Оценка потенциального уровня потерь конкретного банка по его кредитному портфелю
Виды стресс-тестирования финансовых рисков, международный опыт их применения в банках. Модели, устанавливающие количественные взаимосвязи между микро-, макро-показателями и уровнем неработающих ссуд по розничному и корпоративному кредитным портфелям.
Рубрика | Банковское, биржевое дело и страхование |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 30.09.2016 |
Размер файла | 788,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
0.028768
6.659884
-0.260489
-0.127838
(0.17086)
(0.02255)
(2.21219)
(0.24429)
(0.05105)
[ 1.14138]
[ 1.27575]
[ 3.01054]
[-1.06631]
[-2.50395]
D(D(LOG(NPLI(-4))))
0.411998
-0.014607
1.038778
-0.177264
0.017396
(0.20830)
(0.02749)
(2.69691)
(0.29782)
(0.06224)
[ 1.97794]
[-0.53134]
[ 0.38517]
[-0.59521]
[ 0.27950]
D(D(LOG(NPLI(-5))))
-0.203976
-0.013460
5.369367
0.397299
-0.021809
(0.19439)
(0.02566)
(2.51691)
(0.27794)
(0.05809)
[-1.04929]
[-0.52465]
[ 2.13332]
[ 1.42944]
[-0.37545]
D(D(LOG(NPLI(-6))))
-0.497710
-0.020479
0.943597
-0.099778
0.044863
(0.16903)
(0.02231)
(2.18846)
(0.24167)
(0.05051)
[-2.94456]
[-0.91802]
[ 0.43117]
[-0.41287]
[ 0.88826]
D(LOG(WAGE_SM(-1)))
0.321942
1.406763
-5.096412
-2.061686
-0.371068
(1.55570)
(0.20532)
(20.1424)
(2.22430)
(0.46486)
[ 0.20694]
[ 6.85155]
[-0.25302]
[-0.92689]
[-0.79823]
D(LOG(WAGE_SM(-2)))
4.170707
-1.084376
-9.849914
4.387716
0.910331
(3.26081)
(0.43036)
(42.2191)
(4.66222)
(0.97436)
[ 1.27904]
[-2.51970]
[-0.23330]
[ 0.94112]
[ 0.93428]
D(LOG(WAGE_SM(-3)))
-7.481455
0.197388
-5.054355
-1.119328
-0.542028
(4.20849)
(0.55543)
(54.4891)
(6.01719)
(1.25754)
[-1.77771]
[ 0.35538]
[-0.09276]
[-0.18602]
[-0.43102]
D(LOG(WAGE_SM(-4)))
6.636338
0.517137
14.79685
-3.716865
-0.161605
(4.07412)
(0.53770)
(52.7494)
(5.82507)
(1.21739)
[ 1.62890]
[ 0.96176]
[ 0.28051]
[-0.63808]
[-0.13275]
D(LOG(WAGE_SM(-5)))
-1.333077
-0.529467
-30.23269
6.090740
0.789584
(3.09318)
(0.40823)
(40.0487)
(4.42254)
(0.92427)
[-0.43097]
[-1.29697]
[-0.75490]
[ 1.37720]
[ 0.85428]
D(LOG(WAGE_SM(-6)))
-2.906685
0.474379
8.031745
-3.834795
-0.274960
(1.83674)
(0.24241)
(23.7811)
(2.62612)
(0.54884)
[-1.58252]
[ 1.95691]
[ 0.33774]
[-1.46025]
[-0.50099]
