуляция вектора напряженности электростатического поля по любому замкнутому контуру равна нулю.

Потенциал

Тело, находящееся в потенциальном поле сил, обладает энергией, за счет которой совершается работа силами поля

.

Следовательно, потенциальная энергия заряда в поле неподвижного заряда

.

Величина, равная отношению потенциальной энергии заряда к величине этого заряда, называется потенциалом электростатического поля

.

Потенциал является энергетической характеристикой электрического поля.

Потенциал электрического поля точечного заряда

.

Потенциал поля, создаваемого системой заряженных тел равен алгебраической сумме потенциалов, создаваемых каждым зарядом в отдельности

.

Заряд , находящийся в точке поля с потенциалом , обладает энергией

.

Работа сил поля над зарядом

Величина называется напряжением. Потенциал и разность потенциалов (напряжение) измеряются в вольтах (В).

4. Связь между напряженностью электростатического поля и потенциалом

Работа сил электрического поля над зарядом на отрезке пути

.

С другой стороны , поэтому .

Отсюда следует, что

. ; ; .

.

.

Величина, стоящая в скобках, называется градиентом потенциала.

Следовательно, напряженность электрического поля равна градиенту потенциала, взятому с противоположным знаком .

Для однородного электростатического поля , в то же время . Следовательно, , .

Для наглядного изображения электрического поля наряду с линиями напряженности пользуются поверхностями равного потенциала (эквипотенциальными поверхностями). Линии напряженности электростатического поля перпендикулярны (ортогональны) эквипотенциальным поверхностям.

5. Проводники в электростатическом поле. Явление электростатической индукции. Диэлектрики в электростатическом поле

Проводники в электростатическом поле. Электростатическая индукция.

К проводникам относят вещества, у которых имеются свободные заряженные частицы, способные двигаться упорядоченно по всему объему тела под действием электрического поля. Заряды таких частиц называют свободными.

Проводниками являются металлы, некоторые химические соединения, водные растворы солей, кислот и щелочей, расплавы солей, ионизированные газы.

Рассмотрим поведение в электрическом поле твердых металлических проводников. В металлах носителями свободных зарядов являются свободные электроны, называемые электронами проводимости.

Е0

- +

+

+

+

+

+

Если внести незаряженный металлический проводник в однородное электрическое поле, то под действием поля в проводнике возникает направленное движение свободных электронов в направлении, противоположном направлению вектора напряженности Ео этого поля. Электроны будут скапливаться на одной стороне проводника, образуя там избыточный отрицательный заряд, а их недостача на другой стороне проводника приведет к образованию там избыточного положительного заряда, т.е. в проводнике произойдет разделение зарядов. Эти нескомпенсированные разноименные заряды появляются на проводнике только под действием внешнего электрического поля, т.е. такие заряды являются индуцированными (наведенными), а в целом проводник по-прежнему остается незаряженным.

Такой вид электризации, при котором под действием внешнего электрического поля происходит перераспределение зарядов между частями данного тела, называют электростатической индукцией.

Появившиеся вследствие электростатической индукции на противоположных частях проводника нескомпенсированные электрические заряды создают своё собственное электрическое поле, его напряженность Ес внутри проводника направлена против напряженности Ео внешнего поля, в которое помещен проводник. По мере разделения зарядов в проводнике и накопления их на противоположных частях проводника напряженность Ес внутреннего поля увеличивается и становится равной Ео. Это приводит к тому, что напряженность Е результирующего поля внутри проводника становится равной нулю. При этом наступает равновесие зарядов на проводнике.

Весь нескомпенсированный заряд в этом случае находится только на наружной поверхности проводника, а внутри проводника электрическое поле отсутствует.

Данное явление используют при создании электростатической защиты, сущность которой состоит в том, что для предохранения чувствительных приборов от влияния электрических полей их помещают в металлические заземленные корпуса или сетки.

Диэлектрики в электростатическом поле.

К диэлектрикам относят вещества, в которых при обычных условиях (т.е. при не слишком высоких температурах и отсутствии сильных электрических полей) нет свободных электрических зарядов.

В отличие от проводников в диэлектриках заряженные частицы не способны двигаться по всему объему тела, а могут лишь смещаться на небольшие расстояния (порядка атомных) относительно своих постоянных положений. Следовательно, электрические заряды в диэлектриках являются связанными.

В зависимости от строения молекул все диэлектрики можно разбить на три группы. К первой группе относятся диэлектрики, молекулы которых имеют асимметричное строение (вода, спирты, нитробензол). У таких молекул центры распределения положительных и отрицательных зарядов не совпадают. Такие молекулы можно рассматривать как электрические диполи.

