Концепции современного естествознания

Физика глазами гуманитария: образы физики. Физика необходимого и возможного. Живые системы и человек в биосфере. Принципы синергетики, эволюционная триада и системный подход. Качественные методы в эволюционных задачах, а также самоорганизация в природе.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 14.01.2009
Размер файла 284,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Литература

1. Аксенов Г.П. Мир по Вернадскому/ Природа, 1992, 5

2. Алаев Э.Б. Решение демографической проблемы, или бег на месте/ Приро да, 1991, 4

3. Беккер А.А. Воздух Москвы. Природа, 1993, 8

4. Бибиков Д.И. Волк: и хищник, и жертва. Природа, 1996, 10

5. Биосфера, климат, ресурсы - что нас ждет?/ Природа, 1990, 7

6. Василенко И.Я. Биологическая опасность продуктов ядерного деления/Природа, 1995, 5

7. Виноградов М.Е., Шушкина Э.А. Биологическая продуктивность океана. Природа, 1996, 7

8. Воздействие человека на космос/ Природа, 1992, 8

9. Н.Н.Воронцов, Л.Н.Сухорукова. Эволюция органического мира. М.: Наука, 1996

10. В поисках глобальной стратегии выживания (Встреча за круглым столом в

11. Совете Федерации). Природа, 1996, 1

12. География экологических ситуаций. Природа, 1993, 11

13. Глазовский Н.Ф. Аральский кризис/ Природа, 1990, 10, 11

14. Дайсон Ф. Век двадцать первый/ Природа, 1991, 4

15. Добровольский Г.В., Куст Г.С. Деградация почвы - “тихий кризис плане ты”. Природа, 1996, 10

16. Дольник В.Р. Существуют ли биологические механизмы регуляции числен ности людей?/ Природа, 1992, 6

17. И вновь об Арале/ Природа, 1991, 10

18. Кароль И.Л. Атмосферный озон: современное состояние проблемы. Природа, 1993,5

19. Константинов В.М., Хохлов А.Н. Птицы на городских свалках/ Природа, 1991, 6

20. Корякин Ю.И. Сколько стоит Чернобыль/ Природа, 1990, 10

21. Красилов В.А. Всемирная стратегия охраны природы на 90-е годы/ Приро да. 1992

22. Международные экологические конвенции/ Природа, 1992, 12

23. Миркин Б.М. Устойчивые агросистемы: мечта или реальность. Природа, 1994, 10

24. Нельсон М. и др. “Биосфера-2”. Природа, 1993, 10

25. Никитин А.И. Современная репродуктивная стратегия/ Природа, 1991, 5

26. Ничипорович А.А. Человек как участник жизни на Земле/ Природа, Паршенков С.А. Промышленные загрязнения/ Природа, 1991, 5

27. Последствия глобального потепления/ Природа, 1992, 12

28. Постнов К.А. Земное эхо космических катастроф. Природа, 1996, 6

29. Проблемы города. Природа, 1993, 2

30. Проблемы города. Природа, 1993, 6

31. Прохоров Б.Б. Жизненная среда горожан. Природа, 1993, 3

32. Прошлое для будущего. Международный симпозиум “Эволюция экосистем”. По страницам тезисов. Природа, 1996, 2

33. Пуляркин В.А., Власова Т.К. Агроресурсы и продовольственная проб лема/ Природа, 1991, 7

34. Ростоцкий С.Б. Экологические проблемы на карте мира/ Природа, 1992, 6

35. Рютов Д.Д. Солнечная энергетика и тепловое загрязнение атмосферы/ При рода, 1990, 2

36. Скворцов А.К. Многообразие живого мира Земли и проблемы его сохране ния. Природа, 1996, 6

37. Следы Чернобыля в природной среде/ Природа, 1991, 5

38. Солнце и Земля. Природа, 1994, 9

39. Сывороткин В.Л. Дегазация Земли и разрушение озонового слоя. Природа, 1993, 9

40. Федонкин М.А. Биосфера: четвертое измерение/ Природа, 1991, 9

41. Четыре года после взрыва (Чернобыль)/ Природа, 1990, 11

42. Эйнор Л.О. Экологическая очистка воды/ Природа, 1992, 9

Тема 2.4. Основные концепции и перспективы биологии

Представления о сущности жизни с древнейших времен до наших дней. По преданию первым стал вскрывать животных, чтобы описать увиденное, Алкмеон (VI в. до н.э.) и наблюдал за развитием куриного эмбриона.

В телах природы Аристотель выделяет две стороны: материю и форму. Форма - причина и цель превращений. Принцип развития есть душа. Существуют души трех родов:

1) питающая,

2) чувствующая и

3) разумная.

Аристотель выделил 4 царства природы:

1 - неодушевленное - существует

2 - растительное - существует, размножается

3 - мир животных - существует, размножается, двигается

4 - мир человека - существует, размножается, двигается и мыслит

Наблюдая за эмбриональным развитием животных, Аристотель обнаружил, что это развитие является направленным и целесообразным. В результате он формулирует принцип энтелехии, согласно которому природа есть “самореализующаяся целесообразность”, а причиной развития является внутренняя цель. Это вывод справедлив для процессов индивидуального развития живых существ и не противоречит современной генетике развития.

Энтелехия Аристотеля не бессмертна. Она не существует вне тела. Так как тело смертно, то и душа смертна.

Согласно Эпикуру, душа, как и все тела природы, тоже состоит из атомов и вне тела не существует. Нет мирового разума, все в природе происходит по естественным причинам. Счастье состоит в наслаждениях духовных и материальных и его следует искать в земной жизни, так как потусторонней жизни не существует.

Клавдий Гален (130-200), врач, анатом и физиолог полагал, что каждый орган человеческого тела был создан богом в наиболее совершенной форме и в предвидении той цели, для достижения которой этот орган предназначен. Таким образом, целесообразность живого получает теологическое объяснение.

Теология определяет и средневековые воззрения на природу. Мир создан богом, он - реальное воплощение его идей. Если для человека античной эпохи природа - действительность, то для средневекового - лишь символ божества. Помимо этого несовершенного мира вещей существует мир трансцендентный.

По Декарту (1596-1650) существуют две самостоятельные, независимые друг от друга субстанции: материальная с атрибутом протяженности, и духовная с атрибутом мышления. Оба начала подчинены третьему - богу. Природа, в том числе живая, огромный механизм. Организмы - автоматы, машины. Психические функции - реакции таких механизмов на внешние воздействия. Человек отличается наличием духовной субстанции, образующей разумную душу.