D(D(LOG(CPI(-1))))
-0.012845
0.002713
-0.586025
0.023757
0.002406
(0.01538)
(0.00203)
(0.19912)
(0.02199)
(0.00460)
[-0.83526]
[ 1.33643]
[-2.94312]
[ 1.08042]
[ 0.52349]
D(D(LOG(CPI(-2))))
-0.006579
0.003232
-0.632755
-0.046563
0.001613
(0.01843)
(0.00243)
(0.23858)
(0.02635)
(0.00551)
[-0.35704]
[ 1.32908]
[-2.65221]
[-1.76739]
[ 0.29294]
D(D(LOG(CPI(-3))))
0.019081
0.004167
-0.563508
-0.047771
-0.006400
(0.01999)
(0.00264)
(0.25886)
(0.02859)
(0.00597)
[ 0.95436]
[ 1.57906]
[-2.17685]
[-1.67113]
[-1.07132]
D(D(LOG(CPI(-4))))
0.032449
0.002895
-0.223579
-0.033958
-0.001183
(0.01824)
(0.00241)
(0.23619)
(0.02608)
(0.00545)
[ 1.77883]
[ 1.20244]
[-0.94662]
[-1.30197]
[-0.21705]
D(D(LOG(CPI(-5))))
0.048152
0.004489
-0.069466
-0.092772
-0.004301
(0.01614)
(0.00213)
(0.20892)
(0.02307)
(0.00482)
[ 2.98412]
[ 2.10797]
[-0.33250]
[-4.02117]
[-0.89197]
D(D(LOG(CPI(-6))))
0.022464
0.003337
-0.083747
-0.040400
-0.000270
(0.01722)
(0.00227)
(0.22292)
(0.02462)
(0.00514)
[ 1.30473]
[ 1.46866]
[-0.37569]
[-1.64117]
[-0.05248]
D(LOG(SPRD_SM(-1)))
0.280848
-0.009497
0.820436
0.842237
0.031502
(0.13961)
(0.01843)
(1.80754)
(0.19961)
(0.04172)
[ 2.01171]
[-0.51546]
[ 0.45390]
[ 4.21951]
[ 0.75515]
D(LOG(SPRD_SM(-2)))
-0.482702
-0.052980
-3.053048
-0.702856
0.001543
(0.19658)
(0.02594)
(2.54516)
(0.28106)
(0.05874)
[-2.45555]
[-2.04211]
[-1.19955]
[-2.50074]
[ 0.02627]
D(LOG(SPRD_SM(-3)))
0.654240
0.043095
4.360078
-0.131481
-0.025074
(0.22682)
(0.02994)
(2.93671)
(0.32430)
(0.06778)
[ 2.88443]
[ 1.43961]
[ 1.48468]
[-0.40543]
[-0.36996]
D(LOG(SPRD_SM(-4)))
-0.053787
-0.034764
-5.738624
0.196266
0.096017
(0.20721)
(0.02735)
(2.68287)
(0.29627)
(0.06192)
[-0.25957]
[-1.27117]
[-2.13899]
[ 0.66246]
[ 1.55073]
D(LOG(SPRD_SM(-5)))
-0.254253
0.004673
2.496386
0.026293
-0.054629
(0.17243)
(0.02276)
(2.23259)
(0.24654)
(0.05153)
[-1.47448]
[ 0.20533]
[ 1.11816]
[ 0.10665]
[-1.06024]
D(LOG(SPRD_SM(-6)))
-0.161082
0.005603
-3.324360
0.189930
0.014467
(0.12971)
(0.01712)
(1.67943)
(0.18546)
(0.03876)
[-1.24185]
[ 0.32729]
[-1.97945]
[ 1.02411]
[ 0.37325]
D(LOG(UNPL_SM(-1)))
1.245487
-0.074065
0.121433
2.209740
1.591299
(0.70966)
(0.09366)
(9.18823)
(1.01465)
(0.21205)
[ 1.75506]
[-0.79079]
[ 0.01322]
