Метод клонального микроразмножения в декоративном растениеводстве

Сущность, этапы, основные преимущества клонального микроразмножения. Адаптация растений к почвенным условиям произрастания. Выбор питательной среды и ее основные компоненты. Применение клонального микроразмножения для выращивания декоративных растений.

Рубрика Сельское, лесное хозяйство и землепользование
Вид реферат
Язык русский
Дата добавления 24.05.2015
Размер файла 576,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Учреждение образования

«БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Факультет лесохозяйственный

Кафедра ландшафтного проектирования и садово-паркового строительства

Специальность 1-75 81 01

«Ландшафтное проектирование и строительство»

РЕФЕРАТ

по дисциплине «Интенсивное ведение отрасли садоводства и декоративного растениеводства»

Тема «Метод клонального микроразмножения в декоративном растениеводстве»

Исполнитель: магистрант М.В. Козлова

Руководитель

кандидат с.-х. наук

ст. преподаватель каф. ЛП и СПС

С.А. Праходский

Минск 2015

Введение

Одна из особенностей живых организмов - способность к размножению. Существует два основных способа размножения: половое и бесполое. Для каждого из них характерно значительное разнообразие форм. Половое - это размножение, при котором новый организм развивается из зиготы, образующейся в результате оплодотворения, т. е. слияния ядер мужской и женской половых клеток.

Вегетативное размножение - образование нового организма из части материнского. Таким образом могут размножаться микроорганизмы, почти все растения и некоторые животные (губки, мшанки, кишечнополостные, простейшие).

Бесполое размножение - характеризуется отсутствием полового процесса; такое размножение свойственно одноклеточным и многоклеточным растительным и животным организмам.

Термин «клон» (по гречески klon - черенок) был предложен в 1903 г А. Веббером для вегетативно размножаемых растений. Он установил, что отпрыски растения, размножаемого неполовым путем, лишь части (клоны) материнской особи, идентичные как с ней, так и между собой. Клонирование подразумевает организмы, полученные из единичных клеток посредством митотических делений [1].

Достижения в области культуры клеток и тканей привели к созданию принципиально нового метода вегетативного размножения - клонального микроразмножения. В основе метода лежит уникальная способность растительной клетки реализовывать присущую ей тотипотентность, т. е. под влиянием экзогенных воздействий давать начало целому растительному организму.

Главное предназначение системы производства посадочного материала создание долголетних, ежегодно плодоносящих, удобных в эксплуатации, быстро окупающихся и стабильно приносящих прибыль, адаптированных к местным природно-климатическим и рыночным условиям насаждений плодовых и ягодных культур. Известно, что потребность растениеводства в посадочном материале в последние 10-15 лет увеличивается, кроме того, в последнее время возросла потребность в оздоровленном посадочном материале, что связано с широким распространением вирусных, фитоплазменных и грибных заболеваний. Однако в полевых условиях не существует эффективных приемов массового оздоровления многолетних растений. В настоящее время в ряде стран Европы и Америки уже невозможно представить систему производства оздоровленного посадочного материала без широкого использования методов культуры изолированных тканей. Применение биотехнологических приемов позволяет:

1) получить посадочный материал, свободный от грибных, фитоплазменных и вирусных заболеваний, за короткое время и в достаточном количестве;

2) быстро размножить ценный клон растения (сорт);

3) получить в большом количестве вегетативное потомство трудноразмножаемых в обычных условиях сортов и форм растений;

4) работать в лабораторных условиях круглый год и планировать выпуск растений к определенному сроку;

5) длительно сохранять растительный материал в условиях in vitro, а также обменивать его в международном масштабе без риска заражения карантинными вредителями и болезнями;

6) получать растения с измененной плоидностью и трансгенные растения.

Сейчас технологии клонального микроразмножения in vitro на лабораторном уровне разработаны в мире более чем для 2400 видов растений. Однако коммерческих лабораторий, использующих эти приемы, относительно немного, не считая тех, которые занимаются орхидеями. Это объясняется отчасти тем, что не все, разработанные в сугубо лабораторных условиях методики, применимы непосредственно в производстве. Часто требуется решение отдельных узловых моментов для конкретных видов растений. Немаловажным является и вопрос экономической эффективности.

Область применения микроразмножения разнообразна и имеет тенденцию постоянно расширяться. Это в первую очередь относится к размножению in vitro картофеля, плодовых, ягодных, декоративных, лесных растений [2].

1. Сущность, основные преимущества клонального микроразмножения, области его применения

Микроклональное размножение растений - один из способов вегетативного размножения в условиях «in vitro».

Для семенных растений характерно два способа размножения: семенной и вегетативный. Оба эти способа имеют как преимущества, так и недостатки. К недостаткам семенного размножения следует отнести, в первую очередь, генетическую пестроту получаемого посадочного материалa и длительность ювенильного периода. При вегетативном размножении сохраняется генотип материнского растения и сокращается продолжительность ювенильного периода. Однако для большинства видов (в первую очередь для древесных пород) проблема вегетативного размножения остается до конца не решенной. Это обусловлено следующими причинами:

- не все породы, даже на ювенильной стадии, могут размножаться вегетативным способом с требуемой эффективностью (дуб, сосна, ель, орехоплодные и др.);

- практически невозможно с помощью черенкования размножать многие виды древесных пород в возрасте старше 10-15 лет;

- не всегда удается получать стандартный посадочный материал (возможность накопления и передачи инфекции);

- трудоемкостью и сложностью операций при размножении взрослых (древесных) растений с помощью прививок;

- неэффективностью разработанных технологий для получения достаточного количества генетически однородного материала в течение года.

Обязательное условие клонального микроразмножения - использование объектов, полностью сохраняющих генетическую стабильность на всех этапах процесса, от экспланта до растений в поле. Такому требованию удовлетворяют стеблевые апексы и пазушные почки органов стеблевого происхождения, т. е. меристематические ткани. Их устойчивость к генетическим изменениям, вероятно, связана с высокой активностью систем репарации ДНК, а также негативной селекцией изменённых клеток.

Для получений клонов можно использовать любую клетку, ткань или орган растения. Вызывая последовательно дедифференцировку клеток экспланта и вторичную дифференцировку каллусных клеток, можно добиться регенерации растения. Однако проще и удобнее использовать для клонирования меристематические ткани, так как они обладают генетической стабильностью и позволяют получать оздоровленные растения. Реализовать тотипотентность in vitro можно индукцией в каллусных тканях или культивируемых клетках цепи событий. Это образование меристематических очагов, развитие на их основе стеблевых апексов; появление побегов, которые после укоренения развиваются в целое растение (индукция побегов).