Лейбниц (1646-1716) также считал, что мир физический и мир психический автономны, но находятся в гармонии, причиной которой есть Бог.

Спиноза (1632-1677) утверждал, что Природа не знает цели. Она существует по необходимости. Нельзя спрашивать, для чего существуют вещи, можно спрашивать, почему они существуют так, а не иначе.

И все же для каждого думающего человека вопрос “для чего” актуален, интересен, имеет смысл и нуждается в ответе.

В 17-18 веках живые организмы рассматривались по аналогии с механизмами. У Ламеттри этот подход отражен в названии его книги “Человек-машина” (1747). Гораздо позднее В.Ру (1850-1924) в своей книге “Механика развития” утверждал: организм - механическая сумма его частей.

Так сформировалось направление в естествознании, которое получило название механицизм. Механицизм заключается в стремлении все явления жизни объяснить законами механики.

В 19 веке появляется критическое отношение к механицизму: жизнь не может быть понята с точки зрения действия механизмов. Организм есть целостность, а не конгломерат частей.

Кант (1724-1804) приходит к выводу, что жизнь и ее законы принципиально непознаваемы, специфичность явлений жизни дает опору телеологии, а следовательно, и религии; жизнь является прекрасным примером непознаваемой “вещи в себе”.

Гегель (1770-1831): природа есть продукт абсолютного духа, находящегося в процессе диалектического саморазвития. Развиваясь, абсолютный дух обнаруживает себя, становится природой. Поднявшись до той ступени развития, которая называется человеком, всемирный дух возвращается к самопознанию. Природа есть неполное отображение духа. Человек - высшая форма, в которой проявляется абсолютный дух. В организме идея полагает себя как цель, и только понятие цели раскрывает сущность органического.

По крайней мере три положения здесь не вызывают сомнения: саморазвитие, самопознание и целесообразность.

По Гете (1749-1832) вопрос о цели, вопрос “зачем” - не научен; значительно дальше продвигает нас вопрос как. Таким образом, Гете ставит вопрос о причинном объяснении и происхождении целесообразности органического мира.

Шеллинг (1775-1854) говорил о необходимости физико-химического объяснения жизни. Однако сущность жизни, по его мнению, необъяснима на этом пути.

Спенсер (1820-1903) : “...жизнь, как деятельное начало, неизвестна и не может быть познана... Хотя ее проявления и доступны нашему пониманию, но проявляющаяся в них сущность не может быть постигнута мыслью”. По мнению Спенсера, “жизнь можно определить как постоянное приспособление внутренних отношений к отношениям внешним”, причем живое отличается от неживого целесообразной реакцией на воздействия внешних условий.

В середине 19 века немецкий физик Р.Клаузиус пришел к выводу:”Энтропия Вселенной стремится к максимальному значению”. Это означает, что во Вселенной имеется тенденция к неупорядоченности, т.е. к состоянию равновесия, при котором все дальнейшие изменения устраняются.

В мире живых организмов этого не происходит. В течение миллиардов лет эволюции наблюдается постепенное усложнение организации. Живым существам присуща пространственная и функциональная организация, которую они способны поддерживать.

Г.Дриш (1908): органическое целое больше суммы его частей, после сложения частей обнаруживается некий остаток, в котором как раз и заключена сущность жизни, не улавливаемая путем рассмотрения организма как механической системы (Дриш использует понятие “энтелехии”, которая означает способность образовывать форму, которая отлична от материи).

В работах Дриша в наиболее полной форме проявился витализм, в основе которого лежит принцип несводимости явлений жизни к силам и законам неорганического мира. Витализм утверждает, что в живых телах присутствует особый фактор, которого нет в неживом, например, жизненная сила, душа и т.п.

Сильной стороной витализма была критика механистических представлений о биологической причинности. Ряд феноменов, которые витализм считал специфическими для биологических объектов (способность к саморегуляции, усложнение строения, достижение одного результата разными способами) рассматриваются в современном естествознании как типичные проявления процессов самоорганизации любых достаточно сложных систем, а не только живых.

Н.Бор: “ни один результат биологического исследования не может быть однозначно описан иначе как на основе понятий физики и химии”, но с другой стороны, жизнь есть “основной постулат биологии, не поддающийся дальнейшему анализу”. Физико-химические методы оказываются дополнительными по отношению к биологическим, они не противоречат друг другу, но оказываются принципиально несовместимыми, взаимоисключающими.

С этим согласен выдающийся генетик и эволюционист ХХ века Т.Добжанский: молекулярная и организменная биология дополнительны.

Э.Шредингер: “Что такое жизнь? С точки зрения физика” (1972) -предпринял попытку с помощью методов новой физики описать явления жизни. Г.Меллер и Дж.Б.С.Холдейн, критикуя ряд положений Шредингера, отмечают плодотворность его идей и подходов для биологии, изучения физико-химических основ жизни.

Л.Берталанфи (1901-1972) поставил задачу обосновать понимание жизни, которое - в противоположность механицизму - улавливает органическую целостность, однако - в противовес витализму - делает ее доступной естественнонаучному изучению (жизнь есть системное свойство).

И.Пригожин: постановка биологической проблемы подверглась изменению как в связи с собственным развитием биологии, так и в связи с нынешним обновлением физики. Цель: объяснить, каким образом закономерный и беспорядочный мир физики может создавать биологический порядок. В 1977 году Пригожин получил Нобелевскую премию за работы в области самоорганизации необратимых процессов.

(И.Т.Фролов. Жизнь и познание. М.: Мысль, 1981.) Вместе с теорией самоорганизации складывается новая парадигма в естествознании, которая предполагает выявление оснований нелинейных моделей и концепций не только в физике, но и в биологии. Нелинейные модели предполагают включение временных параметров в исследование.

Классическая физика основывалась на методологическом принципе суперпозиции, т.е. на предположении, согласно которому результирующий эффект сложного процесса воздействия представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности и не влияющих друг на друга.

Современная физика все более и более имеет дело с нелинейными системами, где принцип суперпозиции уже не действует (например, в теории тяготения Эйнштейна, в теории колебаний, в нелинейной оптике, нелинейной акустике, в нелинейных теориях поля).

