Модуль накопления для задач многомерной мессбауэровской спектрометрии

Особенности разработки модуля, который предназначен для накопления мессбауэровских спектров, а также для снятия амплитудных спектров. Анализ основных требований к системам накопления. Решение вопроса объединения свойств многоканальности и многомерности.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 21.10.2010
Размер файла 590,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования Российской Федерации

Уральский государственный технический университет

Кафедра экспериментальной физики

ДИПЛОМНЫЙ ПРОЕКТ

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

МОДУЛЬ НАКОПЛЕНИЯ ДЛЯ ЗАДАЧ МНОГОМЕРНОЙ МЕССБАУЭРОВСКОЙ СПЕКТРОМЕТРИИ

Руководитель

к.ф-м.н., с.н.с. О.Б. Мильдер

Студент

Фт-635 К.В. Ивановских

СОДЕРЖАНИЕ

РЕФЕРАТ

ВВЕДЕНИЕ

1. МЕССБАУЭРОВСКАЯ СПЕКТРОМЕТРИЯ

1.1 Эффект Мессбауэра

1.2 Мессбауэровский спектрометр

1.3 Многомерная параметрическая мессбауэровская спектрометрия

2. МЕТОДЫ ПОСТРОЕНИЯ СИСТЕМ НАКОПЛЕНИЯ

2.1 Системы сбора и накопления информации

2.2 Особенности создания систем накопления для многомерной мессбауэровской спектрометрии

2.3.Применение микроконтроллеров

2.4 Использование современных электронно-модульных систем

2.5 Разработка устройств сопряжения для магистрали ISA

2.6 Обмен данными с компьютером

3. РАЗРАБОТКА ЦИФРОВЫХ УСТРОЙСТВ НА БАЗЕ ПЛИС

3.1 Современные и перспективные ИС со сложными программируемыми структурами

3.2 Методы и средства проектирования устройств с программируемой логикой

3.3 САПР MAX+PLUS II

4. ПОИСК СХЕМОТЕХНИЧЕСКИХ РЕШЕНИЙ

5. РАСЧЁТНАЯ ЧАСТЬ

5.1 Разработка проекта на базе ПЛИС

5.1.1 Реализация основного алгоритма

5.1.2 Связь с внешними устройствами

5.2 Разработка принципиальной схемы модуля накопления

5.3 Блок-схема программного алгоритма

6. БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ

6.1 Характеристика рабочего места

6.2 Безопасность труда

6.2.1 Радиационная безопасность

6.2.2 Электробезопасность

6.2.3.Защита от шума

6.2.4 Защита от электростатического поля

6.3 Условия труда в лаборатории

6.3.1 Микроклимат помещения

6.3.2 Освещенность рабочего места

6.3.3 Эргономика рабочего места

6.4 Экологичность рабочего места

6.4.1 Состояние воздушного бассейна

6.4.2 Радиационная обстановка

6.4.3 Поверхностные воды

6.4.4 Промышленные и бытовые отходы 6.4.5 Анализ возможных чрезвычайных ситуаций

6.5 Пожарная безопасность

ЗАКЛЮЧЕНИЕ

ПРИЛОЖЕНИЯ

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

РЕФЕРАТ

Пояснительная записка содержит 103 листа, 20 рисунков, 5 таблиц, 7 приложений, 26 библиографических источника.

Проведён анализ основных требований к системам накопления, а также дополнительных, предъявляемых с позиции многомерной мессбауэровской спектрометрии. Рассмотрены различные способы построения систем накопления. Решён вопрос объединения свойств многоканальности и многомерности.

Разработан модуль накопления приспособленный для круга задач многомерной мессбауэровской спектрометрии. Модуль выполняет подсчёт входных импульсов от двух синхронизованных спектрометрических линеек, накопление и хранение 24 бит данных в 4096 каналах (ячейках памяти) для каждой линейки.

Модуль содержит два входных блока, состоящих в свою очередь из счётного блока и схемы промежуточного накопления. Входные блоки образуют систему накопления первого байта спектрометрических данных. Накопление 2-го и 3-го байта информации происходит с использованием программных средств микроконтроллера.

Интерфейс модуля накопления выполнен в стандарте ISA, поэтому он может применяться как плата расширения для систем класса MicroPC или любого персонального компьютера содержащего разъёмы магистрали ISA. Дополнительным внешним интерфейсом является последовательный канал передачи данных микроконтроллера.

Для распределения потоков данных в схеме используется буферное ОЗУ, доступное со стороны системы накопления первого байта, микроконтроллера и 8-разрядной шины ISA в режиме разделяемой памяти. Таким образом задатчик магистрали ISA (например процессор) при доступе к буферному ОЗУ рассматривает её как свою собственную.

Основные функции схемотехнического алгоритма, в том числе интерфейсный блок реализованы в репрограммируемой ПЛИС EPM7256S фирмы Altera. Дизайн ПЛИС разработан средствами специализированной САПР MAX+PLUS II. Проведено тестирование проекта.

Разработанный модуль предназначен для накопления мессбауэровских спектров, а также для снятия амплитудных спектров.

ПЕРЕЧЕНЬ УСЛОВНЫХ СОКРАЩЕНИЙ

БМК

базовый матричный кристалл

БОЗУ

буферное оперативное запоминающее устройство

ИС

интегральная схема

ПДП

прямой доступ к памяти

ПЛИС

программируемая логическая интегральная схема

СОЗУ

системное оперативное запоминающее устройство

CPLD

complex programmable logic device (программируемые коммутируемые блоки)

EEPROM

electrically erasable programmable read-only memory (электронно-перепрограммируемая постоянная память)

EPROM

erasable programmable read-only memory(стираемая программируемая постоянная память)

FPGA

field programmable gate array (программируемая пользователем вентильная матрица)

ISA

Industry-Standard Architecture

PLD

programmable logic device (программируемое логическое устройство)

SPI

serial peripheral interface (протокол последовательного периферийного интерфейса)

ВВЕДЕНИЕ

Открытый Мессбауэром (Mцssbauer) в 1958 году эффект резонансного излучения и поглощения гамма-квантов предоставил физикам качественно новый метод спектрометрии, который нашёл широкое применение в различных областях науки и техники. Наиболее успешное использование этого метода связано с исследованием сверхтонкой структуры ядра.

