Эволюционно-синергетическая парадигма
Синергетика – наука о сложном. Сущность гуманитарного аспекта синергетики. Синергетический процесс с социальной точки зрения. Подходы к анализу систем. Эволюционная триада и принцип причинности. Диалектика, самоорганизация, хаос и порядок, эволюция.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 10.01.2011 |
Размер файла | 96,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
58
Министерство экономического развития и торговли Российской Федерации
Российский государственный торгово-экономический университет
(воронежский филиал)
Кафедра математики и естественно-научных дисциплин
Реферат
По дисциплине: Концепция современного естествознания
на тему: Эволюционно-синергетическая парадигма
Выполнила
студентка 1 курса группы МЭд-106:
Резникова Дарья
Проверил: Голев И. М.
Воронеж 2007 г.
Введение
В раскрытии механизмов самоорганизации помимо неравновесной термодинамики были использованы также новые идеи и результаты, появившиеся в разных областях физики и химии -- в гидродинамике, физике лазеров, при исследовании автокаталитических химических реакций и некоторых других явлениях.
Для всех изученных явлений найден ряд принципиально важных признаков: 1) самоорганизующаяся система является сложной, состоит из большого числа элементов; 2) она является открытой, неравновесной и нелинейной; 3) при увеличении неравновесности системы выше определенного предела она переходит в неустойчивое состояние; 4) выход из неустойчивости происходит скачком на счет быстрой перестройки элементов системы; 5) при этом наблюдается согласованное поведение элементов системы, которое проявляется в переходе системы в качественно новое состояние с упорядоченной структурой (это может быть какая-либо пространственная или временная упорядоченность); 6) выбор одного из возможных состояний случаен.
Осмысление различных процессов самоорганизации привело к становлению нового междисциплинарного направления в науке -- синергетике. Эта наука изучает общие принципы, лежащие в основе всех явлений самоорганизации -- в физике, химии, биологии, в технике и теории вычислительных систем, в социологии и экономике. Конкретными подсистемами, составляющими в совокупности сложную систему, могут быть электроны, фотоны, атомы, молекулы, живые клетки, нейроны мозга, части технических устройств или организмов, животные, люди, социальные образования. Таким образом, под синергетикой понимают теорию самоорганизации в сложных, открытых, неравновесных и нелинейных системах любой природы. Это новая наука, занимающаяся изучением возникновения, поддержания, устойчивости и распада самоорганизующихся структур, кооперативных эффектов в них.
Цель данной работы - попытаться на доступном уровне определить существо синергетики, как нового направления современной научной мысли и очертить круг исследуемых ею вопросов.
Синергетика заметно отличается от традиционной научной дисциплины: она не сложилась пока как единая наука, а существует как бы в нескольких вариантах, отличающихся не только названиями, но и степенью общности, и полнотой результатов, и непосредственным предметом исследований. Важнейшим из таких вариантов синергетики можно считать неравновесную термодинамику (теорию диссипативных структур). Синергетическими по существу теориями являются математическая теория бифуркаций, теория хаоса, теория нелинейных колебаний и волн, нелинейная динамика, теория фазовых переходов и некоторые другие.
Синергетика прогрессирует вместе с математическим аппаратом описания нелинейных и неустойчивых систем и соответствующими вычислительными методами. Эти методы опираются на использование компьютерного моделирования, поэтому синергетика могла возникнуть и развиваться только в эпоху мощной компьютерной техники.
Можно сказать, что синергетика на современном этапе ее развития -- это совокупность общих идей о принципах самоорганизации и вместе с тем сумма общих математических методов для ее описания. Предпринимаются все более активные попытки использования этих идей и методов в экологии, медицине, социологии, экономике и вообще в области социально-гуманитарного знания.
1. Синергетика - наука о сложном
В последние годы наблюдается стремительный и бурный рост интереса к междисциплинарному направлению, получившему название “синергетика”. Издаются солидные монографии, учебники, выходят сотни статей, проводятся национальные и международные конференции.
Создателем синергетического направления и изобретателем термина "синергетика" является профессор Штутгартского университета и директор Института теоретической физики и синергетики Герман Хакен. Сам термин “синергетика” происходит от греческого “синергена” - содействие, сотрудничество, “вместедействие”.
По Хакену, синергетика занимается изучением систем, состоящих из большого (очень большого, “огромного”) числа частей, компонент или подсистем, одним словом, деталей, сложным образом взаимодействующих между собой. Слово “синергетика” и означает “совместное действие”, подчеркивая согласованность функционирования частей, отражающуюся в поведении системы как целого.
Подобно тому, как предложенный Норбертом Винером термин “кибернетика” имел предшественников в лице кибернетики Ампера, имевшей весьма косвенное отношение к “науке об управлении, получении, передаче и преобразовании информации в кибернетических системах”, синергетика Хакена также имела своих “предшественниц” по названию: синергетику Ч. Шеррингтона, синергию С. Улана, синергетический подход И. Забуского.
Ч. Шеррингтон называл синергетическим, или интегративным, согласованное воздействие нервной системы (спинного мозга) при управлении мышечными движениями (согласованное действие сгибательных и разгибательных мышц - протагониста и антигониста).
С. Улам был непосредственным участником одного из первых численных экспериментов на ЭВМ первого поколения (ЭНИВАКе) и понял всю важность и пользу “синергии, т. е. непрерывного сотрудничества между машиной и ее оператором”, осуществляемого в современных машинах за счет вывода информации на дисплей.
И. Забуский к середине 60-х годов, реалистически оценивая ограниченные возможности как аналитического, так и численного подхода к решению нелинейных задач, пришел к выводу о необходимости единого синтетического подхода. По его словам, “синергетический подход к нелинейным математическим и физическим задачам можно определить как совместное использование обычного анализа и численной машинной математики для получения решений разумно поставленных вопросов математического и физического содержания системы уравнений”.
Синергетика, занимающаяся изучением процессов самоорганизации и возникновения, поддержания, устойчивости и распада структур самой различной природы, еще далека от завершения и единой общепринятой терминологии (в том числе и единого названия всей теории) пока не существует.
