Анатомия центральной нервной системы
Изучение особенностей морфологической и анатомической организации нервной системы. Гистологические и цитологические характеристики нервной ткани. Информация о росте и развитии нервной системы от эмбрионального до позднего постнатального онтогенеза.
Рубрика | Биология и естествознание |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 23.11.2010 |
Размер файла | 3,9 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
2
СОЦИАЛЬНО-ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ МОСКОВСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА СЕРВИСА
АНАТОМИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ
(Учебное пособие)
О.О. Якименко
Москва - 2002
Пособие по анатомии нервной системы предназначено для студентов Социально-технологического института факультета психологии. Содержание включает основные вопросы, связанные с морфологической организацией нервной системы. Помимо анатомических данных о структуре нервной системы в работу включены гистологические цитологические характеристики нервной ткани. А также вопросы информации о росте и развитии нервной системы от эмбрионального до позднего постнатального онтогенеза.
Для наглядности излагаемого материала в текст внесены иллюстрации. Для самостоятельной работы студентов дан список учебной и научной литературы, а также анатомических атласов.
Классические научные данные по анатомии нервной системы являются фундаментом для изучения нейрофизиологии мозга. Знание морфологических характеристик нервной системы на каждом этапе онтогенеза необходимо для понимания возрастной динамики поведения и психики человека.
РАЗДЕЛ I. ЦИТОЛОГИЧЕСКИЕ И ГИСТОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ НЕРВНОЙ СИСТЕМЫ
Общий план строения нервной системы
Главная функция нервной системы состоит в быстрой и точной передаче информации, обеспечивая взаимосвязь организма с окружающим миром. Рецепторы реагируют на любые сигналы внешней и внутренней среды, преобразуя их в потоки нервных импульсов, которые поступают в центральную нервную систему. На основе анализа потоков нервных импульсов мозг формирует адекватный ответ.
Вместе с эндокринными железами нервная система регулирует работу всех органов. Эта регуляция осуществляется благодаря тому, что спинной и головной мозг связаны нервами со всеми органами, двусторонними связями. От органов в центральную нервную систему поступают сигналы об их функциональном состоянии, а нервная система в свою очередь посылает сигналы к органам, корректируя их функции и обеспечивая все процессы жизнедеятельности - движение, питание, выделение и другие. Кроме того нервная система обеспечивает координацию деятельности клеток, тканей, органов и систем органов, при этом организм функционирует как единое целое.
Нервная система является материальной основой психических процессов: внимания, памяти, речи, мышления и др., с помощью которых человек не только познает окружающую среду, но и может активно ее изменять.
Таким образом, нервная система- это та часть живой системы, которая специализируется на передаче информации и на интегрировании реакций в ответ на воздействие окружающей среды.
Центральная и периферическая нервная система
Нервная система по топографическому признаку подразделяется на центральную нервную систему, куда входит головной мозг и спинной мозг, и периферическую, которая состоит из нервов и ганглиев.
Нервная система
Центральная нервная система |
Периферическая нервная система |
головной мозг |
спинной мозг |
ганглии |
нервы |
Согласно классификации по функциональному признаку нервная система подразделяется на соматическую (отделы нервной системы, регулирующие работу скелетных мышц) и автономную (вегетативную), которая регулирует работу внутренних органов. В автономной нервной системе выделяют два отдела: симпатический и парасимпатический.
Нервная система
соматическая автономная
симпатическая парасимпатическая
Как соматическая, так и автономная нервная системы включают центральный и периферический отделы.
Нервная ткань
Основной тканью, из которой образована нервная система, является нервная ткань Ткань - это совокупность клеток и межклеточного вещества, сходных по строению, происхождению и выполняемым функциям.. Она отличается от других видов ткани тем, что в ней отсутствует межклеточное вещество.
Нервная ткань состоит из двух видов клеток: нейронов и глиальных клеток. Нейроны играют главную роль, обеспечивая все функции центральной нервной системы. Глиальные клетки имеют вспомогательное значение, выполняя опорную, защитную, трофическую функции и др. В среднем количество глиальных клеток превышает количество нейронов в отношении 10:1 соответственно.
Оболочки мозга образованы соединительной тканью, а полости мозга - особым видом эпителиальной ткани (эпиндимная выстилка).
Нейрон - структурно-функциональная единица нервной системы
Нейрон обладает признаками, общими для всех клеток: имеет оболочку-плазматическую мембрану, ядро и цитоплазму. Мембрана представляет собой трехслойную структуру, содержащую липидные и белковые компоненты. Кроме того на поверхности клетки имеется тонкий слой, называемый гликокалисом. Плазматическая мембраны регулирует обмен веществ между клеткой и средой. Для нервной клетки это особенно важно, так как мембрана регулирует движение веществ, которые непосредственно связаны с нервной сигнализацией. Также мембрана служит местом электрической активности, лежащей в основе быстрой нервной сигнализации и местом действия пептидов и гормонов. Наконец, ее участки образуют синапсы - место контакта клеток.
Каждая нервная клетки обладает ядром, которое содержит генетический материал в форме хромосом. Ядро выполняет две важных функции - контролирует дифференцировку клетки в ее конечную форму, определяя виды связей и регулирует синтез белка во всей клетке, управляя ростом и развитием клетки.
В цитоплазме нейрона имеются органеллы (эндоплазматический ретикулум, аппарат Гольджи, митохондрии, лизосомы, рибосомы и др.).
Рибосомы синтезируют белки, часть которых остается в клетке, другая часть предназначена для выведения из клетки. Кроме того, рибосомы производят элементы молекулярного аппарата для большей части клеточных функций: ферменты, белки-переносчики, рецепторы, белки мембран и т.д
Эндоплазматический ретикулум представляет систему каналов и окруженных мембраной пространств (крупных, плоских, называемых цистернами, и мелких, называемых везикулами или пузырьками) Выделяют гладкий и шероховатый эндоплазматический реьтикулом. Последний содержит рибосомы
Функция аппарата Гольджи состоит в хранении, концентрировании и упаковке секреторных белков.
Кроме систем, вырабатываающих и переносящих разные вещества, клетка обладает внутренней пищеварительной системой, состоящей из лизосом, не имеющих определеной формы. Они содержат разнообразные гидролитические ферменты, которые расщепляют и переваривают множество соединений, возникающих как внутри, так и вне клетки.
Митохондрии- это самая сложная органела клетки после ядра. Ее функция - выработка и доставка энергии, нееобходимая для жизнедеятельности клеток.
