Асинхронные электродвигатели, способы измерения скорости и момента

Принцип работы и устройство асинхронного двигателя. Способ измерения электромагнитного момента асинхронного двигателя. Регулирование частоты вращения асинхронных двигателей. Изменение скольжения, числа пар полюсов, частоты источника питания двигателя.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 16.05.2016
Размер файла 397,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Областное государственное бюджетное профессиональное образовательное учреждение

«Смоленский политехнический техникум»

Реферат

по дисциплине:

«Электрический привод»

на тему:

«Асинхронные электродвигатели, способы измерения скорости и момента»

Выполнил: студент группы 3-09-Э

Лозутов Андрей

Проверил: Абросов А.И

Смоленск

2016

Содержание

Асинхронный двигатель - принцип работы и устройство

Принцип работы

Способ измерения электромагнитного момента асинхронного двигателя

Регулирование частоты вращения асинхронных двигателей

Изменение скольжения

Изменение числа пар полюсов

Изменение частоты источника питания

Список используемой литературы

Асинхронный двигатель - принцип работы и устройство

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигатель - это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

На рисунке: 1 - вал, 2,6 - подшипники, 3,8 - подшипниковые щиты, 4 - лапы, 5 - кожух вентилятора, 7 - крыльчатка вентилятора, 9 - короткозамкнутый ротор, 10 - статор, 11 - коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

асинхронный двигатель электромагнитный полюс

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется "беличьей клеткой". В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье -асинхронный двигатель с фазным ротором.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s - это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр - критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме - 1 - 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Способ измерения электромагнитного момента асинхронного двигателя

Использование: в системах регулирования асинхронных электропроводов с преобразователями частоты на основе автономных инверторов с широтно импульсным регулированием напряжения. Сущность: при способе измерения электромагнитнолго момента асинхронного двигателя, питаемого от сети через преобразователь частоты на основе автономного инвертора с широтно импульсным регулированием выходного напряжения с помощью датчика тока измеряют ток в звене постоянного тока преобразователя частоты и вычисляют электромагнитный момент по формуле, приведенной в тексте описания. 5 ил.

Изобретение относится к электротехнике, в частности к частотно-управляемым электроприводам, и может быть использовано в качестве датчика электропривода (или способа его реализации) в системах регулирования асинхронных электроприводов с преобразователями частоты на основе автономных инверторов с широтно-импульсным регулированием напряжения.

Известен способ измерения электромагнитного момента асинхронного двигателя, питаемого от преобразователя частоты на основе автономного инвертора тока, заключающийся в том, что измеряют ток на входе преобразователя частоты, измеряют напряжение на входе инвертора и измеряют на входе системы управления инвертором преобразователя частоты сигнал, пропорциональный выходной частоте инвертора, а электромагнитный момент двигателя вычисляют как результат частного от деления произведения измеренных сигналов тока и напряжения на упомянутый сигнал, пропорциональный выходной частоте инвертора.

Недостатком известного способа измерения электромагнитного момента являются, во-первых, сложность, обусловленная наличием двух операций измерения высокопотенциальных электрических сигналов (тока и напряжения). Также недостатком известного способа является большая величина пульсаций выходного сигнала измеренного момента (вызванная коммутационными провалами напряжения на входе автономного инвертора тока), требующая, как правило, из условия сглаживания установки на выход устройства дополнительного фильтрующего звена, вносящего при этом запаздывание в измерение сигнала момента, неустойчивое измерение момента в области выходных низких (пусковых) частот электропривода, обусловленное необходимостью проведения множительно-делительным блоком операций умножения и деления малых сигналов (усугубляющееся влиянием указанных коммутационных провалов напряжения, присутствующих в одном из входных сигналов блока).

Известен также способ измерения электромагнитного момента асинхронного двигателя, питаемого от преобразователя частоты на основе автономного инвертора с широтно-импульсным регулированием выходного напряжения, заключающийся в том, что измеряют на выходе инвертора статорные токи двух фаз двигателя, вычисляют статорный ток третьей фазы двигателя путем суммирования измеренных сигналов двух фазных токов двигателя, системой управления инвертором преобразователя частоты формируют для трех выходных фаз преобразователя частоты сигналы задания знака полуволны основной гармоники выходного фазного напряжения: +1 для положительной полуволны, -1 для отрицательной полуволны, вычисляют произведения измеренных и вычисленных значений фазных токов двигателя на соответствующей данной фазе сигнал задания знака полуволны основной гармоники фазного напряжения инвертора, при этом электромагнитный момент двигателя находят в виде суммы полученных произведений сигналов.