Молекулы, представляющие собой электрические диполи называю полярными. Они обладают электрическим моментом p = q l даже при отсутствии внешнего поля.

Ко второй группе относят диэлектрики, молекулы которых симметричны (например, парафин, азот, кислород). У таких молекул центры распределения положительных и отрицательных зарядов совпадают. При отсутствии внешнего электрического поля такие молекулы не обладают электрическим моментом. Их называют неполярными молекулами.

Во внешнем электрическом поле центры распределения положительных и отрицательных зарядов неполярных молекул смещаются в противоположные стороны. Молекулы становятся диполями и приобретают дополнительный электрический момент p = q l.

К третьей группе относят кристаллические диэлектрики, имеющие ионное строение (NaCl, CaCl2 и другие).

р

F+

+q

б Е0

-q

F-

Поскольку молекулы и полярных и неполярных диэлектриков в электрическом поле представляют собой электрические диполи, рассмотрим поведение диполя во внешнем однородном поле (Ео = соnst).

На каждый из зарядов диполя действует сила. Эти силы F+ и F- равны по модулю и противоположны по направлению. Они создают пару сил, создающих вращательный момент М = рЕо sin б.

Под действием вращательного момента М диполь стремится повернуться так, чтобы направление вектора р совпало с направлением вектора Ео, т.е. ориентируется по направлению внешнего поля.

Если диэлектрик неполярный, то при отсутствии внешнего электрического поля его молекулы вообще не имеют электрических моментов. Если же диэлектрик полярный, но не находится в электрическом поле, то тепловое движение создает полный беспорядок в расположении его молекул-диполей, вследствие чего их электрические моменты ориентированы по всевозможным направлениям и их векторная сумма равна нулю. Следовательно, диэлектрик в целом не обладает электрическим моментом.

?

Е0

?

Пусть образец из диэлектрика находится в однородном электрическом поле. Поскольку молекулы и полярных и неполярных диэлектриков в электрическом поле являются диполями, а диполи ориентируются вдоль внешнего поля, векторы электрических моментов молекул в основном ориентированы упорядоченно. В этом случае векторная сумма электрических моментов не равна нулю. Следовательно, диэлектрик в целом обладает электрическим моментом. Внутри диэлектрика, находящегося в электрическом поле, разноименные заряды соседних диполей расположены вблизи друг друга и взаимно компенсируются. Поэтому диэлектрик остается незаряженным. А на противоположных поверхностях диэлектрика,

перпендикулярных линиям напряженности внешнего поля, появляются нескомпенсированные и равные по значению поляризационные заряды, т.е. диэлектрик поляризуется.

Если в электрическое поле внести диэлектрик ионного типа, то в нем происходит небольшое смещение ионов кристаллической решетки (положительных - по полю, отрицательных - против поля). Это приводит к тому, что ионный диэлектрик в электрическом поле обладает электрическим моментом.

Таким образом, сущность процесса поляризации диэлектрика любого типа состоит в том, что в электрическом поле каждый элемент объема диэлектрика и весь диэлектрик в целом приобретает отличный от нуля электрический момент.

Поляризационные заряды создают в диэлектрике собственное электрическое поле, направленное против внешнего электрического поля. В результате суперпозиции двух этих полей напряженность поля, создаваемого зарядами, внесенными в диэлектрик, становится в нем в е раз меньше, чем в вакууме (е - диэлектрическая проницаемость среды).

6. Электроемкость. Конденсаторы. Емкость плоского конденсатора

Потенциал уединенного проводника пропорционален сообщенному ему заряду, поэтому отношение заряда проводника к его потенциалу не зависит от заряда и является характеристикой данного проводника.

Электроемкостью уединенного проводника называют величину, равную отношению заряда проводника к потенциалу этого проводника.

.

На практике применяются

Электроемкость проводника не зависит от вещества, из которого он изготовлен, а зависит от его формы, размеров и диэлектрической проницаемости среды, в которой находится этот проводник.

Используя формулу потенциала электрического поля, созданного равномерно заряженным шаром

, для емкости шара получим .

КОНДЕНСАТОРЫ

Уединенные проводники обладают малой емкостью. На практике возникает потребность в устройствах, которые при небольшом относительно окружающих тел потенциале накапливали бы на себе значительные заряды.

Конденсатором называют систему, состоящую из двух разделенных диэлектриком проводников, на которых могут накапливаться заряды противоположных знаков.

Проводники, образующие конденсатор, называют обкладками.