Большая часть клеток тела способна усваивать различные сахара, при этом энергия или выделяется или запасается в клетке ввиде гликогена. Однако нервные клетки в головном мозгу используют исключительно глюкозу, так как все другие вещества задерживаются гематоэнцефалическим барьером. Большинство из них лишены способности запасать гликоген, что усиливает их зависимость в отношении энергии от глюкозы в крови и от кислорода. Поэтому в нервных клетках самое большое количество митохондрий.
В нейроплазме содержатся органеллы специального назначения: микротрубочки и нейрофиламенты, которые различаются размером и строением. Нейрофиламенты встречаются только в нервных клетках и представляют внутренний скелет нейроплазмы. Микротрубочки тянутся вдоль аксона по внутренним полостям от сомы до окончания аксона. Эти органеллы и распространяют биологически активные вещества (рис. 1 А и Б). Внутрииклеточный транспорт между телом клетки и отходящими от него отростками может быть ретроградным- от нервных окончаний к телу клетки и ортоградным - от тела клетки к окончаниям.
Рис. 1 А. Внутреннее строение нейрона
Отличительной особенностью нейронов является наличие митохондрий в аксоне как добавочного источника энергии и нейрофибрилл. Взрослые нейроны не способны к делению.
Каждый нейрон имеет расширенную центральную часть тело - сому и отростки- дендриты и аксон. Тело клетки заключено в клеточную оболочку и содержит ядро и ядрышко, поддерживая целостность мембран тела клетки и ее отростков, обеспечивающих проведение ими нервных импульсов. По отношению к отросткам сома выполняет трофическую функцию, регулируя обмен веществ клетки. По дендритам ( афферентные отростки ) импульсы поступают к телу нервной клетки, а по аксонам ( эфферентные отростки ) от тела нервной клетки к другим нейронам или органам
ольшинство дендритов (дендрон - дерево) короткие, сильно ветвящиеся отростки. Их поверхность значительно увеличивается за счет небольших выростов - шипиков. Аксон (аксис - отросток) чаще длинный, мало ветвящийся отросток.
Каждый нейрон имеет только один аксон, длина которого может достигать несколько десятков сантиметров. Иногда от аксона отходят боковые отростки - коллатерали. Окончания аксона, как правило, ветвятся и их называют терминалями. Место, где от сомы клеток отходит аксон, называется аксональным холмиком.
Рис. 1 Б. Внешнее строение нейрона
Существует несколько классификаций нейронов, основанных на разных признаках: форме сомы, количеству отростков, функциям и эффектам, которые нейрон оказывает на другие клетки.
В зависимости от формы сомы различают зернистые (ганглиозные) нейроны, у которых сома имеет округлую форму; пирамидные нейроны разных размеров - большие и малые пирамиды; звездчатые нейроны; веретенообразные нейроны (рис.2 А).
По количеству отростков выделяют униполярные нейроны, имеющие один отросток, отходящий от сомы клеток; псевдоуниполярные нейроны (такие нейроны имеют Т-образный ветвящийся отросток); биполярные нейроны, имеющие один дендрит и один аксон и мультиполярные нейроны, которые имеют несколько дендритов и один аксон (рис. 2 Б).
Различные типы нервных клеток, а - пирамидная, б - двойная пирамидная клетка гиппокампа, в - клетка-зерно зубчатой извилины, г - веретенообразная клетка, д - корзинчатая клетка, е - клетка Пуркинье. |
1 - униполярный нейрон в среднемозговом ядре тройничного нерва; 2 - псевдоуниполярный нейрон спинального ганглия; 3 - грушевидная клетка коры мозжечка; 4 - биполярный нейрон вестибулярного ганглия; 5 -мультиполярный вегетативный нейрон с перпендикулярным расположением аксона и дендритов; 6 - звездчатая клетка; 7 - пирамидная клетка. |
Рис. 2. Классификация нейронов по форме сомы, по количеству отростков
Униполярные нейроны находятся в сенсорных узлах (например, спинальных, тройничном) и связаны с таким видом чувствительности, как болевая, температурная, тактильная, чувством давления, вибрации и т.д.
Эти клетки, хотя и называют униполярными, на самом деле имеют два отростка, которые сливаются вблизи тела клетки.
Биполярные клетки характерны для зрительной, слуховой и обонятельной систем
Мультиполярные клетки имеют разнообразную форму тела - веретенообразную, корзинчатую, звездчатую, пирамидную - малой и большой формы.
По выполняемым функциям нейроны бывают: афферентные, эфферентные и вставочные (контактные).
Афферентные нейроны - сенсорные (псевдоуниполярные), их сомы расположены вне центральной нервной системы в ганглиях (спинномозговых или черепно-мозговых). Форма сомы - зернистая. Афферентные нейроны имеют один дендрит, который подходит к рецепторам (кожи, мышц, сухожилий и т.д.). По дендритам информация о свойствах раздражителей передается на сому нейрона и по аксону в центральную нервную систему.
Эфферентные (двигательные) нейроны регулируют работу эффекторов (мышц, желез, ткани и т.д.). Это мультиполярные нейроны, их сомы имеют звездчатую или пирамидную форму, лежащие в спинном или головном мозге или в ганглиях автономной нервной системы. Короткие, обильно ветвящиеся дендриты воспринимают импульсы от других нейронов, а длинные аксоны выходят за пределы центральной нервной системы и в составе нерва идут к эффекторам (рабочим органам), например, к скелетной мышце.
Вставочные нейроны (интернейроны, контактные) составляют основную массу мозга. Они осуществляют связь между афферентными и эфферентными нейронами, перерабатывают информацию, поступающую от рецепторов в центральную нервную систему. В основном это мультиполярные нейроны звездчатой формы.
Среди вставочных нейронов различаются нейроны с длинными и короткими аксонами (рис. 3 А, Б).
В качестве сенсорных нейронов изображены: нейрон, отросток которого идет в составе слуховых волокон пред-дверно-улиткового нерва (VIII пара), нейрон, реагирующий на стимуляцию кожи (КН). Вставочные нейроны представлены амакрино-вой (АмН) и биполярной (БН) клетками сетчатки, нейроном обонятельной луковицы (ОбН), нейроном голубоватого места (ГМН), пирамидной клеткой коры головного мозга (ПН) и звездчатым нейроном (ЗН) мозжечка. В качестве двигательного нейрона изображен мотонейрон спинного мозга.