Системы, составляющие предмет изучения синергетики, могут быть самой различной природы, содержательно и специально изучаться различными науками: физикой, химией, биологией, математикой, нейрофизиологией, экономикой, социологией, лингвистикой (перечень наук легко можно было бы продолжить). Каждая из наук изучает "свои" системы своими, только ей присущими, методами и формулирует результаты на "своем" языке. При существующей далеко зашедшей дифференциации науки это приводит к тому, что достижения одной науки зачастую становятся недоступными вниманию и тем более пониманию представителей других наук.
В отличие от традиционных областей науки синергетику интересуют общие закономерности эволюции (развития во времени) систем любой природы. Отрешаясь от специфической природы систем, синергетика обретает способность описывать их эволюцию на интернациональном языке, устанавливая своего рода изоморфизм двух явлений, изучаемых специфическими средствами двух различных наук, но имеющих общую модель, или, точнее, приводимых к общей модели. Обнаружение единства модели позволяет синергетике делать достояние одной области науки доступным пониманию представителей совсем другой, быть может, весьма далекой от нее области науки и переносить результаты одной науки на, казалось бы, чужеродную почву.
Следует особо подчеркнуть, что синергетика отнюдь не является одной из пограничных наук типа физической химии или математической биологии, возникающих на стыке двух наук (наука, в чью предметную область происходит вторжение, в названии пограничной науки представлена существительным; наука, чьими средствами производится "вторжение", представлена прилагательным; например, математическая биология занимается изучением традиционных объектов биологии математическими методами). По замыслу своего создателя профессора Хакена, синергетика призвана играть роль своего рода метанауки, подмечающей и изучающей общий характер тех закономерностей и зависимостей, которые частные науки считали "своими". Поэтому синергетика возникает не на стыке наук в более или менее широкой или узкой пограничной области, а извлекает представляющие для нее интерес системы из самой сердцевины предметной области частных наук и исследует эти системы, не апеллируя к их природе, своими специфическими средствами, носящими общий ("интернациональный") характер по отношению к частным наукам. Физик, биолог, химик и математик видят свой материал, и каждый из них, применяя методы своей науки, обогащает общий запас идей и методов синергетики.
Как и всякое научное направление, родившееся во второй половине ХХ века, синергетика возникла не на пустом месте. Ее можно рассматривать как преемницу и продолжательницу многих разделов точного естествознания, в первую очередь (но не только) теории колебаний и качественной теории дифференциальных уравнений. Именно теория колебаний с ее "интернациональным языком", а впоследствии и "нелинейным мышлением" (Л.И. Мандельштам) стала для синергетики прототипом науки, занимающейся построением моделей систем различной природы, обслуживающих различные области науки. А качественная теория дифференциальных уравнений, начало которой было положено в трудах Анри Пуанкаре, и выросшая из нее современная общая теория динамических систем вооружила синергетику значительной частью математического аппарата.
Синергетику можно рассматривать как преемницу и продолжательницу многих разделов точного естествознания, в первую очередь (но не только) теории колебаний и качественной теории дифференциальных уравнений. Именно теория колебаний с ее "интернациональным языком", а впоследствии и "нелинейным мышлением" стала для синергетики прототипом науки, занимающейся построением моделей систем различной природы, обслуживающих различные области науки. А качественная теория дифференциальных уравнений, начало которой было положено в трудах Анри Пуанкаре, и выросшая из нее современная общая теория динамических систем вооружила синергетику значительной частью математического аппарата.
Синергетика ищет свой специфический язык. Закладывают его основы прежде всего принципы, общие для частнонаучных теорий, кроме того, принципы общенаучных теорий и, наконец, ведущие ценности синергетического мировоззрения.
Принципы частных (объектных) теорий, естественно, отличаются друг от друга вследствие различия предметных областей. Однако можно выделить ту часть принципов, которая едина для всех теорий и обозначить специфику теорий в области физики (и химии), биологии, социологии, психологии.
Можно выделить следующие 4 принципа частных теорий синергетики:
1. Нелинейность означает не сохранение аддитивности в процессе развития представляемых систем. Любое явление понимается как момент эволюции, как процесс движения по полю развития.
2. Неустойчивость означает не сохранение "близости" состояний системы в процессе ее эволюции.
3. Открытость означает признание обмена системы веществом, энергией, информацией с окружающей средой и, следовательно, признание системы как состоящей из элементов, связанных структурой, так и включенности в качестве подсистемы, элемента в иное целое.
4. Подчинение означает, что функционирование и развитие системы определяются процессами в ее подсистеме ("сверхсистеме") при возникновении иерархии масштабов времени. Это принцип "самоупрощения" системы, т. е. сведения ее динамического описания к малому числу параметров порядка.
К описанным 4 принципам добавляются принципы специфические для той или иной объектной области - неживых систем, живых организмов, человека. Так, для неживых (физических и химических) систем в той или иной форме вводится принцип нелокальности (дальнодействия, коррелированности на расстоянии), означающий такое взаимодействие между элементами системы, которое воспринимается как передача информации с бесконечной скоростью (о чем напоминают прежде всего квантово-механические неравенства Дж. Белла . Для живых (биологических и приближающихся к ним технических) систем вводится принцип биополя, определяющий особое поле, объединяющее элементы в целое и направляющее развитие организма к предустановленным образцам (аттракторам). Понятие о биополе, синтезирующее физикализм и витализм, неоднократно вводилось под разными названиями, например, как морфогенетическое поле, постулированное в двадцатые годы российским биологом А. Г. Гурвичем.
1.1 Сущность гуманитарного аспекта синергетики
Обсуждая исторические вехи естествознания, мы отмечаем направляющую роль так называемых парадигм. Напомним, что научная парадигма -- это определенная совокупность фундаментальных научных достижений, идей, концепций, которые, заслужив всеобщее признание, на некоторый период задают общепринятый характер видения мира и приводят к выработке соответствующей ему стратегии в научном понимании. В настоящее время можно уже говорить о наступлении нового, пост неклассического этапа в развитии науки. Его определяющим признаком становится формирующаяся в наши дни эволюционно-синергетическая парадигма.