Недостатками известного способа измерения электромагнитного момента являются сложность, обусловленная наличием двух операций измерения высокопотенциальных электрических сигналов (а именно, двух фазных токов), ограниченная область применения, а именно, электроприводами, в которых обеспечивается управление асинхронным частотно-регулируемым двигателем с постоянным магнитным потоком двигателя, так как измеряемый известным способом сигнал (активной составляющей статорного тока двигателя) пропорционален электромагнитному моменту асинхронного двигателя только при неизменном значении магнитного потока; в случае управления двигателем с изменяющимся магнитным потоком при известном способе вносится существенная ошибка в величину измеряемого электромагнитного момента (до 20-50%). Также недостатком известного способа является увеличение пульсаций измеренного момента на низкой выходной частоте электропривода, требующее дополнительной фильтрации для устойчивой работы в системе регулирования электропривода; это вносит значительное запаздывание (0,2-0,3 с), снижая быстродействие.

Известен способ измерения электромагнитного момента асинхронного двигателя, подключенного к сети через преобразователь частоты на основе автономного инвертора с широтно-импульсным регулированием выходного напряжения, при котором измеряют ток, фазные напряжения с последующим вычислением электромагнитного момента через определенный интеграл от электромагнитной мощности, определяемой как произведение вычисленной путем суммирования фазных напряжений ЭДС на величину измеренного тока. Интегрирование производят в течение каждого полупериода основной гармоники фазного напряжения, при этом в начале каждого последующего периода времени результат интегрирования обнуляют.

Недостатками данного способа являются сложность, обусловленная наличием большого числа операций: измерение высокопотенциальных токов и напряжений, вычисление произведений этих параметров; невысокое быстродействие из-за запаздывания, равного полупериоду выходного напряжения (время запаздывания может достигать 0,5-1 с при низких значениях частот и питании двигателя от преобразователя частоты).

Регулирование частоты вращения асинхронных двигателей

При работе многих механизмов, приводящихся во вращение асинхронными двигателями, в соответствии с технологическими требованиями возникает необходимость регулировать скорость вращения этих механизмов. При заданной нагрузке на валу частоту вращения ротора можно регулировать:

1. изменением скольжения;

2. изменением числа пар полюсов;

3. изменением частоты источника питания.

Изменение скольжения

Этот способ используют в приводе тех механизмов, где установлены асинхронные двигатели с фазным ротором. Например, в приводе подъемно-транспортных машин. В цепь фазного ротора вводится регулировочный реостат. Увеличение активного сопротивления ротора не влияет на величину критического момента, но увеличивает критическое скольжение.

Основные недостатки этого способа:

1. Из-за больших потерь на регулировочном реостате снижается коэффициент полезного действия, т.е. способ неэкономичный.

2. Механическая характеристика асинхронного двигателя с увеличением активного сопротивления ротора становится мягче, т.е. снижается устойчивость работы двигателя.

3. Невозможно плавно регулировать частоту вращения.

Из-за перечисленных недостатков этот способ применяют для кратковременного снижения частоты вращения.

Изменение числа пар полюсов

Эти двигатели (многоскоростные) имеют более сложную обмотку статора, позволяющую изменять ее число пар полюсов, и короткозамкнутый ротор. При работе асинхронного двигателя необходимо, чтобы обмотки ротора и статора имели одинаковое число пар полюсов. Только короткозамкнутый ротор способен автоматически приобретать то же число пар полюсов, что и поле статора. Многоскоростные двигатели нашли широкое применение в приводе металлорежущих станков. Нашли применение двух, трех и четырех скоростные двигатели.

На рис. показана схема соединения и магнитное поле статора двигателя при последовательном (б) и параллельном (а) соединении полуобмоток.

Рис.

У двухскоростного двигателя обмотка каждой фазы состоит из двух полуобмоток. Включая их последовательно или параллельно можно в 2 раза изменять число пар полюсов.

Изменение частоты источника питания

В качестве таких источников питания в настоящее время начали находить применение преобразователи частоты (ПЧ), выполняемые на мощных полупроводниковых приборах - тиристорах. Для сохранения неизменным магнитного потока, т.е. для сохранения перегрузочной способности двигателя, необходимо вместе с частотой изменять и действующее значение подведенного напряжения.