Рис. 3 А. Классификация нейронов по выполняемым функциям
Сенсорные нейрон:
1 - биполярный, 2 - псевдобиполярный, 3 - псевдоуниполярный, 4 - пирамидная клетка, 5 - нейрон спинного мозга, 6 -нейрон п. ambiguus, 7 - нейрон ядра подъязычного нерва. Симпатические нейроны: 8 - из звездчатого ганглия, 9 - из верхнего шейного ганглия, 10 - из интермедиолатеральеного столба бокового рога спинного мозга. Парасимпатические нейроны: 11 - из узла мышечного сплетения кишечной стенки, 12 - из дорсального ядра блуждающего нерва, 13 - из ресничного узла.
По эффекту, который нейроны оказывают на другие клетки, различают возбуждающие нейроны и тормозные нейроны. Возбуждающие нейроны оказывают активизирующий эффект, повышая возбудимость клеток, с которыми они связаны. Тормозные нейроны, напротив, снижают возбудимость клеток, вызывая угнетающий эффект.
Глия
Пространство между нейронами заполнено клетками, которые называются нейроглией (термин глия- обозначает клей, клетки “склеивают” компоненты ЦНС в единое целое). В отличие от нейронов клетки нейроглии делятся в течение всей жизни человека. Нейроглиальных клеток очень много; в некоторых отделах нервной системы их в 10 раз больше, чем нервных клеток. Выделяют клетки макроглии и клетки микроглии (рис.4).
Четыре основных вида клеток глии.
Нейрон, окруженный различными элементами глии
1 - астроциты макроглия
2 - олигодендроциты макроглия
3 - микроглия макроглия
Рис. 4. Клетки макроглии и микроглии
К макроглие относят астроциты и олигодендроциты. Астроциты обладают множеством отростков, которые расходятся от тела клетки во всех направлениях, придавая вид звезды. В центральной нервной системе некоторые отростки заканчиваются концевой ножкой на поверхности кровеносных сосудов. Астроциты, лежащие в белом веществе головного мозга, называются фиброзными астроцитами из-за наличия множества фибрилл в цитоплазме их тел и ветвей. В сером веществе астроциты содержат меньше фибрилл и называются протоплазматическими астроцитами. Они служат опорой нервных клеток, обеспечивают репарацию нервов после повреждения, изолируют и объединяют нервные волокна и окончания, участвуют в метаболических процессах, моделирующих ионный состав, медиаторы. Теперь отвергнуты предположения ь, что они участвуют в транспорте веществ от кровеносных сосудов к нервным клеткам и образуют часть гематоэцефалического барьера.
Олигодендроциты меньше по размерам, чем астроциты, содержат небольшие ядра, чаще встречаются в белом веществе и ответственны за формирование миелиновых оболочек вокруг длинных аксонов. Они выполняют роль изолятора и увеличивают скорость проведения нервных импульсов вдоль отростков. Миелиновая оболочка сегментарна, пространство между сегментами называется перехват Ранвье (рис.5). Каждый ее сегмент, как правило, образован одним олигодендроцитом (Шванновская клетка), который, истончаясь, закручивается вокруг аксона. Миелиновая оболочка имеет белый цвет (белое вещество), так как в состав мембран олигодендроцитов входит жироподобное вещество - миелин. Иногда одна глиальная клетка, образуя выросты, принимает участие в образовании сегментов нескольких отростков. Предполагается, что олигодендроциты осуществляют сложный метаболический обмен с нервными клетками.
1 - олигодендроцит, 2 - связь между телом клетки глии и миелиновой оболочкой, 4 - цитоплазма, 5 -плазматическая мембрана, 6 - перехват Ранвье, 7 - петля плазматической мембраны, 8 - мезаксон, 9 - гребешок
Рис. 5А. Участие олигодендроцита в образовании миелиновой оболочки
Представлены четыре стадии "обволакивания" аксона (2) шванновской клеткой (1) и его обертывания несколькими сдвоенными слоями мембраны, которые после сжатия образуют плотную миелиновую оболочку.
Рис. 5 Б. Схема оброзования миелиновой оболочки.
Сома нейрона и дендриты покрыты тонкими оболочками, которые не образуют миелин и составляют серое вещесство.
2. Микроглия представлена мелкими клетками, способными к амебовидному передвижению. Функция микроглии - защита нейронов от воспалений и инфекций (по механизму фагоцитоза - захватывание и переваривание генетически чужеродных веществ). Клетки микроглии доставляют нейронам кислород и глюкозу. Кроме того, они входят в состав гематоэнцефалического барьера, который образован ими и эндотелиальными клетками, образующими стенки кровеносных капилляров. Гематоэнцефалический барьер задерживает макромолекулы, ограничивая их доступ к нейронам.
Нервные волокна и нервы
Длинные отростки нервных клеток называют нервными волокнами. По ним нервные импульсы могут передаваться на большие расстояния до 1 метра.
Классификация нервных волокон основана на морфологических и функциональных признаках.
Нервные волокна, имеющие миелиновую оболочку, называются миелинизированными (мякотными), а волокна, не имеющие миелиновой оболочки - немиелинизированными (безмякотными).
По функциональным признакам различают афферентные (чувствительные) и эфферентные (двигательные) нервные волокна.
Нервные волокна, выходящие за пределы нервной системы, образуют нервы. Нерв - это совокупность нервных волокон. Каждый нерв имеет оболочку и кровоснабжение (рис.6).
1 - общий ствол нерва, 2 - разветвления нервного волокна, 3 - оболочка нерва, 4 - пучки нервных волокон, 5 - миелиновая оболочка, 6 - мембрана швановской клетки, 7 - перехват Ранвье, 8 - ядро швановской клетки, 9 - аксолемма.
Рис. 6 Строение нерва (А) и нервного волокна (Б).
Различают спинномозговые нервы, связанные со спинным мозгом (31 пара) и черепно-мозговые нервы (12 пар), связанные с головным мозгом. В зависимости от количественного соотношения афферентных и эфферентных волокон в составе одного нерва различают чувствительные, двигательные и смешанные нервы. В чувствительных нервах преобладают афферентные волокна, в двигательных - эфферентные, в смешанных - количественное соотношение афферентных и эфферентных волокон приблизительно равно. Все спинномозговые нервы являются смешанными нервами. Среди черепно-мозговых нервов выделяют три вышеперечисленных типа нервов. I пара - обонятельные нервы (чувствительные), II пара - зрительные нервы (чувствительные), III пара - глазодвигательные (двигательные), IV пара - блоковые нервы (двигательные), V пара - тройничные нервы (смешанные), VI пара - отводящие нервы (двигательные), VII пара - лицевые нервы (смешанные), VIII пара - вестибуло-кохлеарные нервы (смешанные), IX пара - языкоглоточные нервы (смешанные), X пара - блуждающие нервы (смешанные), XI пара - добавочные нервы (двигательные), XII пара - подъязычные нервы (двигательные) (рис 7 ).