Метод микроклонального размножения, несомненно, имеет ряд преимуществ перед существующими традиционными способами размножения:

- получение генетически однородного посадочного материала;

- освобождение растений от вирусов за счет использования меристемной культуры;

- высокий коэффициент размножения (105-106 - для травянистых, цветочных растений, 104-105 - для кустарниковых древесных, 104 - для хвойных);

- сокращение продолжительности селекционного процесса и возможность размножить уникальные формы за 2 - 3 года вместо 10-12 лет, необходимых при обычных подходах;

- ускорение перехода растений от ювенильной к репродуктивной фазе развития;

- размножение растений, трудно размножаемых традиционными способами;

- возможность проведения работ в течение года и экономия площадей, необходимых для выращивания посадочного материала

- возможность автоматизации процесса выращивания [4].

- сохрание редких видов растений орхидеи, насекомоядные, бромелии и др.

- стабильное сохранение сортовых особенностей

- возможность обогатить рынок новыми интересными растениями

- методы биотехнологии позволяют снизить стоимость посадочного материала, что делает доступным его для большинства покупателей.

- получение генетически однородного посадочного материала;

- растения, полученные методом клонального микроразмножения, безопасны для человека и окружающей среды [6].

Культуры клеток высших растений имеют две сферы применения:

1. Изучение биологии клетки, существующей вне организма, обуславливает ведущую роль клеточных культур в фундаментальных исследованиях по генетике и физиологии, молекулярной биологии и цитологии растений. Популяциям растительных клеток присущи специфические особенности: генетические, эпигенетические (зависящие от дифференцированной активности генов) и физиологические. При длительном культивировании гетерогенной по этим признакам популяции идет размножение клеток, фенотип и генотип которых соответствуют данным условиям выращивания, следовательно, популяция эволюционирует. Все это позволяет считать, что культуры клеток являются новой экспериментально созданной биологической системой, особенности которой пока мало изучены. Культуры клеток и тканей могут служить адекватной моделью при изучении метаболизма и его регуляции в клетках и тканях целого растения.

2. Культивируемые клетки высших растений могут рассматриваться как типичные микрообъекты, достаточно простые в культуре, что позволяет применять к ним не только аппаратуру и технологию, но и логику экспериментов, принятых в микробиологии. Вместе с тем, культивируемые клетки способны перейти к программе развития, при которой из культивируемой соматической клетки возникает целое растение, способное к росту и размножению [5].

Можно назвать несколько направлений создания новых технологий на основе культивируемых тканей и клеток растений:

1. Получение биологически активных веществ растительного происхождения:

- традиционных продуктов вторичного метаболизма (токсинов, гербицидов, регуляторов роста, алкалоидов, стероидов, терпеноидов, имеющих медицинское применение);

- синтез новых необычных соединений, что возможно благодаря исходной неоднородности клеточной популяции, генетической изменчивости культивируемых клеток и селективному отбору клеточных линий со стойкими модификациями, а в некоторых случаях и направленному мутагенезу;

- культивируемые в суспензии клетки могут применятся как мультиферментные системы, способные к широкому спектру биотрансформаций химических веществ (реакции окисления, восстановления, гидроксилирования, метилирования, деметилирования, гликолизирования, изомеризации). В результате биотрансформации получают уникальные биологически активные продукты на основе синтетических соединений или веществ промежуточного обмена растений других видов.

2. Ускоренное клональное микроразмножение растений, позволяющее из одного экпланта получать от 10000 до 1000000 растений в год, причем все они будут генетически идентичны.

3. Получение безвирусных растений.

4. Эмбриокультура и оплодотворение in vitro часто применяются для преодоления постгамной несовместимости или щуплости зародыша, для получения растений после отдаленной гибридизации. При этом оплодотворенная яйцеклетка вырезается из завязи с небольшой частью ткани перикарпа и помещается на питательную среду. В таких культурах можно также наблюдать стадии развития зародыша.

5. Антерные культуры - культуры пыльников и пыльцы используются для получения гаплоидов и дигаплоидов.

6. Клеточный мутагенез и селекция. Тканевые культуры могут производить регенеранты, фенотипически и генотипически отличающиеся от исходного материала в результате сомаклонального варьирования. При этом в некоторых случаях можно обойтись без мутагенной обработки.

7. Криоконсервация и другие методы сохранения генофонда.

8. Иммобилизация растительных клеток.

9. Соматическая гибридизация на основе слияния растительных протопластов.

10.Конструирование клеток путем введения различных клеточных оганелл.

11.Генетическая трансформация на хромосомном и генном уровнях.

12. Изучение системы «хозяин - паразит» с использованием вирусов, бактерий, грибов и насекомых) [5].

Первые достижения в области клонального микроразмножения были получены в конце 50-х годов XX столетия французским ученым Жоржем Морелем, которому удалось получить первые растения-регенеранты орхидей. Успеху Ж. Мореля в микроразмножении способствовала уже разработанная к тому времени техника культивирования апикальной меристемы растений в условиях in vitro. Как правило, исследователи в качестве первичного экспланта использовали верхушечные меристемы травянистых растений: гвоздики, хризантемы, подсолнечника, гороха, кукурузы, одуванчика, салата и изучали влияние состава питательной среды на процессы регенерации и формирования растений. Ж. Морель в своих работах также использовал верхушку цимбидиума (сем. орхидные) состоящую из конуса нарастания и двух-трех листовых зачатков, из которой при определенных условиях наблюдал образование сферических сфер - протокормов. Сформировавшиеся протокормы можно было делить и затем культивировать самостоятельно на вновь приготовленной питательной среде до образования листовых примордиев и корней. В результате им было обнаружено, что этот процесс бесконечен и можно было получать в большом количестве высококачественный и генетически однородный, безвирусный посадочный материал.

В России работы по клональному микроразмножению были начаты в 60-х годах в лаборатории культуры тканей и морфогенеза Института физиологии растений им. К. А. Тимирязева РАН. Под руководством чл.-корр. РАН, академика РАСХН Бутенко Р. Г. были изучены условия микроразмножения картофеля, сахарной свеклы, гвоздики, герберы, фрезии и некоторых других растений и предложены промышленные технологии. Таким образом, первые успехи в клональном микроразмножении связаны с культивированием апикальных меристем травянистых растений на соответствующих питательных средах, обеспечивающих в конечном итоге получение растений-регенерантов.