Биология же с самого начала имела дело с нелинейными системами, построенными совершенно иначе, чем суммативные системы, где каждый отдельный эффект опосредован целостностью организма, популяции, биосферы, а результирующий эффект не может быть представлен в качестве суммы эффектов, вызываемых каждым воздействием в отдельности, поскольку каждое из них сопряжено с целым. (Биология в познании человека. М.: Наука, 1989).

Т.Уотермен: о необходимости синтеза “новой” и “старой” биологии. Если такой синтез удастся осуществить, то мы можем предсказать, что за веком физики в науке последует век биологии - век грандиозной революции в науке о живом, в котором понимание жизни, роста, эволюции и самого человека с его поведением...”

Раздел 3. ЭВОЛЮЦИОННО-СИНЕРГЕТИЧЕСКАЯ ПАРАДИГМА: ОТ ЦЕЛОСТНОГО ЕСТЕСТВОЗНАНИЯ К ЦЕЛОСТНОЙ КУЛЬТУРЕ

Тема 3.1. От “Бытия” к “Становлению”

Формирование эволюционного естествознания. Историко-философские аспекты современной естественно-научной картины мира

Огромен и разнообразен окружающий нас мир природы. Каждый человек пытается познать этот мир и осознать свое место в нем. Чтобы познать мир, мы из частных знаний пытаемся создать общее - научную картину мира. Содержанием ее являются основные идеи наук о природе, определяющие стиль научного мышления на данном этапе развития науки и культуры (!)

В каждый период развития человечества формируется научная картина мира, которая отражает объективный мир с той точностью и адэкватностью, которую позволяют достижения науки и практики. Кроме того, картина мира содержит гипотезы и предвидения.

Ядром естественно-научной картины мира служит картина мира лидирующей на данном этапе развития науки.

Начало развития научных представлений о мире восходит к VII-VI вв. до н.э. В это время природа исследовалась силой ума, а опыты игнорировались. Научные обобщения строились на начальных наблюдениях, в красочных картинах мира было много наивного, часто рядом с реальным отражением действительности в них уживался вымысел.

Основатель античной атомистики Демокрит полагал, что “начала Вселенной суть атомы и пустота”. Атомы Демокрит представлял как неделимые, плотные, непроницаемые, не содержащие в себе никакой пустоты частицы. Атомы “вихрем несутся во Вселенной и порождают все сложное -огонь, воду, воздух, землю. Демокрит и другие греческие атомисты считали, что движение - вечное свойство вечных атомов. Атомы бескачественны, т.е. лишены цвета, вкуса, запаха и т.д.

Мир в целом для атомистов - беспредельная пустота, наполненная многими мирами, число которых бесконечно. Земля одинаково удалена от всех точек области космоса, а поэтому неподвижна; вокруг нее движутся звезды.

Мир - это непрерывно движущиеся атомы и молекулы. Но как связать гармонию окружающего мира с хаотическим тепловым движением молекул? Как возникает красота?

Джон Холл (XVII): “Если то, что мы называем Вселенной, случайно зародилось из атомов, которые неутомимы в своем вихревом движении, то как случилось, что ты так прекрасна, а я влюблен?”

Для античных философов мир был подобен целостному организму, за многообразием его проявлений они видели некое упорядоченное начало. Слово “космос”, вошедшее в науку того времени, означало “упорядоченность”.

У Платона идея и материя в одинаковой мере суть начала, и, хотя материя по сравнению с идеей представляет низшую ступень бытия, обе равно необходимы для создания мира. Исходя из оппозиции “идея-тело”, Платон определяет материю как “то, в чем” возникает чувственное подобие умопостигаемого образца. В “Тимее” картина вечно сущего умопостигаемого космоса как парадигмы (образца) для вечно становящегося чувственно воспринимаемого космоса дополняется фигурой ума-демиурга, объединяющего оба мира с помощью мировой души (ФЭС, 1983).

Мир Аристотеля состоит из пяти стихий (+ эфир). Эфир заполняет все пространство, он вечен, не меняется и не превращается в другие элементы.

Вселенная Аристотеля конечна, ее ничто не объемлет, вне ее находится только перводвигатель - бог. Бог Аристотеля безличный, он есть чистый деятельный разум.

Основное положение механики Аристотеля: “Движущееся тело останавливается, если сила, его толкающая, прекращает свое действие...” Аристотель не увидел проявления инерции в окружающем мире и заставил бога денно и нощно вращать небосвод.

Плотин (204/205-270) толкует Платона и на основе ряда платоновских текстов строит некое подобие системы. Чувственный космос противопоставляется умопостигаемому, посредствующим звеном между ними признается мировая душа. Новым у Плотина явилось учение о первоначале всего сущего, едином, которое само выше сущего. При этом последовательность ум -душа - космос, т.е. вся сфера бытия оказывалась только проявлением, осуществлением первоначала, тремя его ипостасями: ум и душа - осуществление единого в вечности, космос - во времени.

Материя у Плотина - бестелесный неаффицируемый субъект. Материя провоцирует высшее к переходу в низшее. Она - зеркало, отражаясь в котором высшее порождает низшее в качестве своего подобия.

Универсум Плотина статичен. Всякая низшая ступень в нем рождается от высшей, причем высшая вечно остается неизменной и, порождая, не терпит ущерба. Космос вечно вращается круговым вращением и в подлунной части его вечно чередуются возникновение и гибель.

Плотин оказал огромное влияние на последующее развитие философии. Рене Декарт первый после Аристотеля взялся за создание единой картины мира (“Начала философии”, 1644).

XIV-XVIII века - время расцвета механической картины мира, что связано с примитивным производством, которое имело дело в основном с механическим движением.

Вселенная Ньютона состоит из движущихся тел и пустоты. Пространство в ней только вместилище тел, а время - длительность процессов. Вселенная бесконечна в пространстве и времени и неизменна со дня творения. Как она образовалась? На этот вопрос Ньютон не отвечает. Чтобы привести Вселенную в движение, Ньютону понадобился “первый толчок”. Здесь сфера деятельности бога сужается. Ведь у Аристотеля бог должен был постоянно крутить небосвод.

Первый кирпичик в фундамент эволюционной картины мира был положен Иммануилом Кантом с выходом его “Всеобщей естественной истории и теории неба” в 1755 году. (Тезис Канта: “Имей мужество пользоваться своим умом”). Кант имел мужество выступить против царившего в науке представления о неизменности окружающего мира.