I - пара- обонятельные нервы,
II - пара- зрительные нервы,
III - пара- глазодвигательные нервы,
IV - пара- блоковые нервы,
V - пара - тройничные нервы,
VI - пара- отводящие нервы,
VII - пара- лицевые нервы,
VIII - пара- кохлеарные нервы,
IX - пара- языкоглоточные нервы,
X - пара - блуждающие нервы,
XI - пара- добавочные нервы,
XII - пара-1,2,3,4 - корешки верхних спиномозговых нервов.
Рис. 7, Схема расположения черепно-мозговых и спинальных нервов
Серое и белое вещество нервной системы
На свежих срезах мозга видно, что одни структуры более темные - это серое вещество нервной системы, а другие структуры более светлые - белое вещество нервной системы. Белое вещество нервной системы образовано миелинизированными нервными волокнами, серое - немиелинизированными частями нейрона - сомами и дендритами.
Белое вещество нервной системы представлено центральными трактами и периферическими нервами. Функция белого вещества - передача информации от рецепторов в центральную нервную систему и от одних отделов нервной системы к другим.
Серое вещество центральной нервной системы образовано корой мозжечка и корой полушарий большого мозга, ядрами, ганглиями и некоторыми нервами.
Ядра
Ядра - скопления серого вещества в толще белого вещества. Они расположены в разных отделах центральной нервной системы: в белом веществе больших полушарий - подкорковые ядра, в белом веществе мозжечка - мозжечковые ядра, некоторые ядра расположены в промежуточном, среднем и продолговатом мозге. Большинство ядер являются нервными центрами, регулирующими ту или иную функцию организма.
Ганглии
Ганглии - это скопление нейронов, расположенных вне пределов центральной нервной системы. Различают спинномозговые, черепно-мозговые ганглии и ганглии автономной нервной системы. Ганглии образованы преимущественно афферентными нейронами, но в их состав могут входить вставочные и эфферентные нейроны.
Взаимодействие нейронов
Место функционального взаимодействия или контакта двух клеток (место, где одна клетка оказывает влияние на другую клетку) английский физиолог Ч. Шеррингтон назвал синапсом.
Синапсы бывают периферическими и центральными. Примером периферического синапса является нервно-мышечный синапс, когда нейрон образует контакт с мышечным волокном. Синапсы в нервной системе называются центральными, когда контактируют два нейрона. Выделяется пять типов синапсов, в зависимости от того, какими частями контактируют нейроны: 1) аксо-дендритный (аксон одной клетки контактирует с дендритом другой); 2) аксо-соматический (аксон одной клетки контактирует с сомой другой клетки); 3) аксо-аксональный (аксон одной клетки контактирует с аксоном другой клетки); 4) дендро-дендритный (дендрит одной клетки контактирует с дендритом другой клетки); 5) сомо-соматический (контактируют сомы двух клеток). Основная масса контактов - аксо-дендритных и аксо-соматических.
Синаптические контакты могут быть между двумя возбудительными нейронами, двумя тормозными нейронами или между возбудительным и тормозным нейронами. При этом нейроны, которые оказывают воздействие, называют пресинаптическими, а нейроны, на которые оказывается воздействие - постсинаптическими. Пресинаптический возбудительный нейрон повышает возбудимость постсинаптического нейрона. В этом случае синапс называют возбудительным. Пресинаптический тормозный нейрон оказывает противоположное действие - снижает возбудимость постсинаптического нейрона. Такой синапс называют тормозным. Каждый из пяти типов центральных синапсов имеет свои морфологические особенности, хотя общая схема их строения одинакова.
Строение синапса
Рассмотрим строение синапса на примере аксо-соматического. Синапс состоит из трех частей: пресинаптического окончания, синаптической щели и постсинаптической мембраны (рис.8 А, Б).
А-Синаптические входы нейрона. Синаптические бляшки окончаний пресинаптичесиих аксонов образуют соединения на дендритах и теле (соме)- постсинаптического нейрона.
Рис. 8 А. Строение синапсов
Пресинаптическое окончание представляет собой расширенную часть терминали аксона. Синаптическая щель - это пространство между двумя контактирующими нейронами. Диаметр синаптической щели составляет 10-20 нм. Мембрана пресинаптического окончания, обращенная к синаптической щели, называется пресинаптической мембраной. Третья часть синапса - постсинаптическая мембрана, которая расположена напротив пресинаптической мембраны.
Пресинаптическое окончание заполнено пузырьками (везикулами) и митохондриями. В везикулах находятся биологически активные вещества - медиаторы. Медиаторы синтезируются в соме и по микротрубочкам транспортируются в пресинаптическое окончание. Наиболее часто в качестве медиатора выступают адреналин, норадреналин, ацетилхолин, серотонин, гамма-аминомасляная кислота (ГАМК), глицин и другие. Обычно синапс содержит один из медиаторов в большем количестве по сравнению с другими медиаторами. По типу медиатора принято обозначать синапсы: адреноэргические, холинэргические, серотонинэргические и др.
В состав постсинаптической мембраны входят особые белковые молекулы - рецепторы, которые могут присоединить молекулы медиаторов.
Синаптическая щель заполнена межклеточной жидкостью, в которой находятся ферменты, способствующие разрушению медиаторов.
На одном постсинаптическом нейроне может находиться до 20000 синапсов, часть из которых являются возбудительными, а часть - тормозными (рис.8 Б).
Б. Схема выброски медиатора и процессов, происходящих в гипотетическом центральном синапсе.
Рис. 8 Б. Строение синапсов
Помимо химических синапсов, в которых при взаимодействии нейронов участвуют медиаторы, в нервной системе встречаются электрические синапсы. В электрических синапсах взаимодействие двух нейронов осуществляется посредством биотоков. В центральной нервной системе преобладают химические стимулы.
В некоторых межнейронах синапсах электрическая и химическая передача осуществляется одновременно - это смешанный тип синапсов.