Однако область применения микроразмножения разнообразна и имеет тенденцию к постоянному расширению. Это в первую очередь относится к размножению in vitro взрослых древесных пород, особенно хвойных, и использование техники in vitro для сохранения редких и исчезающих видов лекарственных растений. В настоящее время в этом направлении наметился положительный сдвиг.

Первые работы по культуре тканей древесных растений были опубликованы в середине 20-х годов XX столетия и связаны с именем французского ученого Готре. В них сообщалось о способности камбиальных тканей некоторых видов вяза и сосны к каллусогенезу in vitro. В последующих работах 40-х годов было выяснено о способности различных тканей вяза листового к образованию адвентивных почек. Однако дальнейший рост и формирование побегов авторами не были получены. Лишь к середине 60-х годов Матесу удалось получить первые растения-регенеранты осины, которые были доведены до почвенной культуры. Культивирование тканей хвойных пород in vitro долгое время использовалось как объект исследования. Это было связано со специфическими трудностями культивирования ювенильных и тем более взрослых тканей, изолированных с растения. Известно, что древесные, и особенно хвойные, характеризуются медленным ростом, трудно укореняются, содержат большое количество вторичных соединений (фенолы, терпены и другие вещества), которые в изолированных тканях окисляются различными фенолазами. В свою очередь, продукты окисления фенолов обычно ингибируют деление и рост клеток что ведет к гибели первичного экспланта или к уменьшению способности тканей древесных пород к регенерации адвентивных почек которая с возрастом растения-донора постепенно исчезает полностью. Однако, несмотря на все трудности, ученые все чаще используют в качестве объектов исследований различные ткани и органы древесных растений В настоящее время насчитывается более 200 видов древесных растений из 40 семейств, которые были размножены in vitro (каштан, дуб, береза, клен, осина, гибриды тополей с осиной, сосна, ель, секвойя и др.), а работы в этом направлении ведутся в научных учреждениях Москвы, Санкт-Петербурга, Воронежа, Уфы, Новосибирска, Архангельска, Киева, Одессы, Ялты и др.[3-7].

2. Методы клонального микроразмножения

Существует много методов клонального микроразмножения, а также различных их классификаций. Различные авторы, проводя индивидуальные исследования по влиянию условий культивирования эксплантов на процессы морфогенеза, наблюдали разные ответные морфогенетические реакции на изменение условий выращивания, что, в свою очередь, способствовало созданию новых классификаций методов клонального микроразмножения. Согласно одной из них, предложенной Мурасиге в 1977 году, процесс можно осуществлять следующими путями:

1. Активация пазушных меристем.

2. Образование адвентивных побегов тканями экспланта.

3. Возникновение адвентивных побегов в каллусе.

4. Индукция соматического эмбриогенеза в клетках экспланта.

5. Соматический эмбриогенез в каллусной ткани.

6. Формирование придаточных эмбриоидов в ткани первичных соматических зародышей (деление первичных эмбриоидов).

Н. В. Катаева и Р. Г. Бутенко (1983) выделяют два принципиально различных типа клонального микроразмножения:

1. Активация уже существующих в растении меристем (апекс стебля, пазушные и спящие почки стебля).

2. Индукция возникновения почек или эмбриоидов de novo :

а) образование адвентивных побегов непосредственно тканями экспланта;

б) индукция соматического эмбриогенеза;

в) дифференциация адвентивных почек в первичной и пересадочной каллусной ткани [3-5].

Основной метод, использующийся при клональном микроразмножении растений - активация развития уже существующих в растении меристем. Он основан на снятии апикального доминирования (рисунок 1).

Рисунок 1 - Активация развития уже существующих в растении меристем, основывающаяся на снятии апикального доминирования: 1 -снятие апикального доминирования и последующее микрочеренкование побега in vitro на безгормоналыюй среде; 2 - индуцированное развитие многочисленных пазушных побегов под действием веществ цитокининового типа действия

Этого можно достичь двумя путями: а) удалением верхушечной меристемы стебля и последующим микрочеренкованием побега in vitro на безгормональной среде; б) добавлением в питательную среду веществ цитокининового типа действия, индуцирующих развитие многочисленных пазушных побегов. Как правило, в качестве цитокининов используют 6-бензиламинопурин (БАП) или 6-фурфуриламинопурин (кинетин) и зеатин.

Полученные таким образом побеги отделяют от первичного экспланта и вновь самостоятельно культивируют на свежеприготовленной питательной среде, стимулирующей пролиферацию пазушных меристем и возникновение побегов более высоких порядков.

Часто в качестве экспланта используют верхушечные или пазушные почки, которые изолируют из побега и помещают на питательную среду с цитокининами. Образующиеся пучки побегов делят, при необходимости черенкуют и переносят на свежую питательную среду. После нескольких пассажей, добавляя в питательную среду ауксины, побеги укореняют in vitro.

В настоящее время этот метод широко используется в производстве безвирусного посадочного материала сельскохозяйственных культур, таких как технические (сахарная свекла, хмель, табак, топинамбур, стахис) и овощные (томаты, картофель, огурец, перец, тыква, спаржа и др.), а также для размножения культур промышленного цветоводства (гвоздика, хризантема, роза, гербера), тропических и субтропических растений (рододендрон, азалия, камелия, чай и др.), плодовых и ягодных культур (яблоня, слива, вишня, груша, виноград, малина, смородина, крыжовник и др.) и древесных растений (тополь, ива, ольха, береза, рябина, секвойя, туя, можжевельник и др.)

Для некоторых культур, таких как картофель, технология клонального размножения поставлена на промышленную основу. Применение метода активации развития существующих меристем позволяет получать из одной меристемы картофеля более 100000 растений в год, причем технология предусматривает получение в пробирках микроклубней - ценного безвирусного семенного материала [3-5].

Второй метод - индукция возникновения адвентивных почек непосредственно тканями экспланта. Он основан на способности изолированных частей растения при благоприятных условиях питательной среды восстанавливать недостающие органы и таким образом регенерировать целые растения. Можно добиться образования адвентивных почек почти из любых органов и тканей растения (изолированного зародыша, листа, стебля, семядолей, чешуек и донца луковиц, сегментов корней и зачатков соцветий). Этот процесс происходит на питательных средах, содержащих цитокинины в соотношении с ауксинами 10:1 или 100:1. В качестве ауксина используют ИУК или НУК.