Важнейшей составляющей новой парадигмы стал принцип глобального эволюционизма, то есть признание невозможности существования всех рождаемых во Вселенной структур вне развития, вне общей эволюции. Эта мысль органически связана с концепцией фундаментального единства материального мира.
Другой составляющей эволюционно-синергетической парадигмы является представление об универсальности алгоритма развития как проявления самоорганизации в самых разнообразных природных и социальных системах, то есть синергетический подход. Синергетика как наука о самоорганизующихся системах создавалась усилиями естествознания. Но постепенно идеи синергетики становятся одной из методологических основ общественных и гуманитарных наук. Синергетический подход в этих областях начинается с использования ключевых понятий синергетики для описания сложных социально-гуманитарных явлений. А вслед за этим обнаруживается удивительное сходство поведения казалось бы совершенно несхожих систем. Создается уверенность, что социальные, физико-химические и биологические объекты исследований при всем своем очевидном различии и несводимости друг к другу подчиняются одним и тем же фундаментальным началам, а значит, их поведение может описываться в принципе одинаковыми моделями. Такое убеждение есть одно из важнейших проявлений утверждающейся в современной науке эволюционно-синергетической парадигмы.
Представление об общих закономерностях эволюции сложных систем, к которым относятся и социальные системы, обусловливает перспективность синергетических идей для обществоведения и гуманитарного знания. Перечень примеров использования представлений синергетики для создания новых гуманитарных, обществоведческих концепций быстро пополняется, ибо в экономике, политике, истории имеют дело со сложными, необратимо эволюционирующими системами. Самоорганизующиеся физические системы выполняют в синергетике роль прототипа при исследовании социокультурных систем.
На основе общих положений синергетики можно осмысливать ход исторического развития, оценивать роль той или иной личности или отдельных социальных слоев в исторических катаклизмах. В точке бифуркации даже ничтожные обстоятельства могут определить ход последующей эволюции системы. С синергетической точки зрения эволюционный процесс, проходя через точки бифуркации, приобретает свойства уникальности, невоспроизводимости.
По словам академика В. Волькенштейна, биологическая эволюция, начавшись заново, привела бы к совершенно иным результатам. Нет оснований считать исключением из этого правила и социальную эволюцию. На бифуркационном этапе истории существует множество обстоятельств, каждое из которых способно принципиально и непредсказуемо повлиять на ход исторических событий. К таким обстоятельствам относится и личностный фактор. Действия энергичной личности, реализующей свои устремления, в таких условиях часто становится своеобразной «флуктуацией», которая и определяет выбор сильнонеравновесной социальной системой ветви своей дальнейшей эволюции.
Даже в исследовании творческого процесса, искусства основные понятия и принципы теории самоорганизации позволяют в новом ракурсе увидеть известные закономерности и факты, по новому интерпретировать главный инструмент художественного творчества -- интуицию, особое творческое состояние -- вдохновение.
Другим примером гуманитарного использования синергетических идей, по-видимому, может являться оценка антропного принципа, суть которого состоит в утверждении, что мир таков, потому что во Вселенной должен был появиться «наблюдатель». Этот принцип разделяется многими современными философами и стал своеобразным атрибутом интеллектуальной моды. Затрагивая самые основы миропонимания, придавая особый смысл появлению и существованию человечества, антропный принцип обретает, таким образом, гуманитарное наполнение. Однако с точки зрения общих эволюционно-синергетических принципов, процесс эволюции Вселенной и ее ничтожнейшей крупицы -- планеты Земля -- есть процесс, направление и характер которого в известной мере определяется случайными факторами. В связи с этим справедливость антропного принципа явилась бы по меньшей мере неким отклонением от общих закономерностей самоорганизации материи, установленных наукой о самоорганизации -- синергетикой. Такое отклонение выглядит необоснованным. Впрочем, сейчас антропный принцип не играет практической роли, и применение к ней идей синергетики для его обсуждения носит чисто теоретический характер. В то же время существуют гуманитарные проблемы, тесно связанные с практической деятельностью человека, такая, например, как развитие цивилизации в условиях все возрастающего антропогенного воздействия на биосферу. Методологическое значение идей синергетики заключается здесь в прояснении опасности биосферных «бифуркаций», вызванных этим воздействием, и способных непредсказуемо и необратимо направить эволюцию биосферы по губительной для цивилизации ветви развития.
1.2 Синергетический процесс с социальной точки зрения
Говоря о развитии систем в историческом плане, мы невольно смотрим на них с позиции Господа Бога. Ученые так же, как правило, в качестве исследователей занимают позицию
Всевышнего. И системы и их составляющие - всего лишь объекты рассмотрения. И с этой позиции выражение «системы меняют свои свойства так, чтобы…» имеет право на существование.
Однако не следует забывать, что изменение параметров технических, человеко-машинных или социальных систем - это всегда работа конкретных людей: инженеров, менеджеров, технологов, администраторов, бизнесменов. История социальной системы - это ведь наша с вами жизнь, полная радости и страданий, свершений и трагедий. То, что исследователю или Всевышнему представляется скачком, быстрым переходом на новый уровень, бифуркацией состояния, для конкретных личностей может составлять целый этап жизни (если не всю ее).
Синергетический процесс самоорганизации материи это (с точки зрения Господа) бесконечное чередование этапов «спокойной» адаптации и «революционных» перерождений, выводящих системы на новые ступени совершенства.
Но в тоже время (спускаемся с небес на грешную землю!), синергетический процесс самоорганизации материи это бесконечное чередование этапов «спокойной» инженерной, управленческой, организационной работы, адаптирующей существующие объекты к изменениям среды, и неординарных идей, новаторских решений, изобретений и «революционных» реорганизаций, выводящих системы на совершенно новые ступени совершенства. Именно на этих этапах человек, нашедший неординарное решение, практически реализует бифуркацию состояния конкретной системы.