Развитие спектрометрических методов движется по пути увеличения чувствительности, разрешающей способности, повышения точности восстановления формы спектральной линии и расширения информативности.

Одним из самых перспективных направлений развития метода ядерного гамма-резонанса, является многомерная мессбауэровская спектрометрия. В рамках этого направления, путём синтеза различных гамма-оптических схем, предоставляется возможность проводить динамические эксперименты и получать систему мессбауэровских спектров от одного исследуемого образца, таким образом устанавливая более полную картину изучаемого процесса. В основе метода лежит принцип модуляции и трансформации энергетического спектра и регистрация резонансного излучения в нескольких точках гамма-оптической схемы.

На сегодняшний день сложилась ситуация, когда развитие методологии многомерной мессбауэровской спектрометрии опережает темпы разработки аппаратуры необходимой для этого метода. В конечном итоге отсутствие соответствующей экспериментальной базы, или её неполноценность тормозит многие исследовательские начинания.

В данном контексте неудовлетворёнными остаются многие требования, предъявляемые к системам накопления спектрометрической информации. Здесь особенно остро стоит вопрос о создании многоканальных систем, использование которых позволяет значительно поднять эффективность проведения мессбауэровских экспериментов. Не менее важными являются требования универсальности и гибкости.

Изложенная проблема весьма актуальна для лаборатории мессбауэровской спектрометрии кафедры экспериментальной физики УГТУ, где поставлена программа комплексного переоснащения и модернизации.

Цель данной работы - проектирование модуля накопления адаптированного для решения задач многомерной мессбауэровской спектрометрии.

1. МЕССБАУЭРОВСКАЯ СПЕКТРОМЕТРИЯ

1.1 Эффект Мессбауэра

Эффект Мессбауэра - явление излучения, поглощения и рассеяния гамма-квантов ядрами без передачи энергии внутренним степеням свободы системы, которую образуют атомные ядра [1].

В 1957 г. Мессбауэру (Mцssbauer) удалось впервые наблюдать эффект резонансного поглощения гамма-квантов на линиях естественной ширины, не смещенных за счет отдачи и не уширенных за счет теплового движения. Это открытие, отмеченное Нобелевской премией по физике в 1961 г., дало исследователям чрезвычайно прецизионный резонансный метод регистрации изменений энергии ядерных переходов с разрешающей способностью порядка 10-12-10-15 [1] и привело к созданию нового физического метода изучения конденсированного состояния вещества - мессбауэровской спектрометрии. Впервые оказалось возможным изучение сверхтонкой структуры ядерных уровней, а также влияния электрических, магнитных и гравитационных воздействий на энергию гамма-квантов.

1.2 Мессбауэровский спектрометр

Эффект Мессбауэра дает возможность наблюдать явление ядерного резонанса, которое характеризуется рекордно узким энергетическим распределением. Основная физическая информация заключена в форме резонансной линии, ее особенностях и положении. Для получения этих данных используется метод энергетического сканирования (развертка спектра). Сканирование может осуществляться несколькими способами. Наиболее удобным и простым является способ модуляции энергии резонансного гамма излучения, основанный на эффекте Доплера.

Экспериментальная установка, предназначенная для регистрации интенсивности ядерного гамма-резонансного поглощения и рассеяния, в зависимости от скорости относительного движения в системе источник - анализатор получила название “мессбауэровский спектрометр”.

Функциональная блок-схема спектрометра традиционной конструкции, на основе которой выпускаются все серийно выпускаемые приборы, представлена на рисунке 1.1.

Конструктивно спектрометр состоит из двух частей: аналитического и электронного блоков [2].

Аналитический блок состоит из основания, на котором смонтированы доплеровский модулятор, узел гамма-резонансной пары и криостат.

Электронный блок спектрометра выполняет функции управления системой доплеровской модуляции, регистрации гамма-излучения, накопления данных. Электронный блок состоит из двух систем:

- системы регистрации гамма-излучения;

- системы доплеровской модуляции.

Источнику S (или поглотителю А), закрепленному на доплеровском модуляторе DM, сообщается периодическая линейно-изменяющаяся скорость. Блок управления модулятором 1 обеспечивает отработку заданного закона движения и формирует сигналы запуска системы накопления 3 в режиме многоканального пересчета. Движение источника S создает сдвиг энергии резонансного излучения, что вызывает изменение интенсивности гамма-излучения пропущенного или рассеянного поглотителем A и регистрируемого детектором D. Сигналы с детектора D усиливаются, селектируются по амплитуде в спектрометрическом тракте 2 и отправляются в выбранную ячейку памяти системы накопления 3. Накопление происходит в режиме последовательного многоканального пересчёта. Однозначное соответствие скорости движения номеру канала накопления обеспечивается синхронизацией рабочего периода движения с циклом переключения ячеек памяти, отведенных на накопление.

1.3 Многомерная параметрическая мессбауэровская спектрометрия

Традиционная схема регистрации ограничена по своим возможностям. Она не позволяет использовать многие методические достижения эффекта Мессбауэра. Основные способы увеличения чувствительности: использование резонансного детектора (содержащего вещество-конвертор), резонансно-поглощающего фильтра. При всей привлекательности обоих способов сужения спектральной линии для них характерен общий недостаток - возникает необходимость подбора веществ, удовлетворяющим определённым условиям резонансного взаимодействия. Это привело к тому, что до настоящего времени только для изотопа 119Sn подобраны резонансные пары в качестве конвертора и фильтра [3].

Для расширения возможностей мессбауэровской спектрометрии в работе [3] предложен новый метод - многомерная параметрическая мессбауэровская спектрометрия, в основе которого лежит принцип модуляции и трансформации энергетического спектра резонансного излучения в нескольких точках гамма-оптической схемы эксперимента. Это достигается введением в схему нескольких резонансных преобразователей, установленных на механически не связанных, но электрически синхронизованных модуляторах, и регистрации спектров в одной или нескольких точках этой схемы. При этом конкретный вид преобразования спектральной линии представляет собой параметр, а количество независимых резонансных преобразователей или детекторов - размерность гамма-оптической схемы.