Лиссабонское землетрясение (1775 г., 60 000 погибших) способствовало крушению иллюзий о вечной гармонии природы, созданной творцом на вечные времена.

И.Кант (1781) в “Критике чистого разума”, пытаясь проникнуть в глубь истории с ее картинами ужасающей жестокости, бесчеловечности, глупости, ставит вопрос:”Как весь этот видимый хаос совместить с понятием прогресса?” - и приходит к выводу, что суетное на одном системном уровне оказывается закономерным на другом. Природные задатки человека, его разум развиваются не в индивиде, а в роде. Род людской развивается в направлении прогресса, несмотря на отдельные “вывихи”. Источником естественного развития Кант считает борьбу.

Кант: “...Дайте мне материю, и я покажу вам, как из нее должен образоваться мир. Но... в состоянии ли мы сказать: дайте мне материю, и я покажу вам, как можно было бы произвести гусеницу?”

Происхождение и развитие живых существ продолжали оставаться удивительными тайнами природы.

Каспар Вольф (1759) в диссертации “Теория генерации” доказал, что индивидуальное развитие живых существ происходит путем эпигенеза. Предшественником Вольфа можно считать Аристотеля. Аристотель первым увидел в эмбриональном развитии новообразование из “бесформенной” материи. Но он не мог ответить на вопрос, почему из эмбриона курицы всегда появляется курица, а не какое-либо другое существо.

Сторонники преформизма искали внутреннюю “модель”, вещественный чертеж организма, который сам способен к росту, и отрицали развитие с новообразованием. При этом они не могли объяснить явления регенерации, тератогенеза. Эпигенез мог ответить на эти вопросы, но он допускал существование некоей жизненной или формирующей организм силы, которую, однако, найти не могли.

Современная биология развития установила, что индивидуальное развитие представляет собой преформированный эпигенез: ход онтогенеза запрограммирован (предопределен) генотипом.

В 1809 году французский естествоиспытатель Жан Батист Ламарк (17441829) издал свой главный труд “Философия зоологии”, в которой изложил первую концепцию биологической эволюции. Согласно его концепции органический мир Земли является результатом длительного прогрессивного развития. Биологическая эволюция включает усложнение или повышение уровня организации (“развитие от простого к сложному” или принцип градации) и возникновение частных приспособлений к различным условиям среды в пределах каждой ступени градации в результате наследования “благоприобретенных признаков” (которые современной генетикой признаются ненаследуемыми).

Ламарк впервые в истории науки высказал предположение о происхождении человека от “четвероруких”, т.е. приматов. Общая характеристика биологической эволюции у Ламарка оказалась верной, но причины ее вскрыть ему не удалось.

С этой задачей справился позже английский естествоиспытатель Чарлз Дарвин (1809-1882) в своей главной книге “Происхождение видов” (1859). Основная заслуга Дарвина - концепция естественного отбора, основанного на наследственной изменчивости и борьбе за существование.

Книга Дарвина нанесла серьезный удар по креационизму и совершила настоящий переворот в области биологии. Однако ее значение вышло за пределы естествознания, так как она затрагивала многие морально-этические проблемы. В 1871 году Дарвин издал книгу “Происхождение человека и половой отбор”, в которой доказал родство человека с приматами и вскрыл причины и закономерности антропогенеза.

Позже Ф.Энгельс внес дополнения в теорию антропогенеза, сделав акцент на роли трудовой деятельности в процессе превращения обезьяны в человека. И, наконец, XX век принес неоспоримые и обильные палеонтологические данные, подтверждающие естественное происхождение человека от высших приматов.

Революция, совершенная Дарвином в 1859 г., - возможно, наиболее фундаментальная из всех интеллектуальных революций в истории человечества. Она не только уничтожила антропоцентризм, но и затронула все метафизические и этические понятия (Э.Майр. Смена представлений, вызванная дарвиновой революцией. Из истории биологии, вып. 5. М.: Наука, 1975, 3-25). Период с 1800 г. до середины столетия был свидетелем величайшего расцвета в Великобритании естественной теологии. Выискивать дополнительные доказательства мудрости и постоянного внимания Творца стало нравственным долгом ученого. (Агассис: “Наша задача ... завершается, как только мы доказали Его существование”).

Мир считался созданным в 4004 г. до н.э. и неизменным (современный пример - фильм “Происхождение”). Лестница существ - часть божественного плана - объясняла более высокую и более низкую организацию животных, а всемирный потоп - существование ископаемых форм. Все сделано согласно плану. Поскольку виды неизменны, то все, что их касается, -область распространения, приспособления против конкурентов и врагов и даже время вымирания - было заранее определено, т.е. предопределено.

В результате дарвиновой революции представление о мире, созданном в один миг, было заменено понятием о постепенно развивающемся мире, в котором человек является частью эволюционного потока.

Дарвинова революция потребовала не просто замены одной научной теории другой, а в сущности отказа от основных широко распространенных убеждений. Она вызвала значительно большие последствия за пределами науки, нежели любая революция в области физики.

Теория относительности Эйнштейна и теория Гейзенберга едва ли могли оказать какое-нибудь влияние на чьи-либо личные убеждения. Революция, совершенная Коперником, и взгляд Ньютона на мир требовали известной ревизии традиционных убеждений. Но ни одна из этих теорий не подняла так много вопросов, относящихся к религии и этике, как дарвинова теория эволюции посредством естественного отбора.

Дарвин, приступая к созданию своей эволюционной теории, был уже убежденным материалистом. Это доказано американцами Говардом Грубером и Полом Берретом в книге “Дарвин о человеке” (1974). Авторы в записных книжках Дарвина 1837-1839 г.г. нашли следующие высказывания:

“Чтобы избежать выяснения, насколько я убежден в материализме, скажу только, что чувства, инстинкты, степени таланта, которые наследственны, являются такими потому, что мозг ребенка похож на родительскую конструкцию. Дух есть функция тела”. В механической картине мира Вселенная представляется как механическое соединение частей. С именем Фарадея связано формирование электродинамической картины мира. А с 1910 года в науку начинают входить квантовые представления о корпускулярно-волновом дуализме элементарных частиц и наступает время новой, современной картины мира.

Для науки нашего времени мир, как и в древние времена, - это единое органическое целое.

Тема 3.2. Принципы синергетики, эволюционная триада и системный подход

Согласно общей теории систем (Л. фон Берталанффи): Система - совокупность взаимодействующих элементов, объединенных в целое выполнением некоторой общей функции, несводимой к функциям ее компонентов.