[ 2.17784]
[ 7.50426]
D(LOG(UNPL_SM(-2)))
-0.789925
0.114476
17.63653
-4.423581
-1.835359
(1.02913)
(0.13582)
(13.3246)
(1.47142)
(0.30751)
[-0.76757]
[ 0.84283]
[ 1.32361]
[-3.00633]
[-5.96836]
D(LOG(UNPL_SM(-3)))
0.546986
-0.024081
-25.22467
5.782682
1.686762
(1.21676)
(0.16059)
(15.7540)
(1.73970)
(0.36358)
[ 0.44954]
[-0.14996]
[-1.60116]
[ 3.32396]
[ 4.63929]
D(LOG(UNPL_SM(-4)))
-0.178497
-0.168938
22.96041
-5.607886
-1.514524
(1.21809)
(0.16076)
(15.7712)
(1.74160)
(0.36398)
[-0.14654]
[-1.05085]
[ 1.45584]
[-3.21996]
[-4.16101]
D(LOG(UNPL_SM(-5)))
0.731543
0.200928
-16.85457
3.309666
0.983251
(1.02140)
(0.13480)
(13.2245)
(1.46037)
(0.30520)
[ 0.71622]
[ 1.49052]
[-1.27449]
[ 2.26632]
[ 3.22161]
D(LOG(UNPL_SM(-6)))
0.080637
-0.079751
12.23085
-2.262683
-0.391061
(0.47175)
(0.06226)
(6.10798)
(0.67450)
(0.14096)
[ 0.17093]
[-1.28090]
[ 2.00244]
[-3.35461]
[-2.77418]
C
0.047607
-0.001524
0.580502
-0.024750
-0.011567
(0.02551)
(0.00337)
(0.33026)
(0.03647)
(0.00762)
[ 1.86638]
[-0.45264]
[ 1.75774]
[-0.67865]
[-1.51765]
CRISIS08
-0.088263
-0.000776
0.305252
0.107123
0.000408
(0.04299)
(0.00567)
(0.55661)
(0.06147)
(0.01285)
[-2.05311]
[-0.13670]
[ 0.54842]
[ 1.74281]
[ 0.03172]
CRISIS14
0.032485
-0.016495
-1.208040
-0.073430
0.021329
(0.04712)
(0.00622)
(0.61005)
(0.06737)
(0.01408)
[ 0.68944]
[-2.65247]
[-1.98022]
[-1.08999]
[ 1.51490]
R-squared
0.811516
0.978141
0.757206
0.934368
0.970158
Adj. R-squared
0.476432
0.939282
0.325573
0.817690
0.917106
Sum sq. resids
0.028003
0.000488
4.694272
0.057245
0.002500
S.E. equation
0.039442
0.005206
0.510679
0.056394
0.011786
F-statistic
2.421833
25.17113
1.754281
8.008050
18.28676
Log likelihood
119.0697
222.3504
-11.53606
100.8364
180.6750
Akaike AIC
-3.375284
-7.425506
1.746512
-2.660251
-5.791176
Schwarz SC
-2.125279
-6.175502
2.996517
-1.410246
-4.541171
Mean dependent
0.001994
0.015855
0.008393
-0.024575
-0.007788
S.D. dependent
0.054510
0.021126
0.621842
0.132077
0.040935
Determinant resid covariance (dof adj.)
6.37E-16
Determinant resid covariance
3.49E-18
Log likelihood
663.2049
Akaike information criterion
-19.53745
Schwarz criterion
-13.28742
Приложение 3
Индекс sm в названии графика означает, что ряд сезонно сглажен.