Это наиболее распространенный метод микроразмножения высших растений, которым были размножены многие луковичные цветочные растения (нарциссы, лилии, гиацинты, гладиолусы, тюльпаны) из луковичных чешуи, сегментов базальной части донца луковиц, эксплантов листьев; представители рода Бразика (капуста цветная, кочанная, брюссельская, листовая, брокколи) - из сегментов гипокотиля, котиледона, листьев; лук, чеснок - из верхушечной меристемы, ткани донца луковиц; томаты - из апикальных или пазушных меристем; салат цикорный - из сегментов листовых пластинок; петуния - из сегментов корней; глоксиния, сенполия, стрептокарпус, эшинапсус - из сегментов листовых пластинок, а также некоторые представители древесных растений - из изолированных зрелых и незрелых зародышей.

Несомненный интерес вызывает вопрос, связанный с происхождением адвентивных почек, в частности, какие клеточные слои участвуют в дифференциации меристем. Единого мнения по этому вопросу пока нет. Так, Тран Тан Ван в своих работах с тканями табака установила, что именно эпидермис является наиболее активной тканью, способной образовывать почки, каллус или корни в зависимости от гормонального баланса питательной среды.

Цитологические исследования, проведенные на сегментах базальной части донца луковиц тюльпанов и нарциссов, показали, что адвентивные побеги формируются из поверхностных слоев меристематических клеток, прилегающих к донцу, а для растений глоксинии, сенполии и стрептокарпуса процесс формирования адвентивных почек, как правило, происходит в субэпидермальных клеточных слоях листовых пластинок.

Единого мнения по этому вопросу также нет и среди исследователей, работающих с древесными растениями. Так, Арнольд и Эрихсон, Джонсон и Борнмап считают, что образование почек на изолированной хвое ели обыкновенной под действием БАП и 2ip происходит в эпидермальном слое культивируемого экспланта, по мнению Чин и Ченга, для псевдотсуги - в субэпидермальных слоях; а Вилалобос и другие утверждают, что при культивировании семядолей сосны замечательной на среде, содержащей один цитокинин, этот процесс происходит одновременно в эпидермальном и субэпидермальном слоях. Для сосны обыкновенной также было отмечено образование адвентивных почек в эпидермальном и субэпидермальном слоях семядолей зародыша. Этот процесс для сосны не зависит от применяемых цитокининов [3-5].

Третий метод, практикуемый при клональном микроразмножении, основывается на дифференциации из соматических клеток зародышеподобных структур, которые по своему виду напоминают зиготические зародыши. Этот метод получил название соматического эмбриогенеза. В отличие от развития in vivo, соматические зародыши развиваются асексуально вне зародышевого мешка и по своему внешнему виду напоминают биполярные структуры, у которых одновременно наблюдается развитие апикальных меристем стебля и корня. Согласно Стеварду, соматические зародыши проходят 3 стадии развития: глобулярную, сердцевидную, торпедовидную и в конечном итоге имеют тенденцию развития в проросток.

Соматический эмбриогенез заключается в том, что из соматических клеток растения (из каллусных клеток), на определенной питательной среде могут формироваться зародышеподобные структуры - эмбриоиды. Последовательно проходя определённые стадии развития, соматический эмбриоид может превратиться в проросток, то есть в полностью сформированное растение. Это позволяет исключить этап ускорения, что облегчает и ускоряет процесс клонирования.

Наиболее впечатляющим применением метода соматического эмбриогенеза стало размножение гвинейской масличной пальмы (Elaeis guineensis), масло которой широко используется при производстве маргарина и пищевого масла. Масличная пальма в природе не образует побегов и боковых ростков, что затрудняет ее вегетативное размножение. Культивирование черенков in vitro также невозможно. Было решено получить скопления клеток недифференцированной ткани (каллусы) путем дедифференцировки специфических тканей, а затем культивировать их до регенерации целых проростков. В первой культуральной среде каллусы из фрагментов листьев развивались в течение 90 дней, при переносе во вторую и третью культуральные среды превращались в "эмбриоиды". Эмбриоиды размножались самопроизвольно, в течение месяца число эмбриоидов возрастало втрое, а за год из 10 эмбрионов можно было получить потомство численностью 500000 растений.

Основное отличие образования зародышей in vitro и in vivo (в естественных условиях) заключается в том, что соматические зародыши развиваются асексуально вне зародышевого мешка и по своему внешнему виду напоминают биполярные структуры, у которых одновременно наблюдается развитие апикальных меристем стебля и корня. Согласно Стеварду, соматические зародыши проходят три стадии развития: глобулярную, сердцевидную, торпедо-видную и в конечном счете имеют тенденцию к развитию в проросток. Это явление впервые было отмечено в культуре клеток моркови еще в середине 50-х гг., а в настоящее время используется для размножения большинства растений из семейства Orchidaceae и Rutaceae, а также для некоторых представителей злаковых (пшеница, ячмень), люцерны, редиса, винограда и некоторых видов древесных пород (осина, эвкалипт, дуб, ель обыкновенная) [7].

Формирование эмбриоидов в культуре тканей происходит в два этапа. На первом этапе клетки экспланта дифференцируются за счет добавления в питательную среду ауксинов, как правило, 2,4-дихлорфеноксиуксусной кислоты (2,4-Д) и превращаются в эмбриональные. Для формирования эмбриоидов необходимо уменьшать концентрацию ауксина или полностью его исключать из состава питательной среды.

Соматический эмбриогенез возможно наблюдать непосредственно в тканях первичного экспланта, а также в каллусной культуре. Причем последний способ менее пригоден при клональном микроразмножении, так как посадочный материал, полученный таким методом, будет генетически нестабилен по отношению к растению-донору. Как правило, соматический эмбриогенез происходит при культивировании каллусных клеток в жидкой питательной среде (суспензии) и является наиболее трудоемкой операцией.

Однако этот метод размножения имеет свои преимущества, связанные с сокращением последнего (третьего) этапа клонального микроразмножения, не требующего подбора специальных условий укоренения и адаптации пробирочных растений, потому что соматические зародыши представляют собой полностью сформированные растеньица. При использовании соответствующей техники их капсулирования из этих эмбриоидов возможно получать искусственные семена.

Четвертый метод клонального микроразмножения - дифференциация адвентивных почек в первичной и пересадочной каллусной ткани Каллус - неорганизованная, пролиферирующая масса дифференцированных растительных клеток. Каллусная клетка (из которой получается каллусная ткань или каллус) - один из типов клеток присущих высшему растению. Такая ткань возникает в чрезвычайных обстоятельствах (при травмах) и функционирует непродолжительное время.

По мере размножения каллусных клеток происходит их дифференциация, которая зависит от ростовых веществ, добавляемых в питательные среды. Дедифференциация - переход специализированных, неделящихся клеток к пролиферации.