Достоинства этого способа: плавное регулирование, возможность повышать и понижать частоту вращения, сохранение жесткости механических характеристик, экономичность. Основной недостаток - требуется преобразователь частоты, т.е. дополнительные капитальные вложения.

Список используемой литературы

1. Потапов Л.А., Юферов Ф.М. Измерение вращающихся моментов и скоростей вращения микроэлектродвигателей. - М.: Энергия, 1984.

2. Мельников В. Ю., Бородацкий Е.Г. Косвенный контроль координат асинхронного короткозамкнутого двигателя. Деп. В Казгос ИНТИ, Алматы, 1994, вып.1, 69 с.

3. Мельников В.Ю., Умурзакова А.Д. Косвенный метод контроля крутящего момента асинхронного электродвигателя// Материалы II Международной научно-практической конференции ««Наука и образование в XXI веке: динамика развития в евразийском пространстве», Павлодар, 2011.- с.65-67.

4. Предварительный Патент РК № 18934, бюл. № 11 от 15.11.2007 Способ измерения крутящегося момента асинхронного электродвигателя/ Мельников В.Ю., Умурзакова А.Д.

5. Умурзакова А.Д. Способ измерения крутящегося момента асинхронного электродвигателя на основе косвенного метода контроля координат// Материалы Международной научно- практической конференции «Индустриально- инновационное развитие на современном этапе: состояние и перспективы», Павлодар, 2009. - с.56.

Размещено на Allbest.ru


Подобные документы

  • Асинхронный двигатель: строение и разновидности. Вращающееся магнитное поле. Принцип действия асинхронного двигателя с короткозамкнутым ротором. Регулирование частоты вращения путем вращения и скольжения. Тормозные режимы работы асинхронного двигателя.

    презентация [352,5 K], добавлен 19.10.2014

  • Угловая скорость вращения магнитного поля. Математическая модель асинхронного двигателя в форме Коши, а также блок-схема его прямого пуска с использованием Power System Blockset. Зависимость угловой скорости ротора от величины электромагнитного момента.

    реферат [672,5 K], добавлен 03.01.2010

  • Паспортные данные асинхронного двигателя. Моделирование схемы в пакете SkyLab. Переходные процессы фазного тока и угловой скорости при пуске двигателя. Переходные процессы электромагнитного момента и угловой скорости. Динамическая пусковая характеристика.

    лабораторная работа [270,3 K], добавлен 18.06.2015

  • Сравнение характеристик электрических машин различных типов. Понятие постоянных и переменных потерь энергии. Способы измерения частоты вращения асинхронного двигателя. Определение критического момента и номинальной мощности электрической машины.

    презентация [103,7 K], добавлен 21.10.2013

  • Обоснованный выбор типов и вариантов асинхронного двигателя. Пусковой момент механизма, определение установившейся скорости. Расчёт номинальных параметров и рабочего режима асинхронного двигателя. Параметры асинхронного двигателя пяти исполнений.

    реферат [165,2 K], добавлен 20.01.2011

  • Устройство асинхронной машины: статор и вращающийся ротор. Механическая характеристика асинхронного двигателя, его постоянные и переменные потери. Методы регулирования частоты вращения двигателя. Работа синхронного генератора в автономном режиме.

    презентация [9,7 M], добавлен 06.03.2015

  • Основные достоинства и недостатки асинхронных (индукционных) машин, история их создания. Устройство асинхронного двигателя. Двигатели с улучшенными пусковыми свойствами. Анализ принципа подключения асинхронного двигателя через магнитный пускатель.

    презентация [5,1 M], добавлен 26.08.2015

  • Моделирование электромеханических устройств. Классификация математических моделей. Иерархический подход к моделированию. Исследование динамического момента асинхронного двигателя с опытными образцами роторов. Вращающий момент асинхронного двигателя.

    учебное пособие [159,1 K], добавлен 13.08.2013

  • Принцип действия трехфазного асинхронного двигателя с короткозамкнутым ротором. Конструкция асинхронного двигателя с фазным ротором. Снижение тока холостого хода. Магнитопровод и обмотки. Направление электромагнитных сил. Генераторный режим работы.

    презентация [1,5 M], добавлен 09.11.2013

  • Расчет исходных данных двигателя. Расчет и построение естественных механических характеристик асинхронного двигателя по формулам Клосса и Клосса-Чекунова. Искусственные характеристики двигателя при понижении напряжения и частоты тока питающей сети.

    курсовая работа [264,0 K], добавлен 30.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.