Что такое «адаптационный этап» с нашей земной точки зрения? С точки зрения, так сказать, элементика, находящегося внутри системы. Просто мы все время занимаемся оптимизацией: инженер «шлифует» конструкцию изделия, управляющий добивается лучшей работы коллектива, бизнесмен - повышения рентабельности фирмы.
Что означает «катастрофный этап»? Это означает, что наступает наш звездный час: инженер изобретает новую конструкцию, управленец проводит коренную реорганизацию, бизнесмен открывает новое дело. Очевидно, что такие решения составляют наиболее эффективную форму человеческой деятельности. Умение, во-первых, в любой ситуации увидеть суть дела, во-вторых, вовремя заметить проблему, то есть не пропустить момент, когда обстоятельства требуют ломки привычных представлений, и, в-третьих, найти одно или несколько красивых решений, отличает людей, добивающихся успеха в любом деле.
Бифуркация состояния социальных и человеко-машинных систем таким образом есть не только объективный факт, но и продукт мыслительной деятельности конкретных личностей.
Итак, история любой системы есть чередование эволюционных этапов, когда специалисты могут применять полученные ими знания, и этапов бифуркационного развития, когда находится человек, способный к неординарному мышлению, новаторству, изобретательству.
И если законы синергетического развития универсальны, то можно предположить, что в основе неординарных творческих способностей гениальных личностей лежат как раз эти законы.
1.3 Подходы к анализу систем
Нужно сказать, что изучением систем, состоящих из большого числа частей, взаимодействующих между собой тем или иным способом, занимались и продолжают заниматься многие науки. Одни из них предпочитают подразделять систему на части, чтобы затем, изучая разъятые детали, пытаться строить более или менее правдоподобные гипотезы о структуре или функционировании системы как целого. Другие изучают систему как единое целое, предавая забвению тонко настроенное взаимодействие частей. И тот, и другой подходы обладают своими преимуществами и недостатками.
Синергетика наводит мост через брешь, разделяющую первый, редукционистский, подход от второго, холистического. К тому же в синергетике, своего рода соединительном звене между этими двумя экстремистскими подходами, рассмотрение происходит на промежуточном, мезоскопическом уровне, и макроскопические проявления процессов, происходящих на микроскопическом уровне, возникают "сами собой", вследствие самоорганизации, без руководящей и направляющей "руки", действующей извне системы.
Это обстоятельство имеет настолько существенное значение, что синергетику можно было бы определить как науку о самоорганизации.
Редукционистский подход с его основным акцентом на деталях сопряжен с необходимостью обработки информации о подсистемах, их структуре, функционирования и взаимодействии в объемах зачастую непосильных для наблюдателя, даже вооруженного сверхсовременной вычислительной техникой. Сжатие информации до разумных пределов осуществляется различными способами. Один из них используется в статистической физике и заключается в отказе от излишней детализации описания и в переходе от индивидуальных характеристик отдельных частей к усредненным тем или иным способом характеристикам системы. Импульс, получаемый стенкой сосуда при ударе о нее отдельной частицы газа, заменяется усредненным эффектом от ударов большого числа частиц - давлением. Вместо отдельных составляющих системы статистическая физика рассматривает множества (ансамбли) составляющих, вместо действия, производимого индивидуальной подсистемой, - коллективные эффекты, производимые ансамблем подсистем.
Синергетика подходит к решению проблемы сжатия информации с другой стороны. Вместо большого числа факторов, от которых зависит состояние системы (так называемых компонент вектора состояния) синергетика рассматривает немногочисленные параметры порядка, от которых зависят компоненты вектора состояния системы и которые, в свою очередь, влияют на параметры порядка.
В переходе от компонент вектора состояния к немногочисленным параметрам порядка заключен смысл одного из основополагающих принципов синергетики - так называемого принципа подчинения (компонент вектора состояния параметрам порядка). Обратная зависимость параметров порядка от компонент вектора состояния приводит к возникновению того, что принято называть круговой причинностью.
1.4 Отличие синергетического и информационного подходов
В основу теории информации положен предложенный К.Шенноном метод исчислений количества новой (непредсказуемой) и избыточной (предсказуемой) информации, содержащейся в сообщениях, передаваемых по каналам технической связи.
Предложенный Шенноном метод измерения количества информации оказался настолько универсальным, что его применение не ограничивается теперь узкими рамками чисто технических приложений.
Вопреки мнению самого К.Шеннона, предостерегавшего ученых против поспешного распространения предложенного им метода за пределы прикладных задач техники связи, этот метод стал находить все более широкое примение в исследованиях и физических, и биологических, и социальных систем .
Ключом к новому пониманию сущности феномена информации и механизма информационных процессов послужила установленная Л.Бриллюэном взаимосвязь информации и физической энтропии. Эта взаимосвязь была первоначально заложена в самый фундамент теории информации, поскольку для исчисления количества информации Шеннон предложил использовать заимствованную из статистической термодинамики вероятную функцию энтропии.
В статистической физике с помощью вероятностной функции энтропии исследуются процессы, приводящие к термодинамическому равновесию, при котором все состояния молекул (их энергии, скорости) приближаются к равновероятным, а энтропия при этом стремится к максимальной величине.
Благодаря теории информации стало очевидно, что с помощью той же самой функции можно исследовать и такие далекие от состояния максимальной энтропии системы, как, например, письменный текст.
Еще один важный вывод заключается в том, что
с помощью вероятностной функции энтропии можно анализировать все стадии перехода системы от состояния полного хаоса, которому соответствуют равные значения вероятностей и максимальное значение энтропии, к состоянию предельной упорядоченности (жесткой детерминации), которому соответствует единственно возможное состояние ее элементов.
При этом, если для газа или кристалла при вычислении энтропии сравнивается только микросостояние (т.е. состояние атомов и молекул) и макросостояние этих систем (т.е. газа или кристалла как целого), то для систем иной природы (биологических, интеллектуальных, социальных) вычисление энтропии может производится на том или ином произвольно выбранном уровне. При этом вычисляемое значение энтропии рассматриваемой системы и количество информации, характеризующей степень упорядоченности данной системы и равное разности между максимальным и реальным значением энтропии, будет зависеть от распределения вероятности состояний элементов нижележащего уровня, т.е. тех элементов, которые в своей совокупности образуют эти системы.