Обязательными компонентами питательных сред должны быть ауксины, вызывающие дедифференцировку клеток, и цитокинины, индуцирующие клеточные деления. Изменение соотношения между этими фитогормонами или добавление других фитогормонов может вызвать разные типы морфогенеза. Например, изменение соотношения ауксина и кинетина, в сторону преобладания ауксина, приводит к образованию корней, а преобладание кинетина - стеблевых частей любого из произрастающих в природе растений.

Практически он мало используется с целью получения посадочного материала in vitro. Это связано с тем, что при периодическом пересаживании каллусной ткани на свежую питательную среду часто наблюдаются явления, нежелательные при микроразмножении: изменение плоидности культивируемых клеток, структурные перестройки хромосом и накопление генных мутаций, потеря морфогенетического потенциала культивируемыми клетками. Наряду с генетическими изменениями отмечаются и морфологические: низкорослость, неправильное жилкование листьев, образование укороченных междоузлий, пониженная устойчивость к болезням и вредителям.

Однако, несмотря на некоторые недостатки, данный метод имеет свои положительные стороны и преимущества.

Во-первых, он является эффективным и экономически выгодным, так как в процессе размножения из каждой индивидуальной каллусной клетки при определенных благоприятных условиях культивирования может сформироваться адвентивная почка, дающая начало новому растению. Во-вторых, в ряде случаев он является единственно возможным способом размножения растений в культуре тканей. В-третьих, представляет большой интерес для селекционеров, так как растения, полученные данным методом, отличаются генетически и морфологически друг от друга. Это дает возможность селекционерам проводить отбор растений по хозяйственно важным признакам и оценивать их поведение в полевых условиях.

Этот метод целесообразно применять лишь к тем растениям, для которых показана генетическая стабильность каллусной ткани, а вариабельность между растениями-регенерантами не превышает уровня естественной изменчивости.

К таким растениям можно отнести амариллис, эписции, драцены, томаты, спаржу, некоторые древесные породы и другие культуры. Кроме того, в некоторых случаях он является единственно возможным способом размножения растений в культуре тканей. Через каллусную культуру успешно размножаются сахарная свекла, злаковые, представители рода

Brassica, кукуруза, рис, пшеница и другие злаковые, подсолнечник и другие культуры. Разработаны условия, способствующие регенерации растений из каллуса огурца, картофеля, томатов.

3 Этапы клонального микроразмножения

Процесс клонального микроразмножения можно разделить на четыре этапа:

1. выбор растения-донора, изолирование эксплантов и получение хорошо растущей стерильной культуры;

2. собственно микроразмножение, когда достигается получение максимального количества меристематических клонов;

3. укоренение размноженных побегов с последующей адаптацией их к почвенным условиям, а при необходимости депонирование растений-регенерантов при пониженной температуре (+ 2°, + 10 °C);

4. выращивание растений в условиях теплицы и подготовка их к реализации или посадке в поле.

Рисунок 2: Схема клонального микроразмножения растений: I путь -активация развития существующих меристем; II путь - индукция возникновения адвентивных почек; 1 - выбор исходного экспланта; 2 - получение стерильной культуры; 3 - образование адвентивных почек на первичном экспланте; 4 - рост почек и формирование микропобегов; 5 - размножение микропобегов; 6 - укоренение микропобегов; 7 - депонирование растений-регенерантов; 8 - акклиматизация растений к грунту; 9 - высадка регенерантов в поле

Для культивирования тканей на каждом из четырех этапов требуется применение определенного состава питательной среды.

На первом этапе необходимо правильно выбрать растение-донор, получить свободную от инфекции культуру, добиться её выживания и быстрого роста на питательной среде. Это достигается путем получения хорошо растущей стерильной культуры, в которой на эксплантах (кусочках листа) формируется большое количество почек.

В тех случаях, когда трудно получить исходную стерильную культуру экспланта, рекомендуется вводить в состав питательной среды антибиотики (тетрациклин, бензилпенициллин и др.) в концентрации 100-200 мг/л. Это в первую очередь относится к древесным растениям, у которых наблюдается тенденция к накоплению внутренней инфекции.

На первом этапе, как правило, используют среду, содержащую минеральные соли по рецепту Мурасига и Скуга, а также различные биологически активные вещества и стимуляторы роста (ауксины, цитокинины) в различных сочетаниях в зависимости от объекта. В тех случаях, когда наблюдается ингибирование роста первичного экспланта, за счет выделения им в питательную среду токсичных веществ (фенолов, терпенов и других вторичных соединений), снять его можно, используя антиоксиданты. Это возможно двумя способами: либо омывкой экспланта слабым его раствором в течение 4-24 ч, либо непосредственным добавлением в питательную среду. В качестве антиоксидантов используют: аскорбиновую кислоту (1 мг/л), глютатион (4-5 мг/л), дитиотриэтол (1-3 мг/л), диэтилдитиокарбомат (2-5 мг/л), поливинилпирролидон (5000-10000 мг/л). В некоторых случаях целесообразно добавлять в питательную среду адсорбент - древесный активированный уголь в концентрации 0,5-1%. Продолжительность первого этапа может колебаться от 1 до 2 месяцев, в результате которого наблюдается рост меристематических тканей и формирование первичных побегов.

2 этап - собственно микроразмножение. На этом этапе необходимо добиться получения максимального количества мериклонов, учитывая при этом, что с увеличением субкультивирований увеличивается число растений-регенерантов с ненормальной морфологией и возможно наблюдать образование растений-мутантов. При размножении полученной культуры, почки отделяют от экспланта и рассаживают на новую питательную среду, где побег укореняется и растет.

Как и на первом этапе, используют питательную среду по рецепту Мурасига и Скуга, содержащую различные биологически активные вещества, а также регуляторы роста. Основную роль при подборе оптимальных условий культивирования эксплантов играют соотношение и концентрация внесенных в питательную среду цитокининов и ауксинов. Из цитокининов наиболее часто используют БАП в концентрациях от 1 до 10 мг/л, а из ауксинов--ИУК и НУК в концентрациях до 0,5 мг/л.

При долгом культивировании растительных тканей на питательных средах с повышенным содержанием цитокининов (5--10 мг/л) происходит постепенное накопление их в тканях выше необходимого физиологического уровня, что приводит к появлению токсического действия и формированию растений с измененной морфологией. Вместе с тем, возможно наблюдать такие нежелательные для клонального микроразмножения эффекты, как подавление пролиферации пазушных меристем, образование витрифицированных (оводненных) побегов и уменьшение способности растений к укоренению. Отрицательное действие цитокининов возможно преодолеть, по данным Н.В. Катаевой и Р.Г. Бутенко, путем использования питательных сред с минимальной концентрацией цитокининов, обеспечивающих стабильный коэффициент микроразмножения, или путем чередования циклов культивирования на средах с низким и высоким уровнем фитогормонов.