Система:

1) взаимодействует со средой как целое;

2) состоит из подсистем более низкого уровня;

3) сама является подсистемой для систем более высокого уровня;

4) сохраняет общую структуру взаимодействия элементов при изменении внешних условий и внутреннего состояния.

Редукционизм - стремление сложное свести к простому, сложное объяснить через простое, способ сведения сложного к анализу явлений более простых, который является мощным средством исследования.

Это - метод мышления. Идеология редукционизма столь глубоко пронизала все физическое мышление, что большинство физиков глубоко убеждены, что все свойства макроуровня уже закодированы в моделях микроуровня.

Редукционизм в физике порождает ряд важных исследовательских программ. Одна из них, может быть, самая важная в современной теоретической физике, способная открыть совершенно новые горизонты познания, посвящена единой теории поля и включения гравитации в общую систему взаимодействий.

К числу подобных программ относятся и исследования И.Пригожина и его школы, посвященные проблеме “стрелы времени”.

Необратимость времени - это экспериментальный факт, который мы фиксируем на макроуровне. Но является ли необратимость времени особым свойством макроуровня или она оказывается следствием свойств микроуровня, который описывается квантовой механикой? Этот вопрос затрагивает самые глубинные слои познания. Н.Моисеев полагает, что ответ должен быть отрицательным. Дело в том, что основное уравнение квантовой механики - уравнение Шредингера - инвариантно относительно направления времени. И у нас нет оснований сомневаться в его справедливости. Вполне допустима мысль о том, что на квантово-механическом уровне нет “стрелы времени”. Там царствует обратимость, и замена знака времени на обратный ничего не меняет в характере процессов, протекающих на этом уровне.

Интересна судьба редукционизма в биологии, который выразился в стремлении объяснить процессы, протекающие в живом веществе, только законами физики и химии. Многие факты действительно получили свое относительно простое объяснение в рамках редукционизма, например, явления наследственности, поэтому влияние редукционизма в биологии оказалось весьма значительным.

Бертран Рассел, кажется, сказал однажды, что, как это ни удивительно, но все свойства живого вещества можно будет предсказать однажды, ибо они однозначно определяются особенностями электронных оболочек атомов, в него входящих.

Работы М.Эйгена представляют собой попытку объяснить процессы, протекающие в живом организме, законами физики и химии.

Тем не менее, биология не принимает положения о том, что свойства системы однозначно определяются свойствами ее элементов и структурой их связей. Тем более это положение не может быть принято науками об обществе. Более верным является представление о том, что при объединении элементов происходит образование новой структуры, обладающей специфическими качествами. В процессе сборки возникают новые системные свойства, не выводимые из свойств объектов более низкого уровня.

Развитие нашего мира на всех его уровнях представляется в форме некоторого процесса непрерывного возникновения (и разрушения) новых систем с возникновением новых свойств, нового качества.

О направлении самопроизвольных процессов

Теория устойчивости термодинамических систем носит в основном качественный характер.

Положение монеты, лежащей на столе, устойчиво; стоящей на ребре -неустойчиво.

Каждая термодинамическая система подвержена самопроизвольным возмущениям, или флуктуациям. Если система устойчива, флуктуации затухнут, и энтропия примет первоначальное значение. Напротив, если первоначальное состояние неустойчиво, любая флуктуация приобретает макроскопические размеры и движет систему в совершенно новое состояние.

Неустойчивость может быть следствием флуктуаций любого термодинамического параметра.

Линейная область термодинамики необратимых процессов характеризует состояния, близкие к состоянию равновесия. Стационарные состояния таких процессов характеризуются минимальной скоростью производства энтропии, что обеспечивает устойчивость стационарных состояний вблизи равновесия.

В области линейности неравновесных состояний критерии устойчивости и эволюции тесно связаны. Судьба системы будет раз и навсегда предопределяться наложением не зависящих от времени граничных условий.

Для нелинейной термодинамической системы функция кинетического потенциала не может быть установлена. Неравновесные состояния не могут устоять перед натиском флуктуаций, поскольку они не имеют никакого механизма, который способствовал бы устранению этих флуктуаций. Они могут усиливаться и тем самым коренным образом изменять поведение системы.

Критерий устойчивости систем, далеких от равновесия

Об устойчивости неравновесных стационарных состояний вдали от равновесия можно судить по знаку избыточного производства энтропии: если знак отрицательный, система неустойчива, и, наоборот, положительный знак указывает на то, что стационарные состояния асимптотически устойчивы.

В настоящее время известно много примеров неустойчивых нелинейных систем, которые играют решающую роль в понимании динамических свойств материи, необычного характера протекания химических реакций, организации биологических систем и даже некоторых сторон жизни сообществ - от бактерий до человека.

Некоторые примеры неустойчивых, далеких от равновесия стационарных состояний:

Конвективная неустойчивость Бенара (1900). Слой жидкости между двумя горизонтальными пластинками с разной температурой. При пороговом значении разности температур появляются устойчивые конвективные ячейки, имеющие форму роликов. Соседние ролики вращаются в противоположных направлениях. При достижении нового порогового значения скорость образования и температура ячеек начинает периодически изменяться с постоянной частотой и предсказуемым образом.

Неустойчивость по Тейлору - жидкость между двумя концентрическими цилиндрами, причем внутренний вращается.

В обоих случаях бесформенная жидкость самопроизвольно организуется в форму роликов или шестигранников или же в слоистые структуры. Примечательно, что такая организация является следствием рассеяния энергии системы при сохранении неравновесности за счет постоянного притока притока энергии из внешней среды. Как только приток энергии прекращается, система возвращается к исходному состоянию.

Порядок и энтропия

Во многих отношениях классическое термодинамическое описание биологических явлений часто оказывалось несостоятельным. Самая существенная черта биологических систем - временной и пространственный порядок. Кроме того, биологическая упорядоченность, по-видимому, является внутренней сущностью данного организма, и он индивидуально и специфически отвечает на внешние раздражители, в то время как упорядоченность равновесного состояния неживых систем предопределена внешними условиями.

Открытие природы неустойчивости стационарных состояний систем, далеких от термодинамического равновесия, послужило основой понимания спонтанного возникновения процессов, которые приводили к ярко выраженной пространственно-временной организации физико-химической системы.

Таким образом, критерий устойчивости - это мост между физико-химическими системами и биологической организацией.