Влияние возбудительных и тормозных синапсов на возбудимость постсинаптического нейрона суммируется и эффект зависит от места расположения синапса. Чем ближе синапсы расположены к аксональному холмику, тем они эффективнее. Напротив, чем дальше расположены синапсы от аксонального холмика (например, на окончании дендритов), тем они менее эффективны. Таким образом, синапсы, расположенные на соме и аксональном холмике, оказывают влияние на возбудимость нейрона быстро и эффективно, а влияние удаленных синапсов медленно и плавно.
Нейронные сети
Благодаря синаптическим связям нейроны объединены в функциональные единицы - нейронные сети. Нейронные сети могут быть образованы нейронами, расположенными на небольшом расстоянии. Такую нейронную сеть называют локальной. Кроме того, в сеть могут быть объединены нейроны, удаленные друг от друга, из разных областей мозга. Самый высокий уровень организации связей нейронов отражает соединение нескольких областей центральной нервной системы. Такую нервную сеть называют путем или системой. Различают нисходящие и восходящие пути. По восходящим путям информация передается от нижележащих областей мозга к вышележащим (например, от спинного мозга к коре полушарий большого мозга). Нисходящие пути связывают кору больших полушарий мозга со спинным мозгом.
Самые сложные сети называются распределительными системами. Они образуются нейронами разных отделов мозга, управляющих поведением, в которых участвует организм как единое целое.
Некоторые нервные сети обеспечивают конвергенцию (схождение) импульсов на ограниченном количестве нейронов. Нервные сети могут быть построены также по типу дивергенции (расхождение). Такие сети обуславливают передачу информации на значительные расстояния. Кроме того, нервные сети обеспечивают интеграцию (суммирование или обобщение) различного рода информации (рис.9).
Рис. 9. Нервная ткань.
Крупный нейрон с множеством дендритов получает информацию через синаптический контакт с другим нейроном (в левом верхнем углу). С помощью миелинизированного аксона образуется синаптический контакт с третьим нейроном (внизу). Поверхности нейронов изображены без клеток глии, которые окружают отросток, направленный к капилляру (справа вверху).
Рефлекс как основной принцип работы нервной системы
Одним из примеров нервных сетей может быть рефлекторная дуга, необходимая для осуществления рефлекса. И.М. Сеченов в 1863 г. в работе “Рефлексы головного мозга” развил представление о том, что рефлекс является основным принципом работы не только спинного, но и головного мозга.
Рефлекс - это ответная реакция организма на раздражение при участии центральной нервной системы. Для каждого рефлекса имеется своя рефлекторная дуга - путь, по которому возбуждение проходит от рецептора до эффектора (исполнительного органа). В состав любой рефлекторной дуги входят пять составных частей: 1) рецептор - специализированная клетка, предназначенная для восприятия раздражителя (звуковой, световой, химический и т.д.), 2) афферентный путь, который представлен афферентными нейронами, 3) участок центральной нервной системы, представленный спинным или головным мозгом; 4) эфферентный путь состоит из аксонов эфферентных нейронов, выходящих за пределы центральной нервной системы; 5) эффектор - рабочий орган (мышца или железа и т.д.).
Простейшая рефлекторная дуга включает два нейрона и называется моносинаптической (по числу синапсов). Более сложная рефлекторная дуга представлена тремя нейронами (афферентным, вставочным и эфферентным) и называется трехнейронной или дисинаптической. Однако большинство рефлекторных дуг включает большое количество вставочных нейронов, и называются полисинаптическими (рис. 10 А, Б ).
Рефлекторные дуги могут проходить только через спинной мозг (отдергивание руки при прикосновении к горячему предмету) или только головной мозг (закрывание век при струе воздуха, направленной в лицо), или как через спинной, так и через головной мозг.
Рис. 10А. 1 - вставочный нейрон; 2 - дендрит; 3 - тело нейрона; 4 - аксон; 5 -синапс между чувствительным и вставочным нейронами; 6 - аксон чувствительного нейрона; 7 - тело чувствительного нейрона; 8 - аксон чувствительного нейрона; 9 - аксон двигательного нейрона; 10 - тело двигательного нейрона; 11 - синапс между вставочным и двигательными нейронами; 12 - рецептор в коже; 13 - мышца; 14 - симпатический гаглий; 15 - кишка.
Рис. 10Б. 1 - моносинаптическая рефлекторная дуга, 2 - полисинаптическая рефлекторная дуга, 3К - задний корешок спинного мозга, ПК - передний корешок спинного мозга.
Рис. 10. Схема строения рефлекторной дуги
Рефлекторные дуги замыкаются в рефлекторные кольца с помощью обратных связей. Понятие обратной связи и ее функциональная роль были указаны Беллом в 1826 г. Белл писал, что между мышцей и центральной нервной системой устанавливаются двусторонние связи. С помощью обратной связи в центральную нервную систему поступают сигналы о функциональном состоянии эффектора.
Морфологической основой обратной связи являются рецепторы, расположенные в эффекторе, и афферентные нейроны, связанные с ними. Благодаря обратным афферентным связям осуществляется тонкая регуляция работы эффектора и адекватная реакция организма на изменения окружающей среды.
Оболочки мозга
Центральная нервная система (спинной и головной мозг) имеют три соединительно-тканные оболочки: твердую, паутинную и мягкую. Самая наружная из них твердая мозговая оболочка (она срастается с надкостницей, выстилающей поверхность черепа). Паутинная оболочка лежит под твердой оболочкой. Она плотно прижата к твердой и между ними нет свободного пространства.
Непосредственно к поверхности мозга примыкает мягкая мозговая оболочка, в которой много кровеносных сосудов, питающих мозг. Между паутинной и мягкой оболочками имеется пространство, заполненное жидкостью - ликвором. По составу ликвор близок к плазме крови и межклеточной жидкости и играет противоударную роль. Кроме того, в ликворе содержатся лимфоциты, обеспечивающие защиту от чужеродных веществ. Он же участвует в обмене веществ между клетками спинного, головного мозга и кровью (рис.11 А ).
1 - зубчатая связка, отросток которой проходит через расположенную сбоку паутинную оболочку, 1а - зубчатая связка, прикрепленная к твердой мозговой оболочке спинного мозга, 2 - паутинная оболочка, 3 - задний корешок, проходящий в канале, образованном мягкой и паутинной оболочками, За - задний корешок, проходящий через отверстие в твердой мозговой оболочке спинного мозга, 36 - дорсальные ветви спинномозгового нерва, проходящие через паутинную оболочку, 4 - спинномозговой нерв, 5 -спинномозговой узел, 6 - твердая оболочка спинного мозга, 6а - твердая мозговая оболочка, отвернутая в сторону, 7 - мягкая оболочка спинного мозга с задней спинномозговой артерией.