Приложение 4
Vector Autoregression Estimates |
||||||||
Date: 03/06/16 Time: 11:47 |
||||||||
Sample (adjusted): 2002Q2 2015Q3 |
||||||||
Included observations: 54 after adjustments |
||||||||
Standard errors in ( ) & t-statistics in [ ] |
||||||||
D(LOG(CPC)) |
D(LOG(EXCH)) |
D(LOG(GDP_SM)) |
D(LOG(IPC_SM)) |
D(LOG(NPLC)) |
D(LOG(OIL)) |
D(LOG(SPRD_SM)) |
||
D(LOG(CPC(-1))) |
0.306221 |
0.039090 |
0.001426 |
-5.08E-05 |
-1.210606 |
-0.254121 |
0.217628 |
|
(0.21543) |
(0.20190) |
(0.01856) |
(0.01505) |
(1.63528) |
(0.43215) |
(0.37354) |
||
[ 1.42147] |
[ 0.19361] |
[ 0.07683] |
[-0.00338] |
[-0.74030] |
[-0.58805] |
[ 0.58262] |
||
D(LOG(CPC(-2))) |
-0.147051 |
0.182377 |
-0.000471 |
-0.015911 |
-0.831044 |
-0.166228 |
0.001089 |
|
(0.17820) |
(0.16702) |
(0.01535) |
(0.01245) |
(1.35274) |
(0.35748) |
(0.30900) |
||
[-0.82518] |
[ 1.09198] |
[-0.03065] |
[-1.27840] |
[-0.61434] |
[-0.46500] |
[ 0.00352] |
||
D(LOG(CPC(-3))) |
-0.078083 |
-0.073430 |
0.001515 |
0.010989 |
1.733305 |
0.578468 |
-0.063288 |
|
(0.16350) |
(0.15324) |
(0.01408) |
(0.01142) |
(1.24115) |
(0.32799) |
(0.28351) |
||
[-0.47756] |
[-0.47919] |
[ 0.10758] |
[ 0.96229] |
[ 1.39654] |
[ 1.76368] |
[-0.22323] |
||
D(LOG(CPC(-4))) |
0.132551 |
0.008219 |
0.003956 |
-0.014040 |
-2.745021 |
-0.115805 |
0.278615 |
|
(0.13032) |
(0.12214) |
(0.01123) |
(0.00910) |
(0.98927) |
(0.26143) |
(0.22597) |
||
[ 1.01711] |
[ 0.06729] |
[ 0.35245] |
[-1.54252] |
[-2.77480] |
[-0.44297] |
[ 1.23297] |
||
D(LOG(EXCH(-1))) |
-0.369391 |
-0.535942 |
-0.006639 |
-0.005422 |
0.366893 |
0.212023 |
-0.137099 |
|
(0.26841) |
(0.25156) |
(0.02312) |
(0.01875) |
(2.03750) |
(0.53844) |
(0.46541) |
||
[-1.37621] |
[-2.13047] |
[-0.28715] |
[-0.28924] |
[ 0.18007] |
[ 0.39377] |
[-0.29458] |
||
D(LOG(EXCH(-2))) |
-0.740742 |
-0.643713 |
-0.011013 |
-0.010055 |
0.013211 |
-0.070552 |
0.203698 |
|
(0.25614) |
(0.24006) |
(0.02206) |
(0.01789) |
(1.94437) |
(0.51383) |
(0.44414) |
||
[-2.89190] |
[-2.68144] |
[-0.49915] |
[-0.56205] |
[ 0.00679] |
[-0.13731] |
[ 0.45864] |
||
D(LOG(EXCH(-3))) |
0.175942 |
-0.021453 |
0.000186 |
0.013796 |
-4.063347 |
-0.125763 |
0.336885 |
|
(0.34150) |
(0.32006) |
(0.02942) |
(0.02385) |
(2.59231) |
(0.68505) |
(0.59214) |
||
[ 0.51520] |
[-0.06703] |
[ 0.00631] |
[ 0.57842] |
[-1.56746] |
[-0.18358] |
[ 0.56893] |
||
D(LOG(EXCH(-4))) |
0.604618 |
0.136797 |
-0.007608 |
-0.041650 |
2.213435 |
-0.472182 |
0.148356 |
|
(0.32646) |
(0.30596) |
(0.02812) |
(0.02280) |
(2.47811) |
(0.65487) |
(0.56606) |
||
[ 1.85207] |
[ 0.44711] |
[-0.27054] |
[-1.82670] |
[ 0.89320] |
[-0.72103] |
[ 0.26209] |
||
D(LOG(GDP_SM(-1))) |
-1.878127 |
-5.205738 |