Сам того не подозревая, Шеннон вооружил науку универсальной мерой, пригодной в принципе (при условии выявления значенй всех вероятностей) для оценки степени упорядоченности всех существующих в мире систем.
Одновременно с выявлением общих свойств информации как феномена обнаруживаются и принципиальные различия относящихся к различным уровням сложности информационных систем.
Так, например, все физические объекты, в отличие от биологических, не обладают специальными органами памяти, перекодировки поступающих из внешнего мира сигналов, информационными каналами связи. Хранимая в них информация как бы «размазана» по всей их структуре. Вместе с тем, если бы кристаллы не способны были сохранять информацию в определяющих их упорядоченность внутренних связях, не было бы возможности создавать искусственную память и предназначенные для обработки информации технические устройства на основе кристаллических структур.
Вместе с тем необходимо учитывать, что создание подобных устройств стало возможным лишь благодаря разуму человека, сумевшего использовать элементарные информационные свойства кристаллов для построения сложных информационных систем.
Простейшая биологическая система превосходит по своей сложности самую совершенную из созданных человеком информационных систем. Уже на уровне простейших одноклеточных организмов задействован необходимый для их размножения сложнейший информационный генетический механизм. В многоклеточных организмах помимо информационной системы наследственности действуют специализированные органы хранения информации и ее обработки (например, системы, осуществляющие перекодирование поступающих из внешнего мира зрительных и слуховых сигналов перед отправкой их в головной мозг, системы обработки этих сигналов в головном мозге). Сложнейшая сеть информационных коммуникаций (нервная система) пронизывает и превращает в целое весь многоклеточный организм.
Уже на уровне биологических систем возникают проблемы учета ценности и смысла используемой этими системами информации. Еще в большей мере такой учет необходим для ананлиза функционирования интеллектуальных информационных систем.
Игнорирование смысла и ценности информации не помешало Шеннону решать прикладные задачи, для которых предназначалась первоначально его теория: инженеру по технике связи вовсе не обязательно вникать в суть сообщений, передаваемых по линии связи. Его задача заключается в том, чтобы любое подобное сообщение передавать как можно скорее, с наименьшими затратами средств (энергии, диапазона используемых частот) и, по возможности, безо всяких потерь. И пусть тот, кому предназначена данная информация (получатель сообщений), вникает в смысл, определяет ценность, решает, как использовать ту информацию, которую он получил.
Такой сугубо прагматичный подход позволил Шеннону ввести единую, не зависящую от смысла и ценности, меру количества информации, которая оказалась пригодной для анализа всех обладающих той или иной степенью упорядоченности систем.
2. Эволюционная триада и принцип причинности
Причинность - один из видов связи, именно как генетический тип связи явлений: одно явление неизбежно порождает другое. Появление нового качества всегда имеет причину.
Известно, что развитие может быть прогрессом, но также и регрессом - деградацией.
Ряд видов связей (функциональные зависимости, отношение симметрии, пространственно-временные корреляции) не попадают под разряд причинно-следственных по содержанию. Но это не означает, что они беспричинны.
Креативный взгляд на становление существовал в культуре, представлялся, говоря современным системным языком креативной триадой: Способ действия + Предмет действия = Результат действия. И это не случайно, только так естественным образом можно описать процесс возникновения чего либо вообще, когда следствие порождено причиной, в свою очередь состоящей из двух начал -активного и пассивного, имманентного любому действию. И конечно дело не в религиозной терминологии, свойственной человечеству большую часть его сознательной эволюции, но в самом процессе освоения человеком Времени - способе передачи социального опыта: миф, летопись, история, инструкция, в конце концов, предьявлены чередой событий-действий , образующих временную ткань доступную пониманию современников и потомков. Здесь без креативной триады не обойтись, и следуя неоплатонической традиции, а в ХХ веке Бердяеву, далее предпочтем ее называть Теос + Хаос = Космос. Поразительно, что и само ощущение времени, длящегося бытия настоящего, есть порождение, интерференция в нашем сознании прошедшего, которого никогда уже нет, и будущего, которого никогда еще нет, а интерпретация Теоса и Хаоса в данном случае зависит от точки зрения: то ли прошлое детерминирует , то ли будущее притягивает - временит, то ли настоящее формирует - все они в разной степени представлены в истории культуры, важна лишь непременность их креативной связи.
Итак, креативная триада имеет принципиально временную причинно следственную природу. Причем причина здесь понимается двуединой Теос + Хаос, она и рождает проявленный феномен, событие, структуру т. е. Космос (по древнегречески - строй боевых кораблей, и лишь позднее вселенский порядок). Отметим, что если Содержание и Форма предъявляют способ бытия вещи, то Теос и Хаос способ ее происхождения - генезис. В наиболее общем случае для естественника эта триада: закон природы + материальная субстанция = феноменальный мир, на языке гуманитария --- творческий акт в ноуменальном мире: замысел + потенция (материал) = произведение, форма.
Попробуем теперь дать полустрогое определение компонентов триады (окончательно это сделать все равно не удастся в силу большой символической, философской общности этих понятий)
ХАОС - неоформленная инертная материя, материал, простейшие элементы конструирования, сокрытые потенциальные возможности и формы, страдательное пассивное начало ( в мифологии женское начало - Инь), предмет действия, означаемое.
ТЕОС (ЛОГОС) - закон, эйдос, стабильные архетипы, принципы, замыслы, намерения, неизменные в процессе рождения Космоса, способ действия, глагол (в мифологии активное мужское начало - Ян), означающее.
КОСМОС - результат соединения-взаимодействия в акте становления Хаоса и Теоса - проявленная структура в феноменальном или ноуменальном мире, существующая по известным принципам временного развития ( в мифологии принцип гармонии - Дао ), результат действия.