Рис. 11А. Оболочки спинного мозга
Полости мозга
Внутри спинного мозга располагается спинномозговой канал, который, переходя в головной мозг, расширяется в продолговатом мозге и образует четвертый желудочек. На уровне среднего мозга желудочек переходит в узкий канал - Сильвиев водопровод. В промежуточном мозге Сильвиев водопровод расширяется, образуя полость третьего желудочка, который плавно переходит на уровне полушарий головного мозга в боковые желудочки (I и II). Все перечисленные полости также заполнены ликвором ( рис. 11 Б)
Рис 11Б. Схема желудочков мозга и их отношение к поверхностным структурам полушарий головного мозга.
а - мозжечок, б - затылочный полюс, в - теменной полюс, г - лобный полюс, д - височный полюс, е - продолговатый мозг.
1 - боковое отверстие четвертого желудочка (отверстие Люшка), 2 - нижний рог бокового желудочка, 3 - водопровод, 4 - recessus infundibularis, 5 - recrssus opticus, 6 - межжелудочковое отверстие, 7 - передний рог бокового желудочка, 8 - центральная часть бокового желудочка, 9 - сращение зрительных бугров (massa inter-melia), 10 - третий желудочек, 11 -recessus pinealis, 12 - вход в боковой желудочек, 13 - задний pro бокового желудочка, 14 - четвертый желудочек.
Рис. 11. Оболочки (А) и полости мозга (Б)
РАЗДЕЛ II. СТРОЕНИЕ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ
Спинной мозг
Внешнее строение спинного мозга
Спинной мозг представляет собой уплощенный тяж, расположенный в позвоночном канале. В зависимости от параметров тела человека его длина составляет 41-45 см, средний диаметр 0.48-0.84 см, вес около 28-32 г. В центре спинного мозга проходит спинномозговой канал, заполненный ликвором, а передней и задней продольными бороздами он поделен на правую и левую половины.
Спереди спинной мозг переходит в головной мозг, а сзади заканчивается мозговым конусом на уровне 2-го позвонка поясничного отдела позвоночника. От мозгового конуса отходит соединительно-тканная концевая нить (продолжение концевых оболочек), которая прикрепляет спинной мозг к копчику. Концевая нить окружена нервными волокнами (конский хвост) (рис. 12).
На спинном мозге выделяется два утолщения - шейное и поясничное, от которых отходят нервы, иннервирующие, соответственно, скелетные мышцы рук и ног.
В спинном мозге выделяют шейный, грудной, поясничный и крестцовый отделы, каждый из которых подразделяется на сегменты: шейный - 8 сегментов, грудной - 12, поясничный - 5, крестцовый 5-6 и 1 - копчиковый. Таким образом, общее количество сегментов - 31 (рис. 13). Каждый сегмент спинного мозга имеет парные спинномозговые корешки - передние и задние. По задним корешкам в спинной мозг поступает информация от рецепторов кожи, мышц, сухожилий, связок, суставов, поэтому задние корешки называют сенсорными (чувствительными). Перерезка задних корешков выключает тактильную чувствительность, но не приводит к утрате движений.
Рис. 12. Спинной мозг.
a - вид спереди (вентральная его поверхность);
б - вид сзади (дорсальная его поверхность).
Твердая и паутинная оболочки разрезаны. Сосудистая оболочка снята. Римскими цифрами обозначен порядок расположения шейных (с), грудных (th), поясничных (t)
и крестцовых (s) спинномозговых нервов.
1 - шейное утолщение
2 - спинальный ганглий
3 - твердая оболочка
4 - поясничное утолщение
5 - мозговой конус
6 - концевая нить
Рис. 13. Спинной мозг и спинномозговые нервы (31 пара).
По передним корешкам спинного мозга нервные импульсы поступают к скелетным мышцам тела (за исключением мышц головы), вызывая их сокращение, поэтому передние корешки называют двигательными или моторными. После перерезки передних корешков с одной стороны наблюдается полное выключение двигательных реакций, чувствительность к прикосновению или давлению при этом сохраняется.
Передние и задние корешки каждой стороны спинного мозга объединяются в спинномозговые нервы. Спинномозговые нервы называют сегментарными, их количество соответствует числу сегментов и составляет 31 пару ( рис. 14)
Распределение зон спинномозговых нервов по сегментам было установлено путем определения размеров и границ участков кожи (дерматомов), иннервируемых каждым нервом. Дерматомы расположены на поверхности тела по сегментарному принципу. К шейным дерматомам относятся задняя поверхность головы, шея, плечи и передняя поверхность предплечий. Грудные сенсорные нейроны иннервируют оставшуюся поверхность предплечья, грудь и большую часть живота. Сенсорные волокна поясничных, крестцовых и копчиковых сегментов подходят к остальной части живота и ногам.
Рис. 14. Схема дерматомов. Иннервация поверхности тела 31 парой спинномозговых нервов (С - шейные, Т - грудные, L - поясничные, S - крестцовые).
Внутреннее строение спинного мозга
Спинной мозг построен по ядерному типу. Вокруг спинномозгового канала расположено серое вещество, на периферии - белое. Серое вещество образовано сомами нейронов и ветвящимися дендритами, не имеющими миелиновых оболочек. Белое вещество - это совокупность нервных волокон, покрытых миелиновыми оболочками.
В сером веществе различают передние и задние рога, между которыми лежит межуточная зона. В грудном и поясничном отделах спинного мозга имеются боковые рога.
Серое вещество спинного мозга образовано двумя группами нейронов: эфферентными и вставочными. Основную массу серого вещества составляют вставочные нейроны (до 97%) и только 3% составляют эфферентные нейроны или мотонейроны. Мотонейроны расположены в передних рогах спинного мозга. Среди них различают - и -мотонейроны: -мотонейроны иннервируют волокна скелетных мышц и представляют собой крупные клетки с относительно длинными дендритами; -мотонейроны представлены мелкими клетками и иннервируют рецепторы мышц, повышая их возбудимость.