Большинство химических реакций протекает вдали от термодинамического равновесия и устойчивости стационарного состояния могут угрожать автокаталитические стадии. В этом случае срабатывает механизм обратной связи, когда продукт реакции участвует в синтезе самого себя.

Биохимические системы включают в себя длинную цепь из многих тысяч биохимических реакций. Их главная особенность состоит в наличии ферментативного катализа и механизмов обратной связи. Кроме того, живые организмы представляют собой открытые системы, они проявляют черты диссипативных структур.

Развитые П.Гленсдорфом и И.Пригожиным критерии эволюции и устойчивости неравновесных систем примирили живой мир с термодинамической теорией. Как только ученые убедились, что нет никакого противоречия между законами макроскопической физики, свойствами самоорганизации материи и биологическими функциями, для исследования этих процессов открылись новые пути.

Кооперация на молекулярном уровне лежит в основе нескольких типов надмолекулярной организации материи. Такая организация материи проявляется самопроизвольно как неотъемлемое свойство любой данной химической реакции в отсутствие каких бы то ни было организующих факторов. Таким образом, мы можем говорить о самоорганизации гомогенной материи. С другой стороны, для такой самоорганизации требуется постоянный приток и отток вещества и энергии, и поэтому мы также говорим о диссипативных структурах.

Описание процесса самоорганизации материи - эволюции Вселенной опирается на два постулата:

1) материя обладает свойством саморазвития -принцип синергизма и

2) Вселенная возникла 15-20 млрд лет назад -принцип начала.

Эволюция Вселенной представляет собой грандиозную панораму возникновения их хаоса все новых систем разной временной и пространственной протяженности. Эти образования далеки от равновесия, квазистабильны и, разрушаясь, снова возвращаются в хаос, давая материал для новых квазистабильных образований.

Для любых достаточно сложных систем, как и для общего мирового процесса развития характерны два свойства: 1) принципиальная неустойчивость - два близких начальных состояния могут порождать совершенно различные траектории развития; 2) принципиальная стохастичность - непредсказуемость внешних воздействий. Эти свойства характеризуют хаотичность.

Указанные свойства порождают закон дивергенции, следуя которому процессы развития приводят к фантастическому разнообразию форм организации материи.

Еще одно свойство развития - направленный характер: происходит непрерывное усложнение организации. Этот феномен развития, как и тесно с ним связанную ассиметрию времени, мы до сих пор не можем обосновать, принимая лишь как “эмпирическое обобщение”.

Еще одно эмпирическое обобщение - жизнь существует, во всяком случае на Земле, где она однажды возникла. Возникновение жизни - естественный этап саморазвития Земли.

Переход от неживого к живому - один из этапов процесса самоорганизации материи.

Появление жизни изменило характер эволюции географической оболочки Земли. Граниты, гнейсы, песчаники - результат взаимодействия биогеохимических и тектонических процессов. Изменился состав гидросферы и атмосферы.

Царство прокариотов продолжалось около 2 млрд лет. Они насытили атмосферу кислородом. Им на смену пришли эукариоты, которые отличались более эффективным использованием энергии, с чем связана их способность к более быстрой эволюции и к самосовершенствованию. Появление эукариотов - грандиозная перестройка биосферы.

Возникновение разума - столь же загадочная перестройка процесса развития мира, как и возникновение жизни. Наш мозг породил способность познавать самого себя, видеть себя со стороны, познавать окружающий мир и задумываться над тайной своего происхождения.

Благодаря появлению разума возникает общество как совокупность индивидуумов, личностей, способных к совместному труду и творчеству в материальной и духовной сфере.

История человека включена в историю биосферы. Развитие человеческого общества - такой же естественный процесс, как формирование галактик и развитие вируса.

Таков, по Н.Моисееву, эскиз единого процесса самоорганизации (процесса синергизма), протекающего в нашей Вселенной.

Механизмы эволюции

Единый процесс развития охватывает неживую природу, живое вещество и общество - три уровня организации материального мира - три звена единой цепи. Необходимо создание единого языка для описания этого единого процесса развития. В основу такого языка может быть положена дарвиновская триада: изменчивость, наследственность и отбор, но содержание этих понятий должно быть расширено.

Изменчивостью можно назвать любые проявления стохастичности и неопределенности. Неопределенность и стохастичность - объективная реальность нашего мира, которая проявляется в контексте необходимости, т.е. законов.

Случайность и неопределенность - характеристики всех процессов, протекающих в неживой природе (турбулентность, броуновское движение), в живой природе (мутагенез), в обществе (конфликты).

Изменчивость создает поле возможностей, из которого возникает многообразие процессов и организаций. Она вместе с тем служит и причиной их разрушения. Такова диалектика самоорганизации (синергетики).

Стохастичность и неопределенность в повседневной жизни людей проявляются в неоднозначности отображения реального мира в своем сознании, в неопределенности поведения и реакций на воздействия окружающего мира.

Второй фактор - наследственность. Этим термином можно обозначить не только способность сохранять свои особенности, но и изменяться от прошлого к будущему, способность будущего зависеть от прошлого. Наследственность отражает влияние прошлого на будущее. Будущее определяется прошлым в силу стохастичности неоднозначно.

Отбор - третье и самое трудное понятие триады. Недавно было открыто и изучено явление, получившее название “странный аттрактор”. Оказалось, что траектории многих детерминированных динамических систем могут полностью заполнять некоторый фазовый объем: в любой окрестности любой точки этого объема всегда будут находиться точки, принадлежащие траектории одной и той же системы, порожденные одним и тем же начальным состоянием. Более того, этот объем будет притягивать и остальные траектории системы.

Движения таких систем характеризуются высшей степенью неустойчивости: две любые сколь угодно близкие точки будут порождать совершенно различные траектории. Принцип Адамара “малым причинам должны отвечать малые следствия”, который долгое время играл важную роль в математической физике, теперь приходится пересматривать.

Траектории систем, обладающих “странным аттрактором”, несмотря на то, что они описываются вполне детерминированными уравнениями, подобны траекториям, порождаемым случайными причинами. Они хаотичны, их развитие невозможно прогнозировать.

Может быть, неустойчивости, порождающие хаос и неупорядоченность, -это естественное состояние материи, ее движения, на фоне которого лишь как исключения возникают более или менее стабильные образования? Может быть только эти образования мы и можем наблюдать, а все остальное происходит без свидетелей?