3 и 4 этапы - укоренение микропобегов, их последующая адаптация к почвенным условиям и высадка в поле являются наиболее трудоемкими этапами, от которых зависит успех клонального микроразмножения. На третьем этапе, как правило, меняют основной состав среды: уменьшают в два, а иногда и в четыре раза концентрацию минеральных солей по рецепту Мурасига и Скуга или заменяют ее средой Уайта, уменьшают количество сахара до 0,5-1% и полностью исключают цитокинины, оставляя один лишь ауксин. В качестве стимулятора корнеобразования используют ?-индолил-3-масляную кислоту (ИМК), ИУК или НУК.

Укоренение микропобегов проводят двумя способами:

1) выдерживание микропобегов в течение нескольких часов (2-24 ч) в стерильном концентрированном растворе ауксина (20-50 мг/л) и последующее их культивирование на агаризованной среде без гормонов или непосредственно в подходящем почвенном субстрате (импульсная обработка);

2) непосредственное культивирование микропобегов в течение 3-4 недель на питательной среде, содержащей ауксин в невысоких концентрациях (1-5 мг/л в зависимости от исследуемого объекта). В последнее время предложен метод укоренения пробирочных растений в условиях гидропоники. Этот метод позволяет значительно упростить этап укоренения и одновременно получать растения, адаптированные к естественным условиям. Для картофеля возможно использовать безсубстратную гидропонику для получения мини-клубней. Затенение нижней части культуральных сосудов плотной черной материей или добавление в питательную среду активированного угля способствует укоренению микропобегов.

4. Выбор питательной среды и ее основные компоненты

Успех в культивировании объектов зависит от правильного выбора питательной среды и тщательности ее приготовления. В состав питательных сред входят макро- и микроэлементы (N, P, K, Ca, S, Mg, Fe, B, Zn, Cu, Co, Mn, J, Mo); витамины В1, В6, В12, РР и другие; углеводы (сахароза, глюкоза, маннит); фитогормоны (чаще всего цитокинины и ауксины в определенном соотношении). Ауксины вызывают клеточную дедифференцировку, цитокинины индуцируют деление дедифференцированных клеток и необходимы для получения каллусных тканей.

На средах без гормонов растут “привыкшие” и опухолевые ткани. Для получения стеблевого морфогенеза снижают содержание ауксинов. Из ауксинов чаще всего применяют 2,4-дихлорфеноксиуксусную кислоту (2,4-Д) - 0.1-10 мг/л, нафтилуксусную кислоту (НУК) - 0.1-2 мг/л, ИУК - 1-30 мг/л. Для индукции каллусогенеза используют более высокие концентрации ауксинов, в дальнейшем ткань может расти при более низком содержании ауксинов. В качестве цитокининов используют кинетин, 6-бензиламинопурин (БАП), зеатин (0.001-10 мг/л); из них кинетин наименее активен. В состав некоторых сред входит аденин. Иногда используют гибберелловую кислоту (ГК). В качестве ростактиваторов применяют также кокосовое молоко, дрожжевой экстракт, гидролизат казеина и др.

Разработано много питательных сред, но большинство из них представляют модификации основных: Мурасиге-Скуга (МС), Уайта, Шенка-Хильдебрандта, Гамборга (В5), Линсмайера-Скуга, Хеллера, Чапека и др. Составы питательных сред, получивших наибольшее распространение приведены в таблицах 1 и 2 [8].

Таблица 1 - Среда Мурасиге-Скуга

Компоненты

Концентрация солей в 1 литре готового маточного раствора, мг

Объем маточного р-ра для приготовления 1 литра среды, мл

маточный раствор макроэлементов

NH4NO3

33000

50

KNO3

38000

CaCl2 * 2H2O

8800

MgSO4 * 7H2O

7400

KH2PO4

3400

маточный раствор микроэлементов

KJ

166

5

H3BO3

1240

MnSO4 * H2O

4460

ZnSO4 * 7H2O

1720

Na2MoO4 * 2H2O

50

CuSO4 * 5H2О

5

CoCl2 * 6H2O

5

маточный раствор хелатного железа

FeSO4 * 7H2O

5560

5

Na2ЭДТА * 2H2O

7460

витамины и органические вещества

Мезоинозит

20000

5

Никотиновая кислота

100

Пиридоксин-HCl

100

Тиамин-HCl

100

Глицин

400

Добавлять в виде порошка в среду перед варкой: Сахароза - 30 г/л; Агар-агар - 7 г/л рН готовой среды - 5.6-5.8 * для получения стерильных проростков на 1 литр среды берут 1/2 часть маточных растворов, т.е. вместо 50 мл раствора макроэлементов берут 25 мл и т.д.

Таблица 2- Среда Гамборга (B5)

Компоненты

Концентрация солей в 1 литре готового маточного раствора, мг

Объем маточного р-ра, для приготовления 1 литра среды, мл

маточный раствор макроэлементов

(NH4)2SO4

2680

50

KNO3

50000

CaCl2 * 2H2O

3000

MgSO4 * 7H2O

5000

NaH2PO4*H2O

3000

маточный раствор микроэлементов

KJ

75

10

H3BO3

3300

MnSO4 * H2O

1000

ZnSO4 * 7H2O

200

Na2MoO4 * 2H2O

25

CuSO4 * 5H2О

25

CoCl2 * 6H2O

2.5

маточный раствор хелатного железа

FeSO4 * 7H2O

5560

5

Na2ЭДТА * 2H2O

7460

витамины и органические вещества

Мезоинозит

10000

10

Никотиновая кислота

100

Пиридоксин-HCl

100

Тиамин-HCl

1000

Добавлять в виде порошка в среду перед варкой: Сахароза - 30 г/л; Агар-агар - 7 г/л рН г.-ой среды - 5.5

Последовательность приготовления питательных сред для растительных клеток.

Составление питательной среды начинают с приготовления концентрированных (маточных) растворов. Для удобства готовят маточные растворы, чтобы не взвешивать все необходимые соли всякий раз, когда вздумается завести культуру. С другой стороны, концентрированные растворы менее подвержены опасности быть съеденными микроорганизмами, которая существует даже при хранении разбавленных растворов в холодильнике. Ведь соленые огурцы у вас хранятся гораздо дольше, чем свежие.