Многомерная параметрическая мессбауэровская спектрометрия вводит новое качество в процесс измерения, предоставляя возможность проводить динамические эксперименты, получать систему мессбауэровских спектров от одного исследуемого образца и, таким образом устанавливать более полную картину изучаемого процесса. Кроме того, развитие получили способы компенсации энергетического сдвига, использование которых позволяет расширить применение принципа резонансного преобразования для любого мессбауэровского изотопа.

Совместное применение различных гамма-оптических схем многомерной параметрической мессбауэровской спектрометрии позволяет получать в оптимальных условиях дополнительное увеличение чувствительности, разрешающей способности и информативности метода [3].

2. МЕТОДЫ ПОСТРОЕНИЯ СИСТЕМ НАКОПЛЕНИЯ

2.1 Системы сбора и накопления информации

Сбор, накопление и хранение мессбауэровских спектров выполняет специальная система накопления информации. Особенностью построения систем накопления для нужд мессбауэровской спектрометрии является необходимость накопления большого объёма данных, в условиях длительного времени проведения эксперимента.

Система накопления мессбауэровского спектрометра традиционного типа должна осуществлять сбор и накопление данных в 4096 каналов с разрядностью данных не менее 24 (для набора необходимой статистики результата). Стоит отметить, что далеко не все существующие спектрометры и не все задачи мессбауэровской спектрометрии требуют такого объёма накопления.

Естественным движением в развитии систем накопления (систем регистрации) является их ориентация на работу в тесной связке с ЭВМ. Такой подход позволяет строить автоматизированные системы сбора данных под управлением ЭВМ с использованием средств программной обработки информации.

За время существования мессбауэровской спектрометрии системы накопления и обработки информации прошли путь развития от многоканальных анализаторов до многоуровневых систем [3].

В настоящее время наиболее важным требованием к построению систем регистрации является возможность создания многоканальных систем сбора данных, то есть состоящих из нескольких трактов регистрации. Такое требование диктуется возрастающими задачами, встающими перед мессбауэровской спектрометрией, решить которые средствами существующих одноканальных систем невозможно (рис.2.1).

Имеющаяся система регистрации во многом ограничивает возможности мессбауэровского эксперимента. Помимо производительности сюда следует отнести и отсутствие необходимой гибкости и универсальности. Построение гибкой и открытой системы даёт возможность оперативного изменения её конфигурации для нужд эксперимента, кроме того, открытость позволяет развивать и дополнять систему, что является одним из главных принципов при разработке современной экспериментальной техники.

Независимо от способа построения системы регистрации в её структуру входят счётный блок, производящий подсчёт импульсов с детектора г-излучения, и непосредственно блок накопления.

Счётный блок - производит подсчёт приходящих со спектрометрической линейки импульсов и выдачу их в блок накопления. Он входит в любую систему регистрации и его схема может быть везде одинаковой. Он может быть реализован как стандартный модуль. Другое дело блок накопления. Так как его создание вызывает не мало затрат (как в инженерном так и в экономическом плане) необходимо заранее ясно представлять все требования к нему. Здесь имеется несколько подходов. Их различия заключены в степени использования ресурсов компьютера.

Простейший вариант системы накопления реализован с использованием только ЭВМ, которая в данном случае выполняет функции и накопления и хранения. Такую систему принято называть одноуровневой (рис.2.2а).

Одноуровневая система требует для своего создания минимальных аппаратурных затрат. Здесь промежуточное накопление как таковое отсутствует. Данные сразу передаются в компьютер. Очевидно, что компьютер должен быть способен постоянно (каждые 16 микросекунд) принимать информацию со счетного блока. В такой системе компьютер постоянно занят операциями сбора и накопления и другое его использование вряд ли возможно. Кроме того, под вопрос ставится возможность реализации многоканальных систем.

Более эффективной с точки зрения использования временных ресурсов ЭВМ является двухуровневая модель систем накопления. Здесь возможны два варианта построения таких систем: с использованием микроконтроллера или без него (рис.2.2б).

При использовании блока промежуточного хранения электронная часть берет на себя лишь функции сбора и промежуточного хранения данных, а накопления осуществляется в ЭВМ. Промежуточное хранение данных необходимо, как для упрощения обмена данными с компьютером (используя одно прерывание можно передать весь блок информации, собранный за рабочий цикл), так и для более эффективного использования времени компьютера, и его ресурсов [4]. Несмотря на снижение степени загруженности компьютера, его постоянное присутствие в тракте регистрации всёже необходимо.

Другой вариант подразумевает использование, в качестве второго уровня системы накопления, блока промежуточного накопления с применением микроконтроллера. Такое построение требует от микроконтроллера повышенного быстродействия и достаточно большого объема памяти внешнего ОЗУ. В этом случае всю систему можно рассматривать как одноуровневую по отношению к микроконтроллеру. В зависимости от быстродействия микроконтроллера его применение может быть не ограничено только задачами накопления данных: на него могут быть возложены функции управления некоторыми узлами системы регистрации.

Оптимальным способом исполнения одно- и двухуровневых систем можно считать их изготовление в виде встраиваемых плат расширения (адаптеров). Такие системы могут с успехом применятся в одноканальных системах накопления. Допустимо построение и многоканальных систем с небольшим числом трактов в пределах аппаратных возможностей компьютера или микроконтроллера. Однако не все требования, предъявляемые к многоканальным системам накопления, могут быть при этом удовлетворены.

Полноценная многоканальная система накопления с возможностями автономной работы может быть реализована в виде трёхуровневой системы, которая предполагает использование блока промежуточного накопления на первом уровне, с целью снизить требования к быстродействию управляющего микроконтроллера, имеющего статус звена второго уровня. На верхнем (третьем) уровне находится компьютер. Развивая трехуровневую модель, на основе тех же модулей, можно построить многоканальную систему [4]. Снятие повышенных скоростных требований к микроконтроллеру с помощью блока промежуточного хранения данных позволяет реализовать одновременное накопление с нескольких измерительных трактов (рис.2.2в).