3. Свёртка принципов синергетики и системного подхода в эволюционную триаду
В культуре, в конкретных научных дисциплинах трехчастные динамические законы всегда можно интерпретировать в терминах креативной триады, например:
II закон Ньютона - Сила (Теос) будучи приложенной к Телу (масса тела -инертное начало, Хаос) порождает проявленное пространственно-временное изменение состояния движения тела - Ускорение (результат действия, Космос) .
А вот как звучал основной закон динамики в античной физике Аристотеля: Сила (Теос) будучи приложенной к Телу (сопротивление Среды движущемуся телу - инертное начало, Хаос) порождает проявленное пространственно-временное изменение состояния движения тела - Скорость (результат действия, Космос).
Мы видим, что законы просто идентичны структурно, но не содержательно. В обоих случаях сила выступает причиной изменения абсолютного состояния движения тел, но у Аристотеля это состояние - покой, а у Ньютона-- движение по инерции. Как мы сказали бы сегодня: Аристотель писал свой закон для незамкнутой диссипативной системы (не все силы отнесены к порождающей причине F, за кадром остались силы сопротивления среды), поэтому и абсолютное состояние движения у него - покой (в среде это так), и его закон, конечно приближенный, асимптотический, он есть первое воплощение синергетической идеи аттракторов - целей развития системы; вспомним мощный телеологический мотив всей философии Аристотеля.
Еще один пример из области квантовой физики. Фундаментальным постулатом квантовой теории является постулат наблюдаемости или измерения любой физической величины, это целый ритуал с очень жесткими правилами перевода не имеющих наглядной интерпретации свойств микромира на привычный язык макроявлений, при этом переводе многие экзотические черты микромира безвозвратно утрачиваются, да и сам изучаемый микрообъект настолько возмущен грубостью средств наблюдения, что может просто перестать существовать, дело в том, что средства наблюдения обязательно макроскопические, а объект то микроскопический. Представьте себе отбойный молоток вместо бор-машины в руках дантиста!
Итак, воздействие акта наблюдения на систему принципиально неустранимо, причем уточнить результат наблюдения можно до определенных границ задаваемых знаменитым принципом неопределенности Гейзенберга, и сам результат носит вероятностную интерпретацию, т. е. в другой раз получился бы другой результат и каждому исходу измерения приписывают свою вероятность, которая зависит от свойств микрообъекта или, как принято говорить, от Состояния микросистемы (ее волновой функции), имплицитно содержащего все потенциальные результаты наблюдения над ней. Ну и наконец сам прибор измеряет не что угодно, а свойства некоторой физической величины, как говорят - наблюдаемой , причем каждой наблюдаемой отвечает свой тип наблюдения, свой прибор. И все же, какое это имеет отношение к процессам становления? - самое прямое.
Дело в том, что, как правило, система не имеет определенного значения наблюдаемой физической величины до процесса ее измерения (наблюдения), в момент акта измерения система выбирает (проектируется на) одну из своих компонент-возможностей, отвечающих точному значению измеряемой величины, имеющему вполне макроскопическое числовое значение (например показания стрелки прибора), этот процесс называется процессом редукции волновой функции, и по сей день не подлежит детализации, вызывая у многих физиков полумистическое чувство недоумения. Пожалуй это повсеместное явление и есть самый яркий пример становления, в котором и состояния и наблюдаемые (операторы) "живут" в абстрактном бесконечномерном гильбертовом пространстве и никак не проявлены, манифестируя свои свойства в макромире в процессах измерения через свои средние числовые характеристики.
В живой природе эволюционная дарвиновская триада "наследственность" + "изменчивость" = "отбор" легко переинтерпретируется на таком языке, на чем мы не будем сейчас останавливаться. Но сформулируем ее обобщение для произвольных эволюционирующих систем: "принцип сборки дерева катастроф" + "банк катастроф и сценариев их прохождения" = " отбор траектории эволюции на дереве возможностей".
Таким образом, синергетика с её статусом метанауки изначально была призвана сыграть роль коммуникатора, позволяющего оценить степень общности результатов, моделей и методов отдельных наук, их полезность для других наук и перевести диалект конкретной науки на высокую латынь междисциплинарного общения.
Положение междисциплинарного направления обусловило еще одну важную особенность синергетики - ее открытость, готовность к диалогу на правах непосредственного участника или непритязательного посредника, видящего свою задачу во всемирном обеспечении взаимопонимания между участниками диалога. Диалогичность синергетики находит свое отражение и в характере вопрошания природы: процесс исследования закономерностей окружающего мира в синергетике превратился (или находится в стадии превращения) из добывания безликой объективной информации в живой диалог исследователя с природой, при котором роль наблюдателя становится ощутимой, осязаемой и зримой.
Общие закономерности поведения систем, порождающих сложные режимы, позволяют рассматривать на содержательном, а иногда и на количественном уровне, такие вопросы, как уровень сложности восприятия окружающего мира как функции словарного запаса воспринимающего субъекта, роль хаотических режимов, их иерархий и особенностей в формировании смысла, грамматические категории как носители семантического содержания, проблемы ностратического языкознания (реконструкция праязыка) как восстановление “фазового портрета” семейства языков и выделения аттракторов, и многое другое.
4. Диалектика
[От греч. dialektike (technе) -- искусство вести беседу, спор, от dialegomai -- веду беседу, спор], учение о наиболее общих закономерностях становления, развития, внутренний источник которых усматривается в единстве и борьбе противоположностей. В этом смысле диалектика, начиная с Гегеля, противопоставляется метафизике -- такому способу мышления, который рассматривает вещи и явления как неизменные и независимые друг от друга. По характеристике В. И. Ленина, диалектика -- это учение о развитии в его наиболее полном, глубоком и свободном от односторонности виде, учение об относительности человеческого знания, дающего нам отражение вечно развивающейся материи. В истории диалектики выделяются следующие основные этапы: стихийная, наивная диалектика древних мыслителей; диалектика философов эпохи Возрождения; идеалистическая диалектика немецкой классической философии; диалектика русских революционных демократов 19 в.; марксистско-ленинская материалистическая диалектика как высшая форма современной диалектики. В философии марксизма получило научно обоснованное и последовательное выражение единство материализма и диалектики.