Чтобы внешние тела не влияли на емкость конденсатора, обкладкам придают такую форму и так располагают их друг относительно друга, чтобы поле, создаваемое накапливаемыми на них зарядами, было полностью сосредоточено внутри конденсатора. Этому условию удовлетворяют две близко расположенные пластины, два коаксиальных цилиндра и две концентрические сферы.

Емкостью конденсатора называют величину, равную отношению заряда конденсатора к разности потенциалов (напряжению) между его обкладками

=.

ЕМКОСТЬ ПЛОСКОГО КОНДЕНСАТОРА

Напряженность поля между обкладками плоского конденсатора

.

Для однородного поля справедливо соотношение

.

Следовательно, емкость плоского конденсатора

(S - площадь обкладок, d - расстояние между обкладками).

7. Соединение конденсаторов. Энергия заряженного конденсатора

При параллельном соединении конденсаторов напряжения на каждом конденсаторе одинаковы и равны напряжению на клеммах батареи

.

Заряд батареи

.

Исходя из того, что , имеем

,

поэтому

.

При последовательном соединении конденсаторов

, .

Учитывая, что , имеем

,

поэтому при последовательном соединении конденсаторов

.

ЭНЕРГИЯ ЗАРЯЖЕННОГО КОНДЕНСАТОРА

При зарядке конденсатора совершается работа по перемещению электрических зарядов против сил электрического поля. При перемещении заряда совершается работа . Учитывая, что , получим . Следовательно,

.

По закону сохранения энергии эта работа равна энергии заряженного конденсатора, т.е.

.

Используя формулы и , получим

и .

8. Закон Ома для однородного участка цепи. Сопротивление проводников

Участок цепи, на котором не действуют сторонние силы, приводящие к возникновению ЭДС, называется однородным.


Подобные документы

  • Механика и элементы специальной теории относительности. Кинематика и динамика поступательного и вращательного движений материальной точки. Работа и механическая энергия, законы сохранения в механике. Молекулярная физика и термодинамика, теплоемкость.

    курс лекций [692,1 K], добавлен 23.09.2009

  • Механическая работа и энергия. Закон сохранения энергии. Динамика материальной точки, движущейся по окружности. Следствия уравнения Бернулли. Молекулярная физика и термодинамика. Молекулярно-кинетическая теория газов. Первое начало термодинамики.

    учебное пособие [5,8 M], добавлен 13.10.2013

  • Механика, ее разделы и абстракции, применяемые при изучении движений. Кинематика, динамика поступательного движения. Механическая энергия. Основные понятия механики жидкости, уравнение неразрывности. Молекулярная физика. Законы и процессы термодинамики.

    презентация [2,0 M], добавлен 24.09.2013

  • Законы механики и молекулярной физики, примеры их практического использования. Сущность законов Ньютона. Основные законы сохранения. Молекулярно-кинетическая теория. Основы термодинамики, агрегатные состояния вещества. Фазовые равновесия и превращения.

    курс лекций [1,0 M], добавлен 13.10.2011

  • Кинематика материальной точки. Законы Ньютона и законы сохранения. Постоянное электрическое поле. Теорема Гаусса. Потенциал - энергетическая характеристика поля. Электроемкость уединенного проводника. Электрическое поле в диэлектрике. Закон Ома.

    курс лекций [1021,2 K], добавлен 09.02.2010

  • Алгоритмы решения задач по физике. Основы кинематики и динамики. Законы сохранения, механические колебания и волны. Молекулярная физика и термодинамика. Электрическое поле, законы постоянного тока. Элементы теории относительности, световые кванты.

    учебное пособие [10,2 M], добавлен 10.05.2010

  • Пособие к лабораторному практикуму по физике. Кинематика и динамика поступательного движения, и вращательного движения твердого тела, колебательное движение трех типов маятников, вязкость жидкостей и газов, энтропия тела.

    учебное пособие [284,0 K], добавлен 18.07.2007

  • Правила выполнения контрольных работ. Кинематика поступательного движения. Силы в механике. Закон сохранения импульса. Затухающие и вынужденные колебания. Волны, механизм их возникновения. Звук, его характеристики. Распределения Максвелла и Больцмана.

    методичка [253,8 K], добавлен 02.06.2011

  • Предмет физики и ее связь со смежными науками. Общие методы исследования физических явлений. Развитие физики и техники и их взаимное влияния друг на друга. Успехи физики в течение последних десятилетий и характеристика ее современного состояния.

    учебное пособие [686,6 K], добавлен 26.02.2008

  • Изучение кинематики и динамики поступательного движения на машине Атвуда. Изучение вращательного движения твердого тела. Определение момента инерции махового ко-леса и момента силы трения в опоре. Изучение физического маятника.

    методичка [1,3 M], добавлен 10.03.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.