Такую систему удобно построить в виде набора самостоятельных модулей (модульная концепция), в этом случае появляется возможность создания системы накопления любой конфигурации. В таких системах компьютер может использоваться только для хранения спектрометрических данных на энергонезависимых носителях и выдачи команд управления для микроконтроллера. Связь с удалённым компьютером может быть организована по последовательному каналу передачи данных (RS-232, RS-485 и др.).

2.2 Особенности создания систем накопления для многомерной мессбауэровской спектрометрии

Принцип модуляции и трансформации энергетического спектра резонансного излучения в нескольких точках схемы эксперимента достигается введением нескольких механически не связанных, но электрически синхронизованных модуляторов и регистрацией спектров в одной или нескольких точках этой схемы [3].

Использование различных гамма-оптических схем многомерной мессбауэровской спектрометрии или нескольких каналов регистрации в пределах одной схемы даёт возможность получать систему мессбауэровских спектров от одного исследуемого образца.

Последовательное снятие нескольких спектров, в сложных гамма-оптических схемах, приводит к значительному увеличению времени проведения эксперимента.

Таким образом, в многомерной мессбауэровской спектрометрии в целях поднятия эффективности экспериментов существует необходимость создания системы накопления с возможностью одновременного сбора данных от нескольких синхронизованных трактов регистрации (рис.2.2г).

Свойства многомерности и многоканальности должны существовать одновременно, т.е. конструкция многоканальной системы накопления должна удовлетворять требованиям многомерных задач эксперимента.

2.3.Применение микроконтроллеров

Микроконтроллеры в системах накопления применяются, как правило, в качестве промежуточных уровней накопления, с дополнительными функциями управления.

Несмотря на непрерывное развитие и появление всё новых 16- и 32-разрядных микроконтроллеров и микропроцессоров, наибольшая доля мирового микропроцессорного рынка остаётся за 8-разрядными устройствами. Среди всех 8-разрядных микроконтроллеров семейство 8051 является несомненным лидером по количеству разновидностей числу компаний выпускающих его модификации (на сегодняшний день их существует более 200) [5].

Основные элементы базовой архитектуры MSC-51:

- 8-разрядное арифметико-логическое устройство на основе аккумуляторной архитектуры;

- 4 банка регистров, по 8 в каждом;

- встроенная память программ 4 Кбайт;

- внутреннее ОЗУ объёмом 128 байт;

- булевый процессор;

- два 16-разрядных таймера (счётчика);

- контроллер последовательного канала передачи данных;

- контроллер обработки прерываний с 2 уровнями приоритетов;

- четыре 8-разрядных порта ввода-вывода, два из которых используются в качестве шины адреса/данных для доступа к внешней памяти программ и данных [5].

Основными направлениями развития являются: увеличение быстродействия (повышение тактовой частоты и переработка архитектуры ядра), снижение напряжения питания и потребления, увеличение объёма ОЗУ и FLASH-памяти на кристалле с возможностью внутрисхемного программирования, введение в состав периферии микроконтроллера CAN- и USB-интерфейсов. Микроконтроллеры с каналом SPI обеспечивают возможность внутрисхемного программирования FLASH-памяти.

Таким образом, параметры прелагаемых сегодня на рынке клонов микроконтроллера семейства MSC-51 существенно отличают их от базовой конфигурации. Максимальная тактовая частота кристаллов достигает 40 МГц, объём памяти программ 16 Кбайт, оперативной памяти - 1024 байт и более [5].

Полная аппаратная и программная совместимость многих выпускаемых микроконтроллеров 51-й серии позволяет проводить модернизацию устройств на их основе простой заменой кристалла другим с более подходящими характеристиками.

2.4 Использование современных электронно-модульных систем

Универсальная многоканальная система накопления должна иметь возможность быстрой и лёгкой модернизации и конфигурирования для любых экспериментальных задач. Таким требованиям будет удовлетворять система, построенная по модульному принципу.

Перевод классической структуры мессбауэровского спектрометра на базу современных стандартов построения электронно-модульных систем заставляет обратить внимание на возможность использования микро-PC.

Принцип микро-PC подразумевает использование малогабаритных высокопроизводительных процессорных плат и встраиваемых модулей других устройств с большой степенью надёжности. Это делает микро-PC незаменимым для применения в условиях требующих безотказной работы систем управления различными процессами как в промышленности, так и в сфере научных исследований.

С позиции мессбауэровской спектрометрии главным фактором в пользу применения микро-PC является большое время проведения эксперимента (до нескольких суток, а то и недель) когда потеря данных вследствие сбоя системы управления заставляет возвращаться к моменту последнего сохранения данных. В таких условиях необходимо постоянное присутствие лаборанта-оператора. Кроме того, повтор накопления влечёт затягивание эксперимента и дальнейший сбой графика анализа образцов в лаборатории, что неприемлемо при использовании дорогостоящих короткоживущих изотопов. Другими словами необходимо добиться максимальной надёжности работы системы при минимальном участии оператора. Необходимо также иметь возможность создания модульной системы с достаточным потенциалом для наращивания и усовершенствования спектрометра, например в целях построения многоканальных систем с несколькими трактами регистрации.

Архитектура IBM РС и лежащая в ее основе шина ISA являются в настоящее время безусловным стандартом в промышленности. Изделия MicroPC представляют собой идеальное сочетание полной (в том числе и конструктивной) совместимости с этой шиной и малого размера плат, обеспечивающего высокие механические характеристики системы и легкое встраивание изделий MicroPC в любое оборудование. Почти всю разработку и отладку программного обеспечения можно производить на обычном персональном компьютере, установив в него платы ввода вывода MicroPC, а затем переносить готовое программное обеспечение в контроллер, где в ПЗУ уже находится ядро операционной системы DOS 6.22. При этом можно использовать практически любое программное обеспечение и средства разработки (например MS-DOS, Microsoft Windows NT/95/98, QNX, Linux и др.), работающие на стандартной IBM PC платформе, или специальные инструментальные пакеты и библиотеки

В качестве микропроцессоров используются микросхемы фирм Intel (i80286, i80386, i80486, Intel Pentium), AMD (am5x86) и др.