Вторая причина, по которой готовят маточные растворы - снижение погрешности при отмеривании необходимого количества солей. Согласитесь, взвесить 5 граммов проще, чем 50 миллиграмов - во всяком случае мерную емкость, которой потом можно будет отмерить 5, 10 или 20 миллилитров найти проще, чем аналитические весы.

Обычно готовят несколько маточных растворов - макроэлементы, хелатное железо, микроэлементы, хлористый кальций, витамины, хранят их в отдельных колбах, а при приготовлении среды сливают в той последовательности, в какой они перечислены выше. Делается это для того, чтобы при взаимодействии солей не происходило образование осадка.

Макросоли взвешивают на технических весах, растворяют по отдельности в небольшом количестве бидистиллята и доводят в цилиндре до объема, в 10 меньшего, чем требуется по прописи среды, т.е. на 1 литр общего объема питательной среды берут 100 мл раствора макросолей. Иногда эта пропорция изменяется, и концентрация увеличивается не в 10 раз, а более, соответственно меняется и объем маточного раствора, который берется для приготовления 1 литра питательной среды.

Например, если мы готовим 1 литр (1000 мл) маточного раствора, увеличивая концентрацию солей в нем в 20 раз (масса навески каждой соли * 20), то для приготовления среды берется 50 мл такого концентрированного раствора (как в случае среды Мурасиге-Скуга). Таким образом, в этим 1 литре маточного раствора у нас 20 порций по 50 мл для приготовления 20 сред (20*50=1000). Если концентрация увеличивается в 25 раз, то берется 40 мл и т.д.

Навески микросолей для хелатного железа растворяют по отдельности, смешивают и доводят до объема с конечной концентрацией 50 мл/л. Раствор должен получится ярко-желтого цвета, рН 8.0. Неправильное приготовление хелатного железа может привести к выпадению в осадок после автоклавирования фосфатов кальция или магния.

Навески микроэлементов взвешивают на аналитических весах, растворяют так, чтобы конечная концентрация соответствовала 5 мл раствора на 1 литр готовой среды, то есть для приготовления питательной среды мы будем брать по 5 миллилитров.

Полученные растворы сливают в склянки с притертыми крышками, снабжают этикеткой и хранят в холодильнике. Железо-хелатный комплекс хранят в темной склянке.

Витамины готовить несколько сложнее. Самая большая проблема - правильно определить, сколько же граммов или миллиграммов искомого вещества может содержать капсула с витамином. Обычно на коробочке пишут 1%, 5%, 6% раствор тиамин-хлорида, никотиновой кислоты или другого необходимого вам витамина. Это означает, что для его приготовления 1% раствора было взято 1000 миллиграмм вещества, которые растворили в 100 мл воды. Следовательно, каждый миллилитр этого раствора содержит 10 миллиграмов витамина. Стандартная аптечная расфасовка - капсулы по 1 миллилитру. Значит, в каждой капсуле содержится 10 миллиграммов витамина, если это 1% раствор, 50 мг - если 5%. Если вам требуется 10 миллиграммов определенного витамина, а вы имеете в распоряжении капсулу объемом 1 мл, содержащую 50 мг вещества, то что вы сделаете? Правильно - добавите содержимое этой капсулы в мерный цилиндр, доведете объем до 50 мл (лучше всего вытянуть раствор из капсулы шприцем и потом несколько раз промыть дистиллятом и шприц, и капсулу, сливая воду в цилиндр, где вы производите разбавление. И уже разведенного раствора вы возьмете 10 миллилитров. Витамины разливают по 5 мл в пенициллиновые флакончики или пробирки, ставят в морозилку и хранят в замороженном виде. Концентрированные растворы готовят с расчетом добавления 5 мл на 1 литр среды. При составлении среды флакончик с витаминами достают из холодильника, размораживают, опуская в горячую воду, и выливают в колбу с питательной средой.

Фитогормоны (ауксины и цитокинины) сначала растворяют в 2 мл 96oC этилового спирта (или 0.1 н NaCl) и добавляют 98 мл воды, доводя объем до 100 мл, хранят при температуре 2-4оС. Гиббереллин легко растворим в воде.

Необходимую навеску агар-агара растворяют 300 мл дистиллированной воды (можно при подогревании), добавляют сухие органические компоненты, перемешивают.

С помощью мерного цилиндра и пипеток отбирают маточные растворы макросолей, микроэлементов, хелатного железа, гормонов, витаминов и переносят их в колбу на 1 литр с уже растворенным агаром, доводят рН до необходимого значения с помощью 0.1 н NaOH или HCl.

Доводят объем готовой среды до литра . Среду варят на водяной бане при постоянном помешивании минут 20 до полного растворения агара. Готовую среду разливают в горячем виде по пробиркам или колбам.

Колбы или пробирки закрывают ватными пробками, накрывают целлофаном и затягивают резинкой. Можно закрывать плотной фольгой вместо пробок. Если нет целлофана, то перед автоклавированием пробирки или колбы закрываются сверху крафтовой бумагой.

Автоклавированную среду, содержащую ауксины, лучше использовать сразу; если среду необходимо хранить продолжительное время, её помещают в холодильник при 2-4оС.

Некоторые фитогормоны, например гибберелловую кислоту и зеатин, а также аминокислоты автоклавировать нельзя по причине их термолабильности. В таких случаях среду готовят без этих веществ, автоклавируют, охлаждают до 50оС, в стерильных условиях добавляют термолабильный компонент, пропущенный через бактерицидный фильтр с размером пор 0.22 мкм, разливают по пробиркам и колбам [8].

Размножение растений клоновым способом может производиться в отдельных шариках питательной среды.

Заводить и вести культуру растительных клеток гораздо проще.

Растительные культуры поддерживают при температурах от 22 до 27оС, в темноте или при освещении. Среды для них - несложные, и их легко приготовить самому. Культивировать можно на твердых питательных средах с добавлением агар-агара, крахмала или на жидких питательных средах, с использованием мостиков из ваты и фильтровальной бумаги.

Когда проводили работы по селекции каллусов на среде с ПЭГ (очень сильный осмотик, имитирующий засуху в этих экспериментах), то столкнулись с проблемой - агар в присутствии высоких концентраций полиэтиленгликоля не застывал после автоклавирования. Выход был найден - на дно пробирок или баночек клали комочек ваты (рыхлый), сверху - вырезанный по диаметру сосуда кусочек фильтровальной бумаги, заливали жидкой питательной средой так, чтобы ее уровень не превышал 1 мм над поверхностью бумаги. Высота столбика среды в пробирке диаметром 2 см - примерно 1-1,5 см, в баночке из под детского питания - 0,5 см.