В этом случае принципами отбора можно назвать причины, которые приводят к существованию устойчивых образований в нашем нестабильном мире.

Наш опыт показывает, что кажущийся хаос случайностей рождает нечто определенное и закономерное. Законами природы мы называем те связи между явлениями природы, которые мы можем установить эмпирически или средствами логического мышления. Эти связи определяют процессы самоорганизации нашего мира.

В механике со времен Мопертюи и Лагранжа принято говорить о виртуальных движениях или множествах возможных движений, которые могут порождаться любыми произвольными, в том числе “случайными” причинами. Значит, уже в XVIII веке было понято, что изменчивость предоставляет природе целое поле возможностей, из которых отбирается лишь некоторая совокупность, удовлетворяющая некоторым специальным условиям (принципам отбора). Было установлено, что реальные движения отбираются из множества виртуальных с помощью законов Ньютона, которые и являются простейшими принципами отбора (концепция фильтра).

Принципами отбора являются все законы сохранения, законы физики и химии, второй закон термодинамики, в экономике - условия баланса.

Особую роль в мировом эволюционном процессе играет принцип минимума диссипации энергии: если допустимо не единственное состояние системы, а целая совокупность состояний, согласных с законами сохранения и связями, наложенными на систему, то реализуется то состояние, которому отвечает минимальное рассеивание энергии, или, что то же самое, минимальный рост энтропии.

Этот принцип следует рассматривать как эмпирическое обобщение. По своей формулировке он похож на принцип минимума потенциала рассеяния Л.Онсагера и принцип минимума производства энтропии И.Пригожина.

Н.Моисеев полагает, что принцип минимума диссипации энергии есть частный случай значительно более общего принципа “экономии энтропии”. Представляется справедливой следующая гипотеза. Если в данных условиях возможны несколько типов организации материи, согласующихся с другими принципами отбора, то реализуется та структура, которой отвечает минимальный рост (или максимальное убывание) энтропии. Поскольку убывание энтропии возможно только за счет поглощения внешней энергии и вещества, реализуются те из мысленно возможных (виртуальных) форм организации, которые способны в максимальной степени поглощать внешнюю энергию и вещество.

Этот принцип отбора Н.Моисеев называет обобщенным принципом диссипации.

Существует, по крайней мере, два класса механизмов эволюции. К первому можно отнести адаптационные механизмы - дарвиновские механизмы естественного отбора, действующие не только в биологии, но и в физике, химии, технике и обществе. Адаптация или самонастройка обеспечивает развивающейся системе стабильность в конкретных условиях. Изучая эти условия можно предвидеть тенденции в изменении параметров системы (пример - селекция). Пути развития системы ограничиваются каналом эволюции, установленным природой, и в этом случае путь развития предсказуем с некоторой точностью.

Другой тип механизмов эволюции справедлив для систем, обладающих пороговыми состояниями, переход через которые ведет к резкому, качественному изменению протекающих в них процессов - к изменению их организации (пример: переход ламинарного течения в турбулентное с ростом расхода жидкости).

Очень важно при этом следующее: переход системы в новое состояние в пороговой ситуации неоднозначен, так же как и характер ее новой организации, то есть после бифуркации существует целое множество возможных структур, в рамках которых будет в дальнейшем развиваться система. И предсказать заранее, какая из этих структур реализуется, нельзя в принципе, ибо это зависит от тех неизбежно присутствующих случайных воздействий - флуктуаций внешней среды, - которые в момент перехода через пороговое состояние и будут определять обор.

Эта особенность пороговых (бифуркационных или катастрофических) механизмов играет особую роль в развитии нашего мира. Неопределенность будущего и есть главная особенность второго типа механизмов эволюции. Она есть следствие того, что будущее состояние системы при переходе ее через пороговое значение определяется флуктуациями, которые присутствуют всегда.

При переходе через бифуркационное состояние система как бы забывает (или почти забывает) свое прошлое. И в силу вероятностного характера перехода через это пороговое состояние обратного хода эволюции уже нет. Время, как и эволюция, приобретает направленность и необратимость.

Механизмы бифуркационного типа заставляют реабилитировать, в известной степени, теорию катастроф Ж.Кювье. Не только дарвиновское постепенное изменение видов характерно для эволюции жизни, но и быстрые перестройки. Дарвин или Кювье - такой вопрос неправомочен. И Дарвин, и Кювье - так правильно.

Катастрофические состояния биосферы, порождавшие бифуркации, были столь же естественными элементами эволюционного процесса, как и постепенное видообразование.

Законы физики, химии и другие принципы отбора устанавливают определенные границы изменения состояний системы, канал, внутри которого могут протекать эволюционные процессы. Случайные факторы как бы пытаются вывести систему за эти границы. До поры до времени этого не происходит - поток внутри канала следует механизму адаптационного типа.

Со временем эволюционный поток выходит на пересечение нескольких каналов эволюции, и теперь вступают в действие бифуркационные механизмы А.Пуанкаре. На пересечении каналов возникает бифуркация или катастрофа по терминологии Уитни и Тома. Возникает несколько вариантов дальнейшего развития, и выбор нового канала случаен или непредсказуем, ибо он зависит от случайных факторов.

Из этого вытекает один из общих законов самоорганизации материи: развитие характеризуется усложнением и ростом разнообразия форм организации материи. Это закон дивергенции, справедливый для всех уровней материального мира. Стохастический характер причинности и действие бифуркационных механизмов может развести сколь угодно далеко даже самые близкие формы организации.

С увеличением размерности системы, что всегда происходит при увеличении ее сложности, количество состояний, в которых могут происходить катастрофы (бифуркации), быстро возрастает. Следовательно, с ростом сложности системы растет и вероятность увеличения числа возможных путей дальнейшего развития, то есть дивергенции, а вероятность появления двух развивающихся систем в одном и том же канале эволюции практически равна нулю. Это и означает, что процесс самоорганизации ведет к непрерывному росту числа организационных форм.

Теория бифуркаций была создана Пуанкаре и затем развита Андроновым, Хопфом и другими исследователями.

При удалении от равновесия термодинамическое состояние становится неустойчивым, и неожиданно могут появиться новые решения. Единственное решение, которое имеет система уравнений в непосредственной близости к равновесной области, при некотором критическом значении параметров достигает точки бифуркации, начиная от которой для системы открываются новые возможности, приводящие к нескольким решениям.