Все платы вставляются в крейт к системной магистрали ISA. Крейт содержит блок питания. Наличие шины ISA простота и удобства её протоколов позволяют разрабатывать необходимые модули для нужд эксперимента. В этом случае весь электронный блок мессбауэровского спектрометра (система регистрации и система управления доплеровской модуляции) может быть реализован в виде плат расширения. Модульность позволяет свободно конфигурировать систему под определённую задачу, что значительно расширяет экспериментальные возможности (рис.2.3).

Стоит отметить что, применение микро-PC даёт возможность отказаться от использования лабораторного персонального компьютера непосредственно в сборе данных. В этом случае ему может быть отведена роль файл-сервера.

Все элементы на стандартных платах микро-PC выполнены по КМОП-технологии и имеют низкую потребляемую мощность. Таким образом, платы MicroPC не требуют принудительного воздушного охлаждения. Для питания необходим единственный источник напряжения 5 В.

2.5 Разработка устройств сопряжения для магистрали ISA

Магистраль ISA была разработана специально для персональных компьютеров типа IBM PC AT (начиная с процессора i80286) и относится к демультиплексированным (то есть имеющим раздельные шины данных и адреса) 16-разрядным системным магистралям среднего быстродействия [6]. Обмен осуществляется 8- или 16-разрядными данными. На магистрали реализован раздельный доступ к памяти компьютера и к устройствам ввода-вывода (для этого имеются специальные сигналы). Максимальный объём адресуемой памяти составляет 16 Мбайт (24 адресные линии). Максимальное адресное пространство для устройств ввода-вывода - 64 Кбайт (16 адресных линий), хотя практически все выпускаемые платы расширения используют только 10 адресных линий (1 Кбайт). Магистраль поддерживает регенерацию динамической памяти, радиальные прерывания и прямой доступ к памяти. Допускается также захват магистрали.

Разъём магистрали ISA разделён на две части, что позволяет уменьшать размеры 8-разрядных плат расширения. Назначение контактов разъёма ISA в виде таблицы представлено в ПРИЛОЖЕНИИ 1.

В режиме программного обмена информацией на магистрали ISA выполняется четыре типа циклов:

- цикл записи в память;

- цикл чтения из памяти;

- цикл записи в устройство ввода-вывода

- цикл чтения из устройства ввода-вывода.

Циклы различаются используемыми сигналами и протоколами обмена, поэтому при проектировании аппаратуры для сопряжения с ISA необходимо учитывать временные диаграммы используемых циклов обмена. Другими словами должна быть реализована информационная совместимость.

Помимо циклов программного обмена на магистрали ISA могут выполняться также циклы прямого доступа к памяти. Так как на магистрали имеются раздельные стробы чтения и записи для устройств ввода-вывода и для памяти, пересылка данных в режиме ПДП производится за один машинный цикл. То есть если данные необходимо переслать из устройства ввода-вывода в память, то одновременно производится чтение данных из устройства ввода-вывода (по сигналу -IOR) и их запись в память (по сигналу -SMEMW).

При проектировании устройств сопряжения для ISA надо учитывать также электрические характеристики сигналов. Стандарт магистрали определяет требования к входным токам приёмников и источников сигналов каждой из плат расширения. Не соблюдение этих требований может нарушить функционирование компьютера.

Выходные каскады передатчиков магистральных сигналов должны выдавать ток низкого уровня не меньше 24 мА, а ток высокого уровня - не меньше 3 мА. Входные каскады приёмников магистральных сигналов должны потреблять входной ток низкого уровня не больше 0,8 мА, а входной ток высокого уровня - не больше 0,04 мА.

В структуре любого устройства сопряжения можно выделить две части: интерфейсную и операционную (рис.2.4). Интерфейсная часть обеспечивает непосредственное сопряжение данного устройства с ISA, то есть обеспечивает необходимые параметры сигналов с соблюдением протокола обмена. Операционная часть несёт на себе функции, ради которых, собственно, и создавалось устройство сопряжение. Подходы к проектированию этих двух частей имеют принципиальные отличия.

Операционные части различных устройств могут быть самыми разнообразными в зависимости от решаемых задач. Интерфейсные части практически у всех устройств одинаковы или очень похожи между собой, так как интерфейсные функции жёстко определяются протоколом выбранного стандартного интерфейса (в данном случае ISA).

В соответствии с определением интерфейса, в число главных функций интерфейсной части входит обеспечение информационной, электрической и конструктивной совместимости. Информационная совместимость предполагает точное выполнение протоколов обмена и правильное использование сигналов магистрали. Электрическая совместимость подразумевает согласование уровней входных, выходных и питающих напряжений и токов. Вопрос о конструктивной совместимости в основном касается конечного этапа разработки устройства - проектирования печатной платы и сводится к точному соблюдению всех размеров платы, разъёмов и крепёжных элементов.

К основным функциям интерфейсной части можно отнести:

- буферирование сигналов магистрали;

- селектирование или дешифрация линий адреса;

- выработка внутренних стробирующих сигналов.

Буферирование сигналов применяется для электрического согласования и выполняет две основные функции: электрическая развязка (для всех сигналов) и передача сигналов в нужном направлении (только для двунаправленных сигналов). Иногда с помощью буферирования реализуется также мультиплексирование сигналов [6].

Другой основной функцией интерфейсной части является селектирование и дешифрация адреса. Эту функцию выполняет узел, называемый селектором адреса, который должен выработать сигналы, соответствующие выставлению на шине адреса магистрали кода адреса, принадлежащего данному устройству, или одного из зоны адресов данного устройства. Важно, чтобы адреса проектируемого устройства не перекрывались с адресами, занятыми другими устройствами компьютера. В том случае если устройство сопряжения работает в адресном пространстве памяти селектор адрес должен обрабатывать 20 разрядов адресной шины (при полном объёме памяти до 1 Мбайт) или больше при бульшем объёме памяти.

Выработка внутренних стробирующих сигналов должна происходить синхронно с магистральными командными сигналами (-IOR, -IOW, -SMEMR, -SMEMW и др.). Для организации асинхронного обмена по шине ISA в низких скоростных характеристик устройства, используется сигнал I/O CH RDY, снятие которого, установка в состояние логического нуля, говорит о неготовности к циклу чтения (записи).