Суспензионные культуры растительных клеток поддерживать гораздо сложнее - необходима мешалка для постоянного перемешивания среды. Иначе эксплант погибнет, в первую очередь, от отсутствия доступа кислорода.

Условия освещения различны в зависимости от поставленных вами задач. Каллусную ткань обычно получают в темноте. Клональное микроразмножение проводят при освещении. В качестве источника света лучше пригодны лампы дневного света. Они не нагревают камеру и имеют более или менее подходящий для растений спектральный состав света.

5. Факторы, влияющие на процесс клонального микроразмножения

На эффективность микроклонального размножения влияет масса факторов различной природы. Это физиологические особенности вводимого в культуру растения, химические и физические условия культивирования. Наиболее важным моментом является выбор материнского растения и экспланта.

При выборе материнского растения необходимо учитывать его физиологические, сортовые и видовые особенности. Исходные растения должны быть здоровы, не поражены грибными, бактериальными и вирусными болезнями. Кроме того, они должны находится в состоянии интенсивного роста (выход из фазы покоя и переход к активному росту). Луковицы, корневища и клубни в состоянии покоя непригодны, перед введением в культуру их предварительно обрабатывают высокими или низкими температурами. Способность к размножению также детерминирована генетически. Например, земляника размножается всеми способами, облепиха - ни одним, хотя в природе черенкуется. Двудольные обладают большей регенерационной способностью, чем однодольные и древесные.

При выборе экспланта необходимо учитывать его возраст, строение и происхождение. Для обеспечения максимальной стабильности клонируемого материала, во избежание появления аномальных растений в качестве экспланта желательно использовать молодые, слабодифференцированные ткани. Кроме того, экспланты от ювенильных растений лучше укореняются, чем от зрелых, особенно это касается древесных пород. Лучше всего использовать кончики стеблей, пазушные почки, зародыши, молодые листья, черенки, соцветия, чешую луковиц, то есть экспланты, содержащие меристемы. Опыты с эмбрионами кукурузы, проведенные Грином и Филипсом в 1975 году, показали, что при извлечении эмбрионов из зрелых семян они образуют каллус и корни. Если же изолировать их через 2 - 3 недели после опыления, то образуются и каллус, и растения. Вероятно, это связано с разворачиванием генетической программы в онтогенезе растения. Следует отметить, что не всегда молодые ткани являются удачным объектом для размножения. У эхеверии на эксплантах из молодых листьев возникают только корни, из старых - только побеги, из средних по возрасту - и побеги, и корни. Чем меньше размер экспланта, тем меньше его регенерационная способность. С другой стороны, в крупном экспланте увеличивается возможность появления в его клетках вирусов и других патогенов, что препятствует оздоровлению тканей.

Длительность культивирования также влияет на эффективность микроразмножения. Физиологическое состояние экспланта меняется в течение пассажей, при длительном культивировании частота укореняемости побегов возрастает. Возможно, что при этом эксплант приобретает признаки ювенильности, что ведет к повышению его морфогенетического потенциала.

Успех введения в культуру часто определяется эффективностью стерилизации. Выбор стерилизующего агента определяется особенностями экспланта. Для нежных тканей концентрация стерилизующего агента должна бать снижена, чтобы сохранить жизнеспособность экспланта. Часто внутреннее заражение исходных эксплантов бывает намного сильнее, чем поверхностное, поэтому экспланты предварительно обрабатывают фунгицидами и антибиотиками против грибной и бактериальной инфекций. Хорошие результаты дает обработка растений бензоатом натрия.


Подобные документы

  • Способы ухода за цветочными культурами открытого и закрытого грунта. Защита растений от вредителей и болезней. Выращивание растений в условиях теплицы и подготовка их к посадке в поле. Методы клонального микроразмножения. Выгонка луковичных растений.

    отчет по практике [214,3 K], добавлен 22.03.2016

  • Сущность гидропонного метода. Характеристика субстратов и сосудов для комнатных растений, выращиваемых гидропонным методом. Технологии выращивания. Питательные растворы и их приготовление. Особенности выращивания овощей, огурцов, томатов, зеленого лука.

    курсовая работа [74,4 K], добавлен 16.03.2016

  • Инфекционные болезни и патофизиологические изменения растений. Грибы как возбудители болезней растений. Болезни, связанные с неблагоприятным условиям питания калием, кальцием, железом и микроэлементами. Основные методы защиты растений от болезней.

    реферат [870,0 K], добавлен 14.07.2010

  • Способы и технология озеленения современного города. Инженерная и агротехническая подготовка территории. Основные типы и классификация древесно-кустарниковых насаждений. Учет условий внешней среды и морфологических признаков растений при их подборе.

    курсовая работа [6,6 M], добавлен 18.06.2014

  • Характеристика почвенно-климатических условий озеленяемой территории. Обоснование выбора территории для местоположения питомника декоративных древесных растений. Подбор ассортимента растений, принятых к размножению. Разработка схем севооборотов.

    курсовая работа [51,0 K], добавлен 14.01.2014

  • Организация декоративных рассадников, их виды и назначение. Характеристика почвенно-климатических условий. Выбор места и расчет площади. Схема движения посадочного материала в процессе выращивания в декоративном рассаднике. Виды обработки почвы.

    курсовая работа [56,3 K], добавлен 28.04.2015

  • Основные направления в интегрированной системе защиты растений как средство повышения урожайности сельскохозяйственных культур. Роль интегрированной защиты растений в охране окружающей среды. Классификация методов, принципы проведения защиты растений.

    реферат [19,7 K], добавлен 23.03.2012

  • Мониторинг природных условий города Воронеж и оценка состояния зеленых насаждений. Анализ существующего ассортимента древесных и кустарниковых растений города. Проектирование ассортимента декоративных деревьев и кустарников для выращивания в питомнике.

    курсовая работа [2,5 M], добавлен 08.01.2014

  • Анализ агроклиматических условий Енбекшиказахского района. Характеристика вредителей и выбор инсектицида, болезней и выбор фунгицидов, сорных растений и выбор гербицидов. Регламент и применение средств защиты растений, их гигиеническая классификация.

    курсовая работа [2,3 M], добавлен 19.03.2015

  • Личинки жука-щелкуна: растения, которые подвержены их поражению и основные меры борьбы. Обработка растений при заражении черевцами и щитовками. Виды насекомых, которые питаются соками хвойных деревьев. Ущерб от поражения растений улитками и слизнями.

    презентация [351,5 K], добавлен 06.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.