Алгоритм построения характеристического многогранника для случая выпуклых исходных объектов. Оценка вычислительной сложности. Построение характеристического многогранника, при условии, что исходные объекты необязательно выпуклые. Система плагинов.
Oнтoлoгичecкoe пpeимyщecтвo вoпpoca o бытии, двоякая задача в его разработке и aнaлиз cтpyктypы бытийнoй теории. Фyндaмeнтaльнaя интepпpeтaция cмыcлa бытия, кpитepии нaивнoгo paзличeния paзныx peгиoнoв cyщeгo. Суть и роль тpaдициoннoй кoнцeпции вpeмeни.
- 843. Задача Діріхле
Методи скінченних різниць або методи сіток як чисельні методи розв'язку інтегро-диференціальних рівнянь алгебри диференціального та інтегрального числення. порядок розв’язання задачі Діріхле для рівняння Лапласа методом сіток у прямокутної області.
Поведение полей напряжений в окрестности концентраторов дефектов и неоднородностей среды, полостей и включений. Теоретическое решение задачи Кирша. Концентрации напряжений. Экспериментальный метод исследования напряжённо-деформированного состояния.
- 845. Задача кодирования
Определение понятий кода, кодирования и декодирования, виды, правила и задачи кодирования. Применение теорем Шеннона в теории связи. Классификация, параметры и построение помехоустойчивых кодов. Методы передачи кодов. Пример построения кода Шеннона.
Критерий эффективности и функции в системе ограничений. Общая постановка задачи линейного программирования. Составление математической модели задачи. Алгоритмы решения задачи симплексным методом. Построение начального опорного решения методом Гаусса.
Решение задачи на составление компромиссного списка. Построение математической модели. Цена перемещения элементов. Вывод программы. Закреплении элемента а1 на первом месте, а а4 на пятом. Матрица оценок для задачи. Оптимальное решение в виде списка.
Методика формування плану виготовлення виробів, при якому загальна вартість всієї виробленої підприємством продукції є максимальною. Порядок розробки плану перевезень цегли до будівельних об’єктів, при якому загальна вартість перевезень є мінімальною.
Загальна економіко-математична модель задачі лінійного програмування. Основні форми запису задач. Оптимальний та допустимий розв'язок. Геометрична інтерпретація, властивості розв'язків та графічний метод розв'язування задач лінійного програмування.
Непрерывное распределение прибыли. Центральный позиционный дизайн. Оценка координат экстремума. Нормальность распределения прибыли с продаж, генерируемых имитационной моделью. Неравенство дисперсий прибыли с продаж. Дискретное распределение прибыли.
Постановка задачи маршрутизации транспорта с временными интервалами доставки продукции и ограничением на грузоподъемность транспортных средств. Формирование маршрутов развоза продукции водителями фирмы ООО "Фабрика еды" с учетом временных ограничений.
Методика розв'язання задачі на знаходження абсолютної швидкості та абсолютного прискорення точки М у заданий момент часу: розрахунок шляху, пройденого точкою за одиничний відрізок часу, визначення відносного, переносного та кутового прискорення пластини.
Модификация алгоритма RPC таким образом, чтобы он не требовал входного параметра, но сохранил свою гибкость при решении задачи нахождения максимальной клики для разных графов. Метод ветвей и границ. Построение функции-классификатора. Листинг алгоритма.
Разработка и написание программы по моделированию движения снаряда при заданных параметрах пути, максимальной высоты, времени полета и траектории. Анализ методов построения модели, разработка алгоритма, написание и отладка программы в среде Delphi.
Суть задачи коммивояжера, ее применение. Общая характеристика методов ее решения: метод полного перебора, "жадные" методы, генетические алгоритмы и их обобщения. Особенности метода ветвей и границ и определение наиболее оптимального решения задачи.
Разработка программы для решения задачи о синих и красных точках, суть которой заключается в построении отрезков на плоскости, на которой расположены точки, являющиеся концами этих отрезков. Структурная схемы и блок-схема разрабатываемого алгоритма.
Алгоритм поиска по первому наилучшему совпадению на графе. Основные классы для поиска пути в лабиринте. Тестирование нахождения кратчайшего пути в лабиринте. Порядок обхода вершин. Тестирование поведения программы при отсутствии пути в лабиринте.
Описание математических методов решения задачи оптимизации. Рассмотрение использования линейного программирования для решения транспортной задачи. Применение симплекс-метода, разработка разработать компьютерной модели в Microsoft Office Excel 2010.
Особенности выполнения задачи минимизации функционала. Свойства билинейной формы. Формулирование обобщенного способа решения вариационной задачи для краевых задач с самосопряженным дифференциальным оператором (вследствие квадратичности функционала).
Обзор алгоритмов решения задачи: точные методы, генетический и жадный алгоритмы. Характеристика жадного алгоритма: его описание, анализ точности приближения, вычислительной сложности. Программная реализация и проверка корректности и быстродействия.
- 861. Задача о парковке
Нечеткая логика как раздел математики, являющийся обобщением классической логики и теории множеств, базирующийся на понятии нечеткого множества. Основные правила и законы данной логики, алгоритм Мамдани. Содержание и принципы решения задачи о парковке.
- 862. Задача о ранце
Методы решения задачи о ранце. Алгоритм неявного лексикографического перебора. Разработка структуры данных, реализация алгоритма с её использованием, программная реализация. Проведение тестовой проверки. Входной и выходной файл, листинг программы.
Сущность и содержание, основные понятия и критерии теории графов. Понятие и общее представление о задаче коммивояжера. Описание метода ветвей и границ, практическое применение. Пример использования данного метода ветвей для решения задачи коммивояжера.
- 864. Задача о траекториях
Вычисление траектории на плоскости в случае декартовых координат, ортогональных и изогональных траекторий семейства. Графическое решение дифференциального уравнения первого порядка, построение ортогональных траекторий в задачах картографии, навигации.
Анализ и характеристика рекурсивного алгоритма решения задачи о Ханойских башнях, а также порядок его временной сложности в соответствии с пошаговым алгоритмом. Методика и особенности разработки программы, печатающей последовательность действий, ее текст.
Формирование набора критериев. Постановка задачи о назначениях. Выбор метода принятия решения, его обоснование. Распределение работ, при котором в минимальные сроки будет возможно оценить затраты на проект, его длительность, рентабельность и прибыль.
Определение с помощью метода Баранкина и Дорфмана оптимального набора цен, по которым следует реализовывать все виды продукции при условии получения наибольшей стоимости реализованной продукции. Программная реализация решения задачи в пакете GINO.
Задачи оптимального управления для непрерывных и дискретных процессов. Принцип максимума Понтрягина. Оптимизация управляемых процессов и оптимальный баланс инвестиций в макроэкономической модели международного туризма при террористических угрозах.
Теория оптимального управления для оценки опционов. Связь между риск-нейтральной и физической плотностью вероятности. Функция полезности как функция с ограниченным изменением. Решение задачи оптимального управления как задачи вариационного исчисления.
Проблема розробки математичного апарату і нових методів оптимізації інвестиційного портфеля. Застосування для розв'язування задачі оптимізації інвестиційного портфеля теорії нечітких множин. Аналіз моделі управління інвестиційним портфелем компанії.