2.6 Обмен данными с компьютером

Существует четыре основных способа обмена данными с компьютером:

- по опросу флага готовности

- в режиме прерывания программы

- в режиме прямого доступа к ОЗУ компьютера

- с использованием автономного контроллера с буферной памятью в качестве накопителя.

Перечисленные способы обмена данными отличаются различными скоростями передачи данных и уровнем сложности аппаратуры, необходимой для их реализации.

Обмен экспериментальных данных с компьютером, работающим по опросу флага готовности внешнего устройства, требует минимальных затрат на разработку и изготовление дополнительной аппаратуры. Данный способ обмена характеризуется достаточно высокой скоростью реакции на обслуживание. Однако это обходится постоянной занятостью процессора тривиальными операциями опроса флага [3].

Если необходимость в обмене возникает достаточно редко, то наиболее приемлемым будет способ обмена с использованием прерывания. Реализация режима прерывания программы требует некоторого усложнения интерфейса связи с объектом, но это позволяет освободить процессор от периодического опроса устройства сопряжения и он в этом случае может заниматься другими задачами. Однако, использование аппаратных прерываний ни в коем случае не увеличивает скорости обмена с устройством сопряжения, наоборот, уменьшает её. Это связано с тем, что реакция на прерывание гораздо медленнее, чем на выставление флага готовности, т.к. чтобы обслужить прерывание процессор должен завершить текущий цикл, сохранить в стеке текущие значения своих регистров и только потом инициализировать контроллер прерываний и перейти на программу обработки прерывания [3,6].

Прямой доступ к памяти предназначен для быстрого обмена данными между устройством ввода-вывода и системной памятью компьютера. Использование режима ПДП весьма специфично. Во-первых, это связано с тем, что максимальный темп выдачи и приёма информации возможен только при передачи большого массива данных и даже в режиме блочной передачи пересылка одного байта (слова) требует нескольких тактов SYSCLC и занимает около 1 мкс. Как известно в поле адресов устройств ввода-вывода свободных адресов крайне мало, поэтому на практике возможен только последовательный доступ к буферному ОЗУ устройства ввода-вывода, что дополнительно снижает скорость обмена, и требует усложнения аппаратуры.

Наибольшую скорость выдачи или приёма данных обеспечивают не устройства сопряжения с прямым доступом, а устройства с так называемой разделяемой памятью, в которых быстрая буферная память, расположенная на плате устройства сопряжения доступна как со стороны внешнего устройства, так и со стороны магистрали ISA. При этом процессор рассматривает эту буферную память, как часть системного ОЗУ. В этом случае приём информации в ОЗУ компьютера или выдача её может осуществляться со скоростью до 50 Мбайт/с и выше.

Рассматривая устройства сопряжения имеющие буферные ОЗУ, можно выделить две большие группы:

- устройства сопряжения с непрерывным режимом обмена с внешним устройством. В этом случае буферное ОЗУ непрерывно выдаёт на внешнее устройство или принимает от него данные, а процессор в определённые моменты соответственно записывает или считывает необходимые ячейки этого ОЗУ.

- устройства сопряжения с периодическим режимом обмена. Буферное ОЗУ может находиться в одном из двух режимов: в режиме обмена с компьютером (запись или чтение содержимого ОЗУ) или в режиме обмена с внешним устройством (приём или выдача).

По методу доступа к буферному ОЗУ со стороны компьютера устройства сопряжения могут быть разделены на следующие группы:

- устройства с параллельным доступом к буферному ОЗУ;

- устройства с последовательным доступом к буферному ОЗУ.

Схематически оба метода представлены на рисунке 2.5.

При параллельном доступе каждой ячейке буферного ОЗУ соответствует свой адрес в адресном пространстве компьютера. В этом случае любой задатчик магистрали (процессор, контроллер ПДП и т.д.) может общаться с буферным ОЗУ как с системным, используя для этого все средства, все методы адресации, команды обработки строк. Данные, с точки зрения программиста, накапливаются непосредственно в памяти компьютера.

Естественно это наиболее быстрый метод общения с буферным ОЗУ (а также и с внешним устройством), так как в данном случае не требуется времени для перекачки данных из системной памяти в буферное ОЗУ или наоборот. Адресное пространство устройств ввода-вывода в данном случае использовать нецелесообразно, так как в нем нет достаточно больших непрерывных зон свободных адресов. Кроме того, возможности процессора по работе с памятью гораздо богаче, чем по общению с устройствами ввода-вывода.

При последовательном доступе данные буферного ОЗУ по очереди проецируются в один из адресов в адресном пространстве компьютера (или реже в несколько адресов). То есть задатчик при обращении по одному и тому же адресу в разное время общается с разными ячейками буферного ОЗУ. Главный недостаток этого подхода резкое снижение темпа обмена, а очевидное преимущество - экономия адресов магистрали [6].

3. РАЗРАБОТКА ЦИФРОВЫХ УСТРОЙСТВ НА БАЗЕ ПЛИС

3.1 Современные и перспективные ИС со сложными программируемыми структурами

Размеры плат микро-PC составляют всего 114Ч124 мм, поэтому для создания крупных систем нужно использовать микросхемы высокой степени интеграции и стараться разметить всю схему в минимальное число корпусов элементов.

Наряду со стандартными, в системе накопления, как и в любой другой системе, присутствуют и нестандартные части, специфичные для данной разработки. Это могут быть различные схемы управления, схемы реализации заданного алгоритма и т.п. Процесс реализации нестандартной части устройства, как правило, связан применением микросхем малой и средней степени интеграции. Применение малых и средних ИС неизбежно приводит к росту числа корпусов ИС, усложнением монтажа и отладки, снижением быстродействия и надёжности схем. Заказать для системы специализированные ИС высокого уровня интеграции затруднительно, т.к. это связано с большими затратами средств и времени. Существующее противоречие может быть разрешено путём применения современных программируемых логических интегральных схем [7].

Первыми представителями программируемых ИС явились программируемые логические матрицы ПЛМ, программируемая матричная логика ПМЛ и базовые матричные кристаллы БМК, называемые также вентильными матрицами. ПМЛ и ПЛМ в английской терминологии часто объединяются термином PLD, Programmable logic Devices.