Диалектическое мышление имеет древнейшее происхождение. Древневосточная, а также античная философия создали непреходящие образцы диалектических воззрений. Античная диалектика, основанная на живом чувственном восприятии материального мира, уже начиная с первых представлений греческой философии, формулировала понимание действительности как изменчивой, становящейся, совмещающей в себе противоположности. Философы ранней греческой классики говорили о всеобщем и вечном движении, в то же время представляя себе космос в виде завершённого и прекрасного целого, в виде чего-то вечного и пребывающего в покое. Это была универсальная диалектика движения и покоя. Далее, они понимали всеобщую изменчивость вещей как результат превращения какого-нибудь одного основного элемента (земля, вода, воздух, огонь и эфир) во всякий другой. Это была универсальная диалектика тождества и различия. Гераклит и др. греческие натурфилософы дали формулы вечного становления, движения как единства противоположностей.
Продолжая мысль Сократа и трактуя мир понятий, или идей, как особую самостоятельную действительность, Платон под диалектикой понимал не только разделение понятий на чётко обособленные роды (как Сократ) и не только искание истины при помощи вопросов и ответов, но и знание относительно сущего и истинно сущего. Достигнуть этого он считал возможным только при помощи сведения противоречащих частностей в цельное и общее. Замечательные образцы этого рода античной идеалистической диалектики содержатся в диалогах Платона. У Платона даётся диалектика пяти основных категорий: движения, покоя, различия, тождества и бытия, в результате чего бытие трактуется здесь у Платона в качестве активно самопротиворечащей координированной раздельности. Всякая вещь оказывается тождественной сама с собой и со всем другим, а также покоящейся и подвижной в самой себе и относительно всего другого.
Аристотель, превративший платоновские идеи в формы вещей и, кроме того, присоединивший сюда учение о потенции и энергии (как и ряд др. аналогичных учений), развил диалектику дальше. Аристотель в учении о четырёх причинах -- материальной, формальной, движущей и целевой -- утверждал, что все эти четыре причины существуют в каждой вещи совершенно неразличимо и тождественно с самой вещью. Учение Аристотеля о перводвигателе, который мыслит сам же себя, т. е. является сам для себя и субъектом и объектом, есть фрагмент всё той же диалектики. Называя «диалектикой» учение о вероятных суждениях и умозаключениях или о видимости, Аристотель даёт здесь диалектику становления, поскольку сама возможность только и возможна в области становления. Ленин говорит: «Логика Аристотеля есть запрос, искание, подход к логике Гегеля -- а из нее, из логики Аристотеля (который всюду, на каждом шагу, ставит вопрос именно о диалектике) сделали мертвую схоластику, выбросив все поиски, колебания, приемы постановки вопросов».
Классическую для нового времени форму диалектики создал немецкий идеализм, начавший с её негативной и субъективистской трактовки у И. Канта и перешедший через И. Фихте и Ф. Шеллинга к объективному идеализму Г. Гегеля. У Канта диалектика является разоблачением иллюзий человеческого разума, желающего достигнуть цельного и абсолютного знания. Т. к. научным знанием, по Канту, является только знание, которое опирается на чувственный опыт и обосновано деятельностью рассудка, а высшие понятия разума (бог, мир, душа, свобода) этими свойствами не обладают, то диалектика, по Канту, и обнаруживает те неминуемые противоречия, в которых запутывается разум, желающий достигнуть абсолютной цельности. Эта чисто негативная трактовка диалектики у Канта имела огромное историческое значение, т.к. она обнаружила в человеческом разуме его необходимую противоречивость. А это в дальнейшем привело к поискам путей преодоления противоречий разума, что и легло в основу диалектики в позитивном смысле.
У Гегеля диалектика охватывает всю область действительности, начиная от чисто логических категорий, переходя далее к сферам природы и духа, и кончая категориальной диалектикой всего исторического процесса. Гегелевская диалектика представляет собой систематически развитую науку, в которой дана содержательная картина общих форм движения (см. К. Маркс, Капитал, т. 1, 1955, с. 19). Гегель делит диалектику на бытие, сущность и понятие. Бытие есть самое первое и самое абстрактное определение мысли. Оно конкретизируется в категориях качества, количества и меры. Исчерпав категорию бытия, Гегель рассматривает то же бытие, но уже с противопоставлением этого бытия ему же самому. Отсюда рождается категория сущности бытия; диалектический синтез исходной сущности и явления выражается в категории действительности. Этим исчерпывается у него сущность. Но сущность не может существовать в отрыве от бытия. Гегель исследует и ту ступень диалектики, где фигурируют категории, содержащие в себе одинаково и бытие, и сущность. Это -- понятие. Гегель является абсолютным идеалистом, и поэтому он именно в понятии находит высший расцвет и бытия, и сущности. Гегель рассматривает своё понятие как субъект, как объект и как абсолютную идею.
В 19 в. к материалистической диалектике подошли русские революционные демократы -- В. Г. Белинский, А. И. Герцен, Н. Г. Чернышевский. В отличие от Гегеля, из идей вечного движения и развития они делали революционные выводы: диалектика была для них «алгеброй революции». Диалектика релятивистски понимается как более или менее случайная структура сознания. Природа рассматривается как область «позитивистского разума», тогда как общество познаётся «диалектическим разумом», который черпает свои принципы из человеческого сознания и индивидуальной практики человека. Другие экзистенциалисты (Г. Марсель, М. Бубер) теологически трактуют диалектику как систему вопросов и ответов между сознанием и бытием. Последовательно материалистическое истолкование диалектики было дано К. Марксом и Ф. Энгельсом -- основоположниками учения диалектического материализма. Критически переработав достижения предшествующей Д., К. Маркс и Ф. Энгельс применили созданное ими учение к переработке философии, политической экономии, истории, к обоснованию политики и тактики рабочего движения. Выдающийся вклад в развитие материалистической диалектики принадлежит В. И. Ленину. Классики марксизма-ленинизма рассматривают материалистическую диалектику как учение о всеобщих связях, о наиболее общих законах развития бытия и мышления.
