Динамические характеристики термопреобразователей сопротивлений
Определение инерционных свойств средств измерений. Построение временных (переходных) характеристик СИ. Конструкция и динамические свойства термометра сопротивлений. Экспериментальное определение динамических характеристик звена первого и второго порядка.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 01.02.2013 |
Размер файла | 106,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТЕРМОПРЕОБРАЗОВАТЕЛЕЙ СОПРОТИВЛЕНИЙ
Практически все средства измерений (СИ) имеют в своем составе элементы, обладающие механической, тепловой или другой инерцией, вследствие чего величина сигнала на выходе Y(ф) зависит не только от величины входного сигнала X(ф), но и от его формы (скорости изменения) и времени. Инерционные свойства СИ определяются динамическими характеристиками, которые описываются дифференциальными уравнениями вида:
(1)
или соответствующей передаточной функцией:
, (2)
где a1, a2,…, an - коэффициенты, определяемые из начальных условий; k - чувствительность СИ.
инерционный измерение термометр динамический
В зависимости от формы сигнала, подаваемого на вход СИ при исследовании его динамических свойств, различают временные (переходные), импульсные и частотные характеристики. Для построения временной характеристики на вход СИ подается ступенчатое воздействие, амплитуда которого принята за единицу (рис. 1, а). Форма временной характеристики определяется динамическими свойствами СИ и может иметь вид, показанный на рис. 1, б.
Динамические свойства термометра зависят от его конструкции и условий теплообмена с окружающей средой. Если пренебречь влиянием корпуса 2 (рис. 2), то временная характеристика термометра, установленного без защитного чехла, может быть описана дифференциальным уравнением первого порядка (кривая 1, рис. 1, б), решением которого является зависимость
, (3)
где k - чувствительность термометра;
Т - постоянная времени, которая прямо пропорциональна теплоемкости (с) и массе (m) чувствительного элемента и обратно пропорциональна площади теплообмена (F) и коэффициенту теплоотдачи (б) от измеряемой среды к термометру:
. (4)
В ряде случаев для предотвращения механических повреждений термометры помещают в защитный чехол (рис. 2). Однако это ухудшает их динамические характеристики, что может быть частично компенсировано заполнением маслом пространства между термометром и чехлом. Динамическая характеристика такого термометра описывается дифференциальным уравнением более высокого порядка (кривая 2, рис. 1, б).
Часто получить точную динамическую характеристику аналитически невозможно из-за сложной взаимной зависимости величин, входящих в уравнение, и ее определяют экспериментально. При этом для упрощения расчетов апериодические звенья высоких порядков заменяют комбинацией двух звеньев - чистого запаздывания и апериодического первого порядка:
(5)
или звеньями чистого запаздывания и апериодического второго порядка:
. (6)
При проведении эксперимента термометр из среды с одной температурой быстро перемещают в среду с другой температурой и фиксируют показания через малые промежутки времени. Далее полученный результат приводят к безразмерному виду:
, (7)
где t(ф), t0 и t? - текущее, начальное и новое установившиеся значения температуры, и сроят график зависимости: Y = f(ф) - переходный процесс.
Далее по виду кривой выбирают динамическую модель (5) или (6) и определяют ее параметры.
Если переходный процесс имеет вид кривой 1 (рис. 1, б), то проводят касательную в точке Y(ф)=0 до пересечения с линией Y(ф)= Y и находят значения времени запаздывания фз и постоянной времени T (рис. 3). Графическое построение касательной может быть выполнено со значительной погрешностью, поэтому за постоянную времени принимают время, за которое выходная величина достигла значения 0,63 Y.
Если переходный процесс имеет вид кривой 2 (рис. 1, б), то могут быть применены зависимости и (5), и (6). Касательную к кривой проводят в точке максимальной скорости изменения выходной величины (точка перегиба W) до пересечения с осью абсцисс и линией, соответствующей новому установившемуся значению (рис. 3).
Если принимают модель (5), то время запаздывания фз = Т0b, а постоянная времени - T = Тbd. Если принята модель (6), то время запаздывания фз = Т0а, Т1 определяется по графику (см. рис. 4) в зависимости от отношения Тbd/Т2, а Т2 = Тcd.