Развитие БИС/СБИС с программируемой и репрограммируемой логикой оказалось настолько перспективным направлением, что привело к созданию новых эффективных средств разработки цифровых систем, таких

как CPLD (Complex PLD), FPGA (Field Programmable Gate Array) и SPGA (System Programmable Gate Array).

Основой программируемых логических матриц служит последовательность элементов И и ИЛИ. В структуру также входят блоки входных и выходных буферных каскадов (рис. 3.1)

Входные буферы, как правило, предназначены для преобразования однофазных входных сигналов в парафазные и формирования сигналов необходимой мощности для питания матрицы элементов И.

Выходные буферы обеспечивают необходимую нагрузочную способность выходов, разрешают или запрещают выход ПЛМ на внешние шины с помощью сигнала OE, а иногда выполняют и более сложные действия.

Переменные x1…xm подаются через входные буферные каскады на входы элементов И, и в матрице И образуют L термов. Терм - это конъюнкция, связывающая входные переменные, представленные в прямой или инверсной форме. Число формируемых термов равно числу выходов матрицы И.

Термы подаются далее на входы матрицы ИЛИ, т.е. на входы дизъюнкторов формирующих выходные функции. Число дизъюнкторов равно числу вырабатываемых функций N. Воспроизводимые функции являются комбинациями из любого числа термов, формируемых матрицей И. Какие именно термы будут выработаны и какие комбинации этих термов составят входные функции, определяется программированием. Таким образом, ПЛМ способна реализовать систему N логических функций от M аргументов, содержащую не более L термов.

Принцип программирования основан на том, что в матрицах имеются системы горизонтальных и вертикальных связей , в узлах которых при программировании создаются или ликвидируются связи. В качестве узлов связей используются диоды. До программирования все перемычки целы и диоды связи размещены во всех узлах координатной сетки. При программировании в схеме остаются только необходимые элементы связи, а ненужные устраняются пережиганием перемычек.

Логическая мощность ПЛМ зачастую используется не полностью. Это проявляется, в частности, при воспроизведении типичных функций, не имеющих больших пересечений друг с другом по одинаковым термам. В таких случаях возможность использования выходов любых конъюнкторов любыми дизъюнкторами становится излишним усложнением. Отказ от этой возможности означает использование не программируемой, а заданной матрицы ИЛИ. Структура в которой выходы матрицы И жёстко распределены между элементами ИЛИ получила название ПМЛ. В сравнении с ПЛМ схемы ПМЛ имеют меньшую гибкость, т.к. матрица ИЛИ фиксирована, но их изготовление дешевле и использование проще.

Отдельной ветвью в развитии программируемых интегральных схем являются базовые матричные кристаллы (вентильные матрицы с масочным программированием). Основа первых БМК - совокупность регулярно расположенных на кристалле базовых ячеек (БЯ), между которыми имеются свободные зоны (каналы) для создания соединений. БЯ занимают внутреннюю область БМК, в которой они расположены по столбцам, и содержат группы нескоммутированных элементов (транзисторов, резисторов и др.). В периферийной области размещены ячейки ввода-вывода. Потребитель может реализовать на основе БМК некоторое множество устройств определённого класса, задав тот или иной вариант рисунка межсоединений компонентов. Основной характеристикой БМК помимо числа эквивалентных вентилей является трассировочная способность, которая определяется площадью отводимой для межэлементных связей в ортогональных направлениях. Недостаточная трассировочная способность приводит к уменьшению числа задействованных при построении базовых ячеек. Избыточная трассировочная способность ведёт к нерациональному использованию кристалла, что понижает уровень интеграции БМК и повышает его стоимость. Для решения подобных проблем строятся многослойные БМК, при этом число слоёв межсоединений может составлять от 2 до 6 и более.

Ранее перечисленные архитектуры ПЛИС, содержащие небольшое количество ячеек, к настоящему времени морально устарели и применяются для реализации относительно простых устройств, для которых не существует готовых ИС средней степени интеграции [8]. Для реализации крупных проектов они не пригодны.

Развитие технологий, опыт использования программируемых интегральных логических схем (ПЛИС) приводит к выводу, что это максимально удобная в освоении и применении элементная база, альтернативы которой зачастую не найти. Последние годы характеризуются резким ростом плотности упаковки элементов на кристалле, многие ведущие производители либо начали серийное производство, либо анонсировали ПЛИС с эквивалентной ёмкостью более одного миллиона эквивалентных вентилей на кристалл.

Современные ПЛИС классифицируются по конструктивно-технологическому типу программируемых элементов. Число программируемых двухполюсников (программируемых точек связи ПТС) в ПЛИС зависит от сложности и может доходить до нескольких миллионов. Наиболее характерны следующие виды программируемых ключей:

- перемычки типа antifuse

- ЛИЗМОП транзисторы с двойным затвором

- ключевые транзисторы, управляемые триггерами памяти конфигурации (теневым ЗУ) [7].

Программирование с помощью перемычек antifuse является однократными. Высококачественные перемычки фирмы Actel компактны, имеют очень малые токи в первоначальном (непроводящем) состоянии (порядка10-15А). Перемычка образована трёхслойным диэлектриком с чередованием слоёв оксид-нитрид-оксид. Программирующий импульс напряжения пробивает перемычку и создаёт проводящий канал из поликремния между электродами. Величина тока, создаваемого импульсом программирования, влияет на диаметр проводящего канала (например ток 5 мА создаёт перемычку с сопротивление 600 Ом, ток 15мА - 100 Ом) [7].

Элементы EPROM и EEPROM на ЛИЗМОП (МОП-структуры с лавинной инжекцией заряда) транзисторах с плавающих затвором используются в ПЛИС, где с помощью программируемой памяти задаётся конфигурация схемы. Стирание старой конфигурации в ПЛИС на основе EPROM требует длительного (около 1 часа) облучения УФ-излучением. Такие микросхемы имеют ограничение количества циклов перепрограммирования из-за деградации свойств полупроводниковых материалов под воздействием ультрафиолета. Технология EEPROM, для обновления не требует извлечения микросхемы, допускает достаточно большое число циклов стирания (104…106). Процесс стирания и обновления конфигурации занимает время порядка миллисекунд. В последнее время схемотехника EEPROM совершенствуется и всё больше вытесняет схемотехнику EPROM. Технология программируемой памяти применяется в ПЛИС типа CPLD.