Вставочные нейроны участвуют в переработке информации, обеспечивая согласованную работу сенсорных и двигательных нейронов, а также связывают правую и левую половины спинного мозга и его различные сегменты ( рис. 15 А,Б,В )
Рис. 15А. 1 - белое вещество мозга; 2 - спинномозговой канал; 3 - задняя продольная борозда; 4 - задний корешок спинномозгового нерва; 5 -спинно-мозговой узел; 6 - спинномозговой нерв; 7 -серое вещество мозга; 8 - передний корешок спинномозгового нерва; 9 - передняя продольная борозда
Рис. 15Б. Ядра серого вещества в грудном отделе
1,2,3- чувствительные ядра заднего рога; 4, 5 - вставочные ядра бокового рога; 6,7, 8,9,10 - двигательные ядра переднего рога; I, II, III - передний, боковой и задний канатики белого вещества.
Изображены контакты между чувствительными, вставочными и двигательными нейронами в сером веществе спинного мозга.
Рис. 15. Поперечный разрез спинного мозга
Проводящие пути спинного мозга
Белое вещество спинного мозга окружает серое вещество и образует столбы спинного мозга. Различают передние, задние и боковые столбы. Столбы - это тракты спинного мозга, образованные длинными аксонами нейронов, идущими вверх по направлению к головному мозгу (восходящие пути) либо вниз - от головного мозга к ниже расположенным сегментам спинного мозга (нисходящие пути).
По восходящим путям спинного мозга передается информация от рецепторов мышц, сухожилий, связок, суставов и кожи к головному мозгу. Восходящие пути являются также проводниками температурной и болевой чувствительности. Все восходящие пути перекрещиваются на уровне спинного (или головного) мозга. Таким образом, левая половина головного мозга (кора полушарий и мозжечок) получают информацию от рецепторов правой половины тела и наоборот.
Основные восходящие пути: от механорецепторов кожи и рецепторов опорно-двигательного аппарата - это мышцы, сухожилия, связки, суставы - пучки Голля и Бурдаха или соответственно они же - нежный и клиновидный пучки представлены задними столбами спинного мозга.
От этих же рецепторов информация поступает в мозжечок по двум путям, представленным боковыми столбами, которые называются передним и задним спиномозжечковыми трактами. Кроме того, в боковых столбах проходят еще два пути - это боковой и передний спинно-таламические пути, передающие информацию от рецепторов температурной и болевой чувствительности.
Задние столбы обеспечивают более быстрое проведение информации о локализации раздражений, чем боковой и передний спинно-таламические пути (рис. 16 А).
1 - пучок Голля, 2 - пучок Бурдаха, 3 - дорсальный спинно-мозжечковый тракт, 4 - вентральный спинно-мозжечковый тракт. Нейроны группы I-IV.
Рис. 16А. Восходящие пути спинного мозга
Нисходящие пути, проходя в составе передних и боковых столбов спинного мозга, являются двигательными, так как они влияют на функциональное состояние скелетных мышц тела. Пирамидный путь начинается, в основном, в двигательной коре полушарий и проходит к продолговатому мозгу, где большая часть волокон перекрещивается и переходит на противоположную сторону. После этого пирамидный путь разделяется на боковой и передний пучки: соответственно, передний и боковой пирамидные пути. Большинство волокон пирамидных путей оканчивается на вставочных нейронах, а около 20% образуют синапсы на мотонейронах. Пирамидное влияние является возбуждающим. Ретикуло-спинальный путь, руброспинальный путь и вестибулоспинальный путь (экстрапирамидная система) начинаются соответственно от ядер ретикулярной формации, ствола мозга, красных ядер среднего мозга ив вестибулярных ядер продолговатого мозга. Эти пути проходят в боковых столбах спинного мозга, участвуют в координации движений и обеспечении мышечного тонуса. Экстрапирамидные пути, так же как и пирамидные, являются перекрещенными (рис. 16 Б ).
Главные нисходящие спинномозговые пути пирамидной (латеральный и передний кортикоспинальные пути) и экстра пирамидной (руброспинальный, ретикулоспинальный и вестибулоспинальный пути) систем.
Рис. 16 Б. Схема проводящих путей
Таким образом, спинной мозг осуществляет две важнейшие функции: рефлекторную и проводниковую. Рефлекторная функция осуществляется за счет двигательных центров спинного мозга: мотонейроны передних рогов обеспечивают работу скелетных мышц туловища. При этом поддерживается сохранение мышечного тонуса, координации работы мышц сгибателей-разгибателей, лежащих в основе движений и сохранение постоянства позы тела и его частей(рис. 17 А,Б,В ). Мотонейроны, расположенные в боковых рогах грудных сегментов спинного мозга, обеспечивают дыхательными движениями (вдох-выдох, регулируя работу межреберных мышц). Мотонейроны боковых рогов поясничного и крестцового сегментов представляют двигательные центры гладких мышц, входящих в состав внутренних органов. Это центры мочеиспускания, дефекации, работы половых органов.
Рис. 17А. Дуга сухожильного рефлекса.
Рис. 17Б. Дуги сгибательного и перекрестного разгибательного рефлекса.
Рис. 17В. Элементарная схема безусловного рефлекса.
Нервные импульсы, возникающие при раздражении рецептора (р) по афферентным волокнам (афф. нерв, показано лишь одно такое волокно) идут к спинальному мозгу (1), где через вставочный нейрон передаются на эфферентные волокна (эфф. нерв), по которым доходят до эффектора. Пунктирные линии - распространение возбуждения от низших отделов центральной нервной системы на ее вышерасположенные отделы (2, 3,4) до коры мозга (5) включительно. Наступающее вследствие этого изменение состояния высших отделов мозга в свою очередь воздействует (см. стрелки) на эфферентный нейрон, влияя на конечный результат рефлекторного ответа.
Рис. 17. Рефлекторная функция спинного мозга
Проводниковую функцию выполняют спинномозговые тракты (рис. 18 А,Б,В,Г,Д ).
Рис. 18А. Задние столбы. Это цепь, образованная тремя нейронами, передает информацию от рецепторов давления и прикосновения к соматосенсорной коре.
Рис. 18Б. Латеральный спинно-таламический тракт. По этому пути информация от температурных и болевых рецепторов поступает к обширным областям корытоловного мозга.
Рис. 18В. Передний спинно-таламический тракт. По этому пути в соматосенсорную кору поступает информация от рецепторов давления и прикосновения, а также от болевых и температурных.
Рис. 18Г. Экстрапирамидная система. Руброспинальный и ретикулоспинальный пути, входящие в состав мультинейронного экстрапирамидного пути, идущего от коры больших полушарий к спинному мозгу.
Рис. 18Д. Пирамидный, или кортикоспинальный, путь
Рис. 18. Проводниковая функция спинного мозга
РАЗДЕЛ III. ГОЛОВНОЙ МОЗГ.