Литература
1. Волынский В.А. и др. Электротехника /Б.А. Волынский, Е.Н. Зейн, В.Е. Шатерников: Учеб. пособие для вузов. - М.: Энергоатомиздат, 2007. - 528 с., ил.
2. Касаткин А.С., Немцов М.В. Электротехника: Учеб. пособие для вузов. - 4-е изд., перераб. - М.: Энергоатомиздат, 2009. - 440 с., ил.
3. Основы промышленной электроники: Учебник для неэлектротехн. спец. вузов /В.Г. Герасимов, О.М. Князьков, А.Е. Краснопольский, В.В. Сухоруков; под ред. В.Г. Герасимова. - 3-е изд., перераб. и доп. - М.: Высш. шк., 2006. - 336 с., ил.
4. Электротехника и электроника в 3-х кн. Под ред. В.Г. Герасимова Кн.1. Электрические и магнитные цепи. - М.: Высшая шк. - 2006 г.
5. Электротехника и электроника в 3-х кн. Под ред. В.Г. Герасимова Кн.2. Электромагнитные устройства и электрические машины. - М.: Высшая шк. - 2007 г.
Размещено на Allbest.ru
Подобные документы
Основные динамические характеристики средств измерения. Функционалы и параметры полных динамических характеристик. Весовая и переходная характеристики средств измерения. Зависимость выходного сигнала средств измерения от меняющихся во времени величин.
презентация [127,3 K], добавлен 02.08.2012Выбор электродвигателя переменного тока. Расчет сопротивлений добавочных резисторов в цепи ротора. Построение механических характеристик электропривода. Построение переходных процессов и определение интервалов времени разгона по ступеням и при торможении.
курсовая работа [406,8 K], добавлен 14.11.2012Характеристики, конструкция и принцип действия мегаомметра – прибора для измерения больших значений сопротивлений. Источник напряжения измерения в электромеханическом и электронном приборах. Понятие объемного и поверхностного сопротивлений изоляции.
лабораторная работа [312,5 K], добавлен 18.06.2015Определение тока холостого хода, сопротивлений статора и ротора асинхронного двигателя. Расчет и построение механических и электромеханических характеристик электропривода, обеспечивающего законы регулирования частоты и напряжения обмотки статора.
контрольная работа [263,5 K], добавлен 14.04.2015Составление схемы замещения. Расчет индуктивных сопротивлений схемы. Определение сверхпереходного тока короткого замыкания. Расчет активных сопротивлений элементов системы. Определение расчетных реактивностей. Построение векторной диаграммы напряжений.
курсовая работа [2,2 M], добавлен 25.02.2013Предварительный выбор мощности асинхронного двигателя. Приведение статических моментов и моментов инерции к валу двигателя. Построение механических характеристик электродвигателя. Расчет сопротивлений и переходных процессов двигателя постоянного тока.
курсовая работа [1,0 M], добавлен 14.12.2011Исследование частотных и переходных характеристик линейной электрической цепи. Определение электрических параметров ее отдельных участков. Анализ комплексной передаточной функции по току, графики амплитудно-частотной и фазово-частотной характеристик.
курсовая работа [379,2 K], добавлен 16.10.2021Сущность расчета переходных процессов в электрических цепях первого и второго порядков. Построение временных диаграмм токов и напряжений. Составление и решение характеристических уравнений. Расчет форм и спектров сигналов при нелинейных преобразованиях.
курсовая работа [1,2 M], добавлен 14.07.2012Переходные процессы в цепях первого и второго порядков. Расчет электрической цепи, состоящей из катушки индуктивности, емкости, сопротивлений, источника ЭДС. Способы нахождения токов и напряжений. Реакции в цепи на произвольное импульсное воздействие.
курсовая работа [1,0 M], добавлен 08.01.2016Расчет параметров схемы замещения асинхронного двигателя; мощности, потребляемой из сети. Построение механической и энергомеханической характеристик при номинальных напряжении и частоте. Графики переходных процессов при пуске асинхронного двигателя.
курсовая работа [997,1 K], добавлен 08.01.2014