В качестве программируемого элемента связи в ПЛИС FPGA используется транзисторный ключ, управляемый триггером, показанный на рис.3.2

Ключевой транзистор Т2 замыкает или размыкает участок АВ в зависимости от состояния триггера. При программировании на линию выборки подаётся высокий потенциал, и транзистор Т1 включается. С линии записи-чтения подаётся сигнал, устанавливающий триггер в состояние «1» и «0».

Загрузка соответствующих данных в память конфигурации программирует ПЛИС. Быстрый процесс оперативного программирования может производиться неограниченное число раз. При выключении питания конфигурация теряется. Каждый раз при включении питания необходим процесс инициализации (конфигурирования) схемы - загрузка данных из энергонезависимой памяти [1].

ИС класса ПЛМ и ПМЛ имеющие структуру весьма удобную для построения цифровых автоматов положили начало развития архитектуры программируемых коммутируемых матричных блоков (ПКМБ), которые представляют собой ПЛИС содержащую несколько матричных логических блоков, объединённых коммутационной матрицей. ПЛИС типа ПКМБ, как правило, имеют высокую степень интеграции (до 10 тыс. эквивалентных вентилей). К этому классу относятся ПЛИС семейства MAX5000, MAX7000 фирмы Altera, схемы XC7000, XC9500 фирмы Xilinx и др. ПЛИС класса ПКМБ в зарубежной литературе получили название CPLD (Complex PLD).

Архитектурно CPLD состоят из центральной коммутационной матрицы, множества функциональных блоков ФБ (макроячеек) и блоков ввода-вывода на периферии кристалла. Система коммутации построена на основе непрерывных связей, что даёт хорошую предсказуемость задержек сигналов в связях. Программируемая матрица соединений (PIA) позволяет соединить выход любого ЛБ с входами других и обеспечить связи с вертикальными и горизонтальными линиями. Как и во всех ПЛИС, логические операции производятся в ЛБ, которые соединяются в единую систему с помощью ПМС. Каждый ЛБ содержит 16 макроячеек. Классическим представителем CPLD являются микросхемы семейства MAX7000, фирмы Altera, имеющими память конфигурации типа EEPROM. В настоящее время выпускаются ПЛИС MAX7000, MAX7000A, MAX7000B, MAX7000E, MAX7000S. Семейства MAX7000A и MAX7000B рассчитаны на работу в системах с напряжением питания 3,3 и 2,5В соответственно, ПЛИС MAX7000S является дальнейшим развитием 5-вольтового MAX7000, с возможностью программирования в системе (ISP, In-system programmability) и периферийного сканирования в соответствии со стандартом IEEE Std. 1194.1 JTAG. Фрагмент структуры CPLD MAX7000S дающий достаточно полное представление о ней изображён на рисунке 3.3а.

В отличие от архитектуры MAX7000 ПЛИС MAX7000S имеют дополнительную возможность использования двух глобальных тактовых сигналов GCLK1 и GCLK2 и сброса GCLR, а также сигналы разрешения выходов ОЕ.

Логический блок обеспечивает построение как комбинационных цепей, так и схем с элементами памяти. Одна из макроячеек логического блока изображена на рисунке 3.3б.

При недостатке собственных термов внутри макроячейки, можно воспользоваться дополнительными ресурсами двух типов логических расширителей общего (разделяемого) и параллельного.

Блок ввода-вывода даёт возможность гибкого управления разрешением выходного буфера. ПМС формирует глобальные сигналы разрешения выходов ОЕ, допуская возможность перевода выходов ПЛИС в третье состояние. ПЛИС MAX7000S поддерживают аппаратную эмуляцию выходов с открытым коллектором, кроме того, может программироваться и скорость изменения выходов сигналов с целью предупреждения возможных паразитных колебаний при переключении.

Продолжением линии БМК стали программируемые пользователем вентильные матрицы ППВМ (FPGA). Логические блоки таких ПЛИС состоят из одного или нескольких относительно простых логических элементов (коммутируемых логических блоков КЛБ), в основе которых лежит таблица перекодировки, программируемый мультиплексор, D-триггер и цепи управления. Таких простых элементов может быть достаточно большое количество (у современных ПЛИС ёмкостью до 1 миллиона вентилей число логических элементов достигает нескольких десятков тысяч). Таким образом, архитектуру ППВМ можно представить в виде структуры БМК, где вместо базовых ячеек находятся КЛБ. В английской терминологии данный класс микросхем называется FPGA (Field Programmable Gate Array). К наиболее известным FPGA относятся ПЛИС семейства XC2000, XC3000, XC4000, XC5000 и Spartan, Virtex фирмы Xilinx, ACT1,ACT2 фирмы Actel, а также семейства FLEX8000 фирмы Altera, некоторые ПЛИС Atmel и Vantis [8].

В качестве КЛБ могут использоваться:

- транзисторные пары, простые логические вентили и т.п.

- логические модули на основе мультиплексоров

- логические модули на основе программируемых ПЗУ

Наиболее важные характеристики КЛБ отражаются двумя параметрами зернистость и функциональность.

Первое свойство связано с тем, какие минимальные единицы логики (транзистор, вентиль, логический модуль) можно применить для составления нужной схемы. Второе свойство показывает насколько велики логические возможности КЛБ. Т.о. оба параметра взаимопротивоположны. Мелкозернистые ЛБ фирмы Crosspoint Solution содержат цепочки транзисторов. Между цепочками транзисторов имеются трассировочные каналы, в которых могут быть реализованы необходимые межсоединения. Крупнозернистый блок в микросхемах XC4000E фирмы Xilinx в качестве основы имеет три функциональных логических преобразователя, ряд программируемых мультиплексоров и два триггера. Такой блок способен реализовать более сложные функции, что ведёт к упрощению программируемой части межсоединений. Иными словами, меняя зернистость можно выиграть в одном и проиграть в другом.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.