Определение параметров, при котором начинается ветвление решений, представляет собой задачу первостепенной важности как для аналитических, так и для числовых решений нелинейных дифференциальных уравнений. Самая первая задача любого поиска бифуркации решений заключается в определении точек неустойчивости однородной системы.

Литература

1. Сачков Ю.В. Вероятностная революция в естествознании/ Природа, 1991, 5

Тема 3.3. Качественные методы в эволюционных задачах

Начала нелинейного мышления. Пространства состояний системы и динамическая модель

Становление науки Нового времени неотделимо от выработки концепции механической причинности и ее абсолютизации в лапласовском детерминизме, который несовместим с идеей развития. Концепция однозначной причинности выражена в афоризме: “Одинаковые причины - одинаковые следствия”. Встречающиеся сплошь и рядом в обычных житейских ситуациях случаи, когда , казалось бы одинаковые причины приводят к разным следствиям, всегда легко и изящно объяснялись ссылкой на неполноту учета всех предшествующих обстоятельств.

Развитие квантовой физики привело к радикальному перевороту в этой области, суть которого заключается в утверждении объективного и фундаментального статуса вероятности и неопределенности.

Основное уравнение квантовой механики - уравнение Шредингера -столь же детерминистично и линейно, как и уравнения классической механики. Но уравнение Шредингера описывает не реальные наблюдаемые величины, а распределение потенциальных возможностей. Переход к реально наблюдаемым величинам связан с редукцией волновой функции, а следовательно, с нарушением однозначной причинности.

Идея однозначной причинности жестко связана с представлением о линейном характере причинных связей (цепей событий). Считалось, что эти линейные цепи причин и следствий простираются неограниченно далеко как в будущее, так и в прошлое. Причина всегда равна своему следствию, а изменение следствия пропорционально изменению причины.

Эти натурфилософские (Ахундов и Баженов, Природа, 1991, 4) представления о линейных цепочках причин и следствий находят в науке выражение в образе линейных систем, процессы в которых описываются линейными дифференциальными уравнениями, - свойства таких систем не меняются при изменении их состояния (принцип суперпозиции).

Мир классической механики был линеаризированным миром, законы которого формулировались на языке линейных дифференциальных уравнений. Эти уравнения служили не только мощным аппаратом исследования, но и теми “очками”, сквозь которые исследователь смотрел на мир.

Но реальная действительность не состоит из абсолютно твердых шаров, катящихся по абсолютно гладким поверхностям. Реальный “биллиард” характеризуется такими нелинейными особенностями, как трение, турбулентность и пр. Для описания реальных объектов вводились различные поправки. Но отступления от линейности рассматривались как незначительные и объяснялись не идеальностью объектов.

Однако в ходе научного познания объектами исследования стали такие явления и процессы, которые проявляют себя не просто как неидеальные, но именно как нелинейные. В XIX веке наука, сталкиваясь с такими объектами, вынуждена была отступать, ибо не было эффективных методов решения нелинейных уравнений. Да и господствовавшая картина мира не стимулировала интерес к изучению подобных объектов. Более того, само их существование могло показаться абсурдным. Например, кому могло прийти в голову исследовать процессы вдали от равновесия и стационарности: если вблизи этого положения исследование имеет смысл и может опираться на испытанные методы линеаризированной физики (плюс необходимы уточнения), то вдали от него такая работа представлялась бессмысленной, ибо задолго до ее завершения объект исследования будет просто разрушен.


Подобные документы

  • Требования образовательных стандартов по дисциплине "Концепции современного естествознания". Изучение и понимание сущности фундаментальных законов природы, составляющих каркас современных физики, химии и биологии. Методология современного естествознания.

    лекция [26,7 K], добавлен 24.11.2017

  • Волновая концепция света О. Френеля. Концепции классической электродинамики. Электромагнитное поле Максвелла и эфир. Возникновение предпосылок ядерной физики. Эволюционная теория Дарвина. Концепции классической термодинамики. Достижения биологии XIX века.

    реферат [61,7 K], добавлен 22.03.2011

  • Основные свойства эволюционных процессов и их отличие от динамических и статистических процессов и явлений в природе. Современные подходы к анализу сложных самоорганизующихся систем. Особенности синергетики. Экономика с точки зрения синергетики.

    курсовая работа [23,1 K], добавлен 01.10.2010

  • Синергетика – наука о сложном. Сущность гуманитарного аспекта синергетики. Синергетический процесс с социальной точки зрения. Подходы к анализу систем. Эволюционная триада и принцип причинности. Диалектика, самоорганизация, хаос и порядок, эволюция.

    реферат [96,3 K], добавлен 10.01.2011

  • Естественнонаучная и гуманитарная культуры и история естествознания. Корпускулярная и континуальная концепции описания природы. Порядок и беспорядок в природе, хаос. Пространство и время, принципы относительности, симметрии, универсального эволюционизма.

    курс лекций [545,5 K], добавлен 05.10.2009

  • Естествознание как система научных знаний о природе, обществе и мышлении взятых в их взаимной связи. Формы движения материи в природе. Предмет, цели, закономерности и особенности развития, эмпирическая, теоретическая и прикладная стороны естествознания.

    реферат [25,4 K], добавлен 15.11.2010

  • Ученые и философы о вопросе судьбы науки, об особенностях эволюции процесса познания в науке, о конечных итогах данного процесса. Современная физика. Восточный мистицизм. Взаимосвязь современной физики и восточного мистицизма в неаучных исследованиях.

    реферат [20,0 K], добавлен 23.12.2007

  • Цель и предмет курса "Концепции современного естествознания", основные термины и понятия. Специфические черты науки, виды культуры. История становления научных знаний. Естественнонаучная картина мира. Внутреннее строение Земли. Законы химии и биологии.

    шпаргалка [136,9 K], добавлен 12.02.2011

  • Кибернетика и ее принципы. Самоорганизующиеся системы. Связь кибернетики с процессом самоорганизации. Синергетика как новое направление междисциплинарных исследований. Отличие синергетики от кибернетики. Структурные компоненты процесса самоорганизации.

    реферат [58,1 K], добавлен 09.09.2008

  • Особенности формирования научной картины мира в эпоху становления классического естествознания. Развитие физики как науки. Исследование роли внутренних и внешних факторов в формировании физической картины мира. Новая гелиоцентрическая парадигма Коперника.

    реферат [36,3 K], добавлен 27.12.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.