1.719937 |
-0.135533 |
-24.43560 |
10.77813 |
-2.824522 |
|
(2.75287) |
(2.58004) |
(0.23713) |
(0.19227) |
(20.8969) |
(5.52230) |
(4.77332) |
||
[-0.68224] |
[-2.01770] |
[ 7.25326] |
[-0.70492] |
[-1.16934] |
[ 1.95175] |
[-0.59173] |
||
D(LOG(GDP_SM(-2))) |
5.469647 |
3.259639 |
-1.604165 |
0.216583 |
24.76536 |
-4.694546 |
-1.336316 |
|
(4.50870) |
(4.22563) |
(0.38837) |
(0.31490) |
(34.2253) |
(9.04453) |
(7.81784) |
||
[ 1.21313] |
[ 0.77140] |
[-4.13051] |
[ 0.68778] |
[ 0.72360] |
[-0.51905] |
[-0.17093] |
||
D(LOG(GDP_SM(-3))) |
-5.171345 |
-4.153457 |
0.755526 |
-0.015276 |
11.48330 |
-2.685955 |
7.244743 |
|
(4.70765) |
(4.41208) |
(0.40551) |
(0.32880) |
(35.7355) |
(9.44361) |
(8.16279) |
||
[-1.09850] |
[-0.94138] |
[ 1.86317] |
[-0.04646] |
[ 0.32134] |
[-0.28442] |
[ 0.88753] |
||
D(LOG(GDP_SM(-4))) |
0.608236 |
2.146681 |
-0.116779 |
0.052865 |
5.826779 |
-2.134662 |
-3.681060 |
|
(2.44678) |
(2.29316) |
(0.21076) |
(0.17089) |
(18.5734) |
(4.90828) |
(4.24258) |
||
[ 0.24859] |
[ 0.93612] |
[-0.55408] |
[ 0.30935] |
[ 0.31372] |
[-0.43491] |
[-0.86765] |
||
D(LOG(IPC_SM(-1))) |
0.026642 |
2.854737 |
-0.372222 |
0.856116 |
-10.28411 |
4.122599 |
0.428091 |
|
(2.84852) |
(2.66968) |
(0.24537) |
(0.19895) |
(21.6230) |
(5.71418) |
(4.93918) |
||
[ 0.00935] |
[ 1.06932] |
[-1.51701] |
[ 4.30320] |
[-0.47561] |
[ 0.72147] |
[ 0.08667] |
||
D(LOG(IPC_SM(-2))) |
3.563684 |
-1.609862 |
0.114628 |
-0.857581 |
21.73060 |
5.040044 |
5.932618 |
|
(3.71776) |
(3.48435) |
(0.32024) |
(0.25966) |
(28.2214) |
(7.45789) |
(6.44639) |
||
[ 0.95856] |
[-0.46203] |
[ 0.35794] |
[-3.30272] |
[ 0.77001] |
[ 0.67580] |
[ 0.92030] |
||
D(LOG(IPC_SM(-3))) |
-3.431064 |
-3.656225 |
0.099092 |
0.201575 |
-27.45390 |
12.44399 |
-5.769450 |
|
(3.70892) |
(3.47606) |
(0.31948) |
(0.25904) |
(28.1542) |
(7.44015) |
(6.43106) |
||
[-0.92508] |
[-1.05183] |
[ 0.31017] |
[ 0.77816] |
[-0.97512] |
[ 1.67254] |
[-0.89712] |
||
D(LOG(IPC_SM(-4))) |
-0.846263 |
-2.560590 |
-0.212089 |
-0.114501 |
47.77791 |
1.251282 |
7.169185 |
|
(2.81193) |
(2.63539) |
(0.24221) |
(0.19639) |
(21.3452) |
(5.64078) |
(4.87573) |
||
[-0.30095] |
[-0.97162] |
[-0.87563] |
[-0.58302] |
[ 2.23834] |
[ 0.22183] |
[ 1.47038] |
||
D(LOG(NPLC(-1))) |
0.035423 |
0.025751 |
-0.001322 |
0.000727 |
-0.191048 |
-0.023709 |
0.005397 |
|
(0.02361) |
(0.02212) |
(0.00203) |
(0.00165) |
(0.17919) |
(0.04735) |
(0.04093) |
||
[ 1.50057] |
[ 1.16393] |
[-0.65008] |
[ 0.44091] |
[-1.06615] |
[-0.50067] |
[ 0.13185] |
||
D(LOG(NPLC(-2))) |
0.001019 |
0.013310 |
0.000876 |
0.000650 |
-0.006568 |
0.065183 |
0.007805 |
|
(0.02205) |
(0.02066) |
(0.00190) |
(0.00154) |