Материалистическая диалектика выражается в системе категорий и законов. Характеризуя диалектику, Ф. Энгельс писал: «Главные законы: превращение количества и качества -- взаимное проникновение полярных противоположностей и превращение их друг в друга, когда они доведены до крайности, -- развитие путем противоречия, или отрицание отрицания, -- спиральная форма развития». Среди всех законов диалектики особое место занимает закон единства и борьбы противоположностей, который В. И. Ленин назвал ядром диалектики.
Принцип всеобщей связи явлений Ленин называл одним из основных принципов диалектики. Отсюда методологический вывод: чтобы действительно знать предмет, надо охватить, изучить все стороны, все связи и опосредования. Характеризуя диалектику как учение о развитии, Ленин писал: «Развитие, как бы повторяющее пройденные уже ступени, но повторяющее их иначе, на более высокой базе (“отрицание отрицания”), развитие, так сказать, по спирали, а не по прямой линии; -- развитие скачкообразное, катастрофическое, революционное; -- “перерывы постепенности”; превращение количества в качество; -- внутренние импульсы к развитию, даваемые противоречием, столкновением различных сил и тенденций, действующих на данное тело или в пределах данного явления или внутри данного общества; -- взаимозависимость и теснейшая, неразрывная связь всех сторон каждого явления..., связь, дающая единый, закономерный мировой процесс движения, -- таковы некоторые черты диалектики, как более содержательного (чем обычное) учения о развитии».
Подчёркивая единство субъективной и объективной диалектики, диалектический материализм отмечал, что диалектика существует в объективной действительности, а субъективная диалектика -- отражение объективной диалектики в человеческом сознании: диалектика вещей создаёт диалектику идей, а не наоборот. Дилектика -- это учение об относительности бесконечно углубляющегося и расширяющегося человеческого знания. Материалистическая диалектика -- последовательное критическое и революционное учение, она не терпит застоя, не налагает никаких ограничений на познание и его возможности и показывает исторически преходящий характер всех форм общественной жизни. Неудовлетворённость достигнутым -- её стихия, революционная активность -- её суть. «Для диалектической философии нет ничего раз навсегда установленного, безусловного, святого. На всем и во всем видит она печать неизбежного падения, и ничто не может устоять перед ней, кроме непрерывного процесса возникновения и уничтожения, бесконечного восхождения от низшего к высшему. Она сама является лишь простым отражением этого процесса в мыслящем мозгу».
Сознательное применение диалектики даёт возможность правильно пользоваться понятиями, учитывать взаимосвязь явлений, их противоречивость, изменчивость, возможность перехода противоположностей друг в друга. Только диалектико-материалистический подход к анализу явлений природы, общественной жизни и сознания позволяет вскрыть их действительные закономерности и движущие силы развития, научно предвидеть грядущее и находить реальные способы его созидания. Диалектика не совместима с застойностью мысли и схематизмом. Научный диалектический метод познания является революционным, ибо признание того, что всё изменяется, развивается, ведёт к выводам о необходимости уничтожения всего отжившего, мешающего историческому прогрессу.
Подобные документы
Существо и понятие синергетики как нового направления современной научной мысли. Основные проблемы синергетики и отношение к ней других наук. Самоорганизация в синергетике, синергетический процесс с социальной точки зрения, его методологические проблемы.
реферат [33,6 K], добавлен 10.03.2011Особенность синергетики как науки. Синергетика Ч. Шеррингтона, синергия Улана и синергетический подход И. Забуского. Объекты исследования синергетики. Структура и хаос. Теория диссипативных структур и автоволновых процессов. Поиски универсальной модели.
контрольная работа [31,5 K], добавлен 16.04.2011Основные свойства эволюционных процессов и их отличие от динамических и статистических процессов и явлений в природе. Современные подходы к анализу сложных самоорганизующихся систем. Особенности синергетики. Экономика с точки зрения синергетики.
курсовая работа [23,1 K], добавлен 01.10.2010Характеристики самоорганизующихся систем. Открытость. Нелинейность. Диссипативность. Системная модель мира. Самоорганизация и эволюция сложных систем, далеких от равновесия. Основы теории самоорганизации систем. Синергетическая картина мира.
реферат [53,9 K], добавлен 18.11.2007Синергетика как новое направление междисциплинарных исследований и новое миропонимание. Основные этапы развития синергетики: термины, понятия и категориальный аппарат, уровни самоорганизации материи, концепция развития. Диалектика эволюции живой природы.
курсовая работа [42,6 K], добавлен 09.06.2010Физика глазами гуманитария: образы физики. Физика необходимого и возможного. Живые системы и человек в биосфере. Принципы синергетики, эволюционная триада и системный подход. Качественные методы в эволюционных задачах, а также самоорганизация в природе.
курс лекций [284,0 K], добавлен 14.01.2009Исторические этапы и структура процессов эволюции. Суть теории бифуркации в синергетике. Кризис современной цивилизации и пути выхода. Синергетика как составляющая научной картины мира. Идея самоорганизации системы. Эволюционно-синергетическая концепция.
презентация [23,6 M], добавлен 22.11.2011Воздействие синергетики на современные высокие социальные технологии. Синергетика как междисциплинарное направление научных исследований. Основные понятия синергетики. Синергетический подход в биофизике. Основные принципы синергетики в естествознании.
реферат [18,8 K], добавлен 25.06.2010Понятия "эволюционизм" и "эволюция". Исторические этапы развития и принципы универсального эволюционизма. Сущность основных понятий синергетики: аттрактор, бифуркация, диссипативность, нелинейность, открытая система, порядок, синергия, флуктуации, хаос.
презентация [195,9 K], добавлен 05.12.2013Синергетическая парадигма в современном естествознании. Кибернетика: сущность, концептуально-понятийная характеристика, основополагающие концепции. Исходные положения инфодинамики. Самоорганизующиеся системы, их структура, элементы и оценка возможностей.
контрольная работа [30,9 K], добавлен 11.02.2011