(0.16737) |
(0.04423) |
(0.03823) |
||
[ 0.04620] |
[ 0.64407] |
[ 0.46128] |
[ 0.42237] |
[-0.03924] |
[ 1.47368] |
[ 0.20416] |
||
D(LOG(NPLC(-3))) |
-0.008850 |
-0.004782 |
0.001252 |
0.001598 |
0.072158 |
0.049004 |
-0.029491 |
|
(0.02169) |
(0.02032) |
(0.00187) |
(0.00151) |
(0.16461) |
(0.04350) |
(0.03760) |
||
[-0.40811] |
[-0.23528] |
[ 0.67001] |
[ 1.05488] |
[ 0.43835] |
[ 1.12649] |
[-0.78431] |
||
D(LOG(NPLC(-4))) |
-0.028089 |
-0.015526 |
0.001442 |
0.000991 |
-0.214772 |
0.010830 |
0.037260 |
|
(0.02186) |
(0.02049) |
(0.00188) |
(0.00153) |
(0.16596) |
(0.04386) |
(0.03791) |
||
[-1.28476] |
[-0.75771] |
[ 0.76548] |
[ 0.64924] |
[-1.29409] |
[ 0.24692] |
[ 0.98286] |
||
D(LOG(OIL(-1))) |
-0.130377 |
0.043372 |
-0.008083 |
-0.000597 |
0.694771 |
-0.352397 |
-0.014155 |
|
(0.11155) |
(0.10454) |
(0.00961) |
(0.00779) |
(0.84675) |
(0.22376) |
(0.19342) |
||
[-1.16881] |
[ 0.41487] |
[-0.84123] |
[-0.07659] |
[ 0.82052] |
[-1.57486] |
[-0.07319] |
||
D(LOG(OIL(-2))) |
-0.143491 |
0.232484 |
-0.017938 |
0.003059 |
0.338530 |
-0.599122 |
0.002355 |
|
(0.10772) |
(0.10096) |
(0.00928) |
(0.00752) |
(0.81770) |
(0.21609) |
(0.18678) |
||
[-1.33207] |
[ 2.30280] |
[-1.93324] |
[ 0.40654] |
[ 0.41400] |
[-2.77258] |
[ 0.01261] |
||
D(LOG(OIL(-3))) |
0.083925 |
0.138303 |
0.005547 |
-0.003759 |
-2.257575 |
-0.135636 |
-0.009670 |
|
(0.12159) |
(0.11396) |
(0.01047) |
(0.00849) |
(0.92300) |
(0.24392) |
(0.21083) |
||
[ 0.69021] |
[ 1.21362] |
[ 0.52960] |
[-0.44258] |
[-2.44590] |
[-0.55608] |
[-0.04586] |
||
D(LOG(OIL(-4))) |
0.125671 |
0.145255 |
-0.009356 |
-0.011875 |
0.088033 |
0.166418 |
-0.161786 |
|
(0.11656) |
(0.10924) |
(0.01004) |
(0.00814) |
(0.88482) |
(0.23383) |
(0.20211) |
||
[ 1.07815] |
[ 1.32964] |
[-0.93181] |
[-1.45871] |
[ 0.09949] |
[ 0.71172] |
[-0.80048] |
||
D(LOG(SPRD_SM(-1))) |
-0.133904 |
0.108195 |
-0.009929 |
0.003948 |
0.220273 |
-0.614411 |
0.685110 |
|
(0.12849) |
(0.12042) |
(0.01107) |
(0.00897) |
(0.97534) |
(0.25775) |
(0.22279) |
||
[-1.04216] |
[ 0.89848] |
[-0.89716] |
[ 0.43992] |
[ 0.22584] |
[-2.38377] |
[ 3.07514] |
||
D(LOG(SPRD_SM(-2))) |
0.078523 |
0.111809 |
-0.008781 |
0.006260 |
0.100389 |
0.208394 |
-0.604351 |
|
(0.16047) |
(0.15040) |
(0.01382) |
(0.01121) |
(1.21812) |
(0.32191) |
(0.27825) |
||
[ 0.48933] |
[ 0.74344] |
[-0.63525] |
[ 0.55853] |
[ 0.08241] |
[ 0.64738] |
[-2.17200] |
||
D(LOG(SPRD_SM(-3))) |
-0.153942 |
0.090627 |
-0.003334 |
-0.001562 |
-0.149005 |
-0.395569 |
-0.023274 |
|
(0.16850) |
(0.15792) |
(0.01451) |
(0.01177) |
(1.27910) |
(0.33802) |
(0.29218) |
||
[-0.91358] |
[ 0.57386] |
[-0.22972] |
[-0.13268] |
[-0.11649] |
[-1.17025] |
[-0.07966] |
||
D(LOG(SPRD_SM(-4))) |
-0.209276 |
0.006267 |
0.002838 |
0.007367 |
0.758229 |
0.022628 |
-0.078243 |
|
(0.14287) |
(0.13390) |
(0.01231) |
(0.00998) |
(1.08454) |
(0.28661) |
(0.24773) |
||
[-1.46477] |
[ 0.04680] |
[ 0.23064] |
[ 0.73831] |
[ 0.69912] |
[ 0.07895] |
[-0.31584] |
||
C |
0.048848 |
0.025622 |
0.003256 |
0.001119 |
0.058080 |
0.038214 |
-0.042980 |
|
(0.02447) |
(0.02293) |
(0.00211) |
(0.00171) |
(0.18573) |
(0.04908) |
(0.04243) |
||
[ 1.99642] |
[ 1.11730] |
[ 1.54512] |
[ 0.65452] |
[ 0.31270] |
[ 0.77855] |
[-1.01308] |
||
CRISIS08 |
-0.008116 |
-0.041165 |
-0.006341 |
-0.007343 |
0.797962 |
-0.001812 |
0.136479 |
|
(0.05551) |
(0.05203) |
(0.00478) |
(0.00388) |
(0.42137) |
(0.11135) |
(0.09625) |
||
[-0.14620] |
[-0.79125] |
[-1.32622] |
[-1.89405] |
[ 1.89371] |
[-0.01628] |
[ 1.41794] |
||
CRISIS14 |
0.044771 |
0.319338 |
-0.009923 |
0.003565 |
0.514905 |
-0.508795 |
-0.209107 |
|
(0.07322) |
(0.06862) |
(0.00631) |
(0.00511) |
(0.55579) |
(0.14688) |
(0.12695) |
||
[ 0.61148] |
[ 4.65369] |
[-1.57342] |
[ 0.69715] |
[ 0.92644] |
[-3.46413] |
[-1.64710] |
||
R-squared |
0.806722 |
0.814919 |
0.960842 |
0.789468 |
0.765220 |
0.816055 |
0.804169 |
|
Adj. R-squared |
0.554620 |
0.573510 |
0.909767 |
0.514862 |
0.458986 |
0.576126 |
0.548738 |
|
Sum sq. resids |
0.059373 |
0.052152 |
0.000441 |
0.000290 |
3.421247 |
0.238924 |
0.178510 |
|
S.E. equation |
0.050808 |
0.047618 |
0.004376 |
0.003549 |
0.385681 |
0.101922 |
0.088098 |
|
F-statistic |
3.199985 |
3.375671 |
18.81224 |
2.874906 |
2.498806 |
3.401242 |
3.148279 |
|
Log likelihood |
107.3254 |
110.8268 |
239.7230 |
251.0469 |
-2.130247 |
69.73331 |
77.60390 |
|
Akaike AIC |
-2.826867 |
-2.956550 |
-7.730482 |
-8.149884 |
1.227046 |
-1.434567 |
-1.726070 |
|
Schwarz SC |
-1.685043 |
-1.814725 |
-6.588658 |
-7.008060 |
2.368870 |
-0.292743 |
-0.584246 |
|
Mean dependent |
0.052240 |
0.013398 |
0.008453 |
-0.000121 |
0.079313 |
0.014419 |
-0.018248 |
|
S.D. dependent |
0.076132 |
0.072915 |
0.014569 |
0.005095 |
0.524353 |
0.156548 |
0.131145 |
|
Determinant resid covariance (dof adj.) |
1.65E-21 |
|||||||
Determinant resid covariance |
4.19E-24 |
|||||||
Log likelihood |
917.0013 |
|||||||
Akaike information criterion |
-25.92597 |
|||||||
Schwarz criterion |
-17.93321 |
Размещено на Allbest.ru
Подобные документы
Анализ системы управления проблемными кредитами на примере АО "Цеснабанк". Характеристика деятельности банка и его экономические показатели. Управление кредитным портфелем банка. Анализ проблемных кредитов в банках второго уровня Республики Казахстан.
дипломная работа [1,3 M], добавлен 14.03.2015Сущность и классификация финансовых рисков банка. Инструменты управления кредитными рисками и пути их сокращения. Принципы управления кредитным портфелем. Построение моделей оценки надежности коммерческого банка. Определение рейтинга кредитоспособности.
дипломная работа [501,4 K], добавлен 17.03.2014Сущность и виды кредитных операций банка. Документы по оформлению кредита. Оценка кредитного риска на основе отчетности банка, направления кредитной политики. Анализ экономических нормативов по кредитному риску, погашение и обеспечение выданных ссуд.
курсовая работа [35,9 K], добавлен 06.11.2011Анализ состояния собственных и привлеченных средств коммерческого банка. Величина кредитных вложений банка в целом и по отдельным видам ссуд. Анализ выполнения экономических нормативов банка, структура депозитной базы. Оценка уровня банковских рисков.
методичка [265,9 K], добавлен 10.01.2012Понятие о кассовых операциях. Результат работы банка по привлечению вкладов населения за декаду. Расчетная величина резерва на покрытие возможных убытков от кредитной деятельности банка "Мост". Расчет резерва по кредитному портфелю коммерческого банка.
контрольная работа [18,2 K], добавлен 17.12.2012Группы рисков в банковском деле при проведении расчетов по внешнеторговым и финансовым операциям, валютно-обменным сделкам. Применение современных методик стресс-тестирования, способов их хеджирования. Расчет стресс-тестов, основные стресс-сценарии.
контрольная работа [37,0 K], добавлен 28.12.2010Система управления и методика анализа кредитного риска. Кредитная политика банка. Организационная структура и характеристика Муромцевского отделения № 2257 Сбербанка РФ. Обеспечение возврата банковских ссуд. Недостатки в управлении кредитным риском.
дипломная работа [108,7 K], добавлен 09.09.2010Банковские риски в условиях глобализации. Оценка и стратегия риска в банковской деятельности. Мировой опыт предупреждения банковских рисков. Внедрение системы банковского риск-менеджмента в РК. Максимизация прибыли и обеспечение платежеспособности банка.
реферат [95,7 K], добавлен 23.04.2015Анализ кредитных рисков в банковской системе России. Определение рейтинга кредитоспособности заемщика. Оценка кредитного риска банка с использованием VaR-модели и процедур имитационного моделирования на примере кредитного портфеля ОАО "Сбербанк России".
дипломная работа [2,1 M], добавлен 18.01.2015Кредитный риск в системе банковских рисков. Виды и формы проявления кредитных рисков. Классификация ссуд, критерии оценки их качества. Формы обеспечения возвратности кредитов. Система, формы и организация управления кредитным риском в ОАО "Акибанк".
курсовая работа [440,7 K], добавлен 26.11.2010