Общая схема строения головного мозга ( рис. 19)
Головной мозг
Задний мозг22 Некоторые анатомы продолговатый мозг не включают в задний мозг, а выделяют его в качестве самостоятельного отдела. |
Сред-ний мозг |
Промежуточный мозг |
Конечный мозг |
|||||
продолговатый мозгмозжечокВаролиев мост |
четверохолмиеножки мозжечка |
зрительный бугорподбугорьенадбугорьезабугорье |
большие полушария: кора, белое вещество,подкорковые ядра |
Рис 19А. Головной мозг
1. Лобная кора (когнитивная зона)
2. Двигательная кора
3. Зрительная кора
4. Мозжечок 5. Слуховая кора
Рис 19Б. Вид сбоку
Рис 19В. Главные образования медальной поверхности головного мозга на средне-сагиттальном разрезе.
Рис 19Г. Нижняя поверхность головного мозга
Рис. 19. Строение головного мозга
Задний мозг
Задний мозг, включающий продолговатый мозг и Варолиев мост представляют собой филогенетически древнюю область центральной нервной системы, сохраняя черты сегментарного строения. В заднем мозге локализованы ядра и проводящие восходящие и нисходящие пути. По проводящим путям в задний мозг поступают афферентные волокна от вестибулярных и слуховых рецепторов, от рецепторов кожи и мышц головы, от рецепторов внутренних органов, а также от вышерасположенных структур головного мозга. В заднем мозге расположены ядра V-XII пар черепно-мозговых нервов, часть из которых иннервирует лицевую и глазодвигательную мускулатуру.
Продолговатый мозг
Продолговатый мозг расположен между спинным мозгом, Варолиевым мостом и мозжечком (рис. 20). На вентральной поверхности продолговатого мозга по средней линии проходит передняя срединная борозда, по ее бокам расположено два тяжа - пирамиды, сбоку от пирамид лежат оливы (рис. 20 А-В).
Рис. 20А. 1 - мозжечок 2- ножки мозжечка 3 - Мост 4 - Продолговатый мозг
Рис 20Б. 1 - задняя часть таламуса 2,3,4- ножки мозжечка 5 - тонкий пучок Голя 6 - клиновидный пучок Бурдаха 7 - бугорок тонкого ядра 8 - бугорок клиновидного ядра 9 - отверстие ромбовидной ямки 10 - полость IV желудочка 11 - блоковидный нерв (IV) пара 12 - нижнее четверохолмие 13 - верхнее четверохолмие 14 - медиальное коленчатое тело 15 - эпфиз
Рис. 20В. 1 - мост 2 - пирамида 3 - олива 4 - передняя серединная щель 5 - передняя боковая борозда 6 - пере крест переднего канатика 7 - передний канатик 8 -боковой канатик
Рис. 20. Продолговатый мозг
На задней стороне продолговатого мозга тянется задняя медиальная борозда. По ее бокам лежат задние канатики, которые идут к мозжечку в составе задних ножек.
Серое вещество продолговатого мозга
В продолговатом мозге расположены ядра четырех пар черепно-мозговых нервов. К ним относятся ядра языкоглоточного, блуждающего, добавочного и подъязычного нервов. Кроме того, выделяют нежное, клиновидное ядра и улитковые ядра слуховой системы, ядра нижних олив и ядра ретикулярной формации (гигантоклеточное, мелкоклеточное и латеральное), а также дыхательные ядра.
Ядра подъязычного (XII пара) и добавочного (XI пара) нервов - двигательные, иннервируют мышцы языка и мышцы, осуществляющие движение головы. Ядра блуждающего (X пара) и языкоглоточного (IX пара) нервов - смешанные, иннервируют мышцы глотки, гортани, щитовидную железу, осуществляют регуляцию глотания, жевания. Эти нервы состоят из афферентных волокон, идущих от рецепторов языка, гортани, трахеи и от рецепторов внутренних органов грудной и брюшной полости. Эфферентные нервные волокна иннервируют кишечник, сердце и сосуды.
Ядра ретикулярной формации не только активизируют кору больших полушарий, поддерживая сознание, но и образуют дыхательный центр, который обеспечивает дыхательные движения.
Таким образом, часть ядер продолговатого мозга регулирует жизненно важные функции (это ядра ретикулярной формации и ядра черепно-мозговых нервов). Другая часть ядер входит в состав восходящих и нисходящих путей (нежное и клиновидное ядра, улитковые ядра слуховой системы) ( рис. 21).
1-тонкое ядро;
2 - клиновидное ядро;
3 - окончание волокон задних канатиков спинного мозга;
4 - внутренние дугообразные волокна - второй нейрон проприои пути коркового направления;
5 - перекрест петель находится в межоливном петлевом слое;
6 - медиальная петля - продолжение внутренних дугообразных вола
7 - шов, образован перекрестом петель;
8 - ядро оливы - промежуточное ядро равновесия;
9 - пирамидные пути;
10 - центральный канал.
Рис. 21. Внутреннее строение продолговатого мозга
Белое вещество продолговатого мозга
Белое вещество продолговатого мозга образовано длинными и короткими нервными волокнами
Длинные нервные волокна входят в состав нисходящих и восходящих проводящих путей. Короткие нервные волокна обеспечивают согласованную работу правой и левой половин продолговатого мозга.
Пирамиды продолговатого мозга - часть нисходящего пирамидного тракта, идущего в спинной мозг и оканчивающегося на вставочных нейронах и мотонейронах. Кроме того, через продолговатый мозг проходит рубро-спинальный путь. Нисходящие вестибуло-спинальный и ретикуло-спинальный тракты берут начало в продолговатом мозге соответственно от вестибулярных и ретикулярных ядер.
Восходящие спинно-мозжечковые тракты проходят через оливы продолговатого мозга и через ножки мозга и передают информацию от рецепторов опорно-двигательного аппарата к мозжечку.
Нежные и клиновидные ядра продолговатого мозга входят в состав одноименных путей спинного мозга, идущих через зрительные бугры промежуточного мозга до соматосенсорной коры.
Подобные документы
Основные анатомические закономерности в деятельности центральной нервной системы. Распространение нервных импульсов. Анатомия спинного и головного мозгов. Характеристика проводящих путей спинного мозга. Клеточные элементы нервной ткани, типы нейронов.
презентация [7,6 M], добавлен 17.12.2015Общая характеристика нервной системы. Рефлекторная регуляция деятельности органов, систем и организма. Физиологические роли частных образований центральной нервной системы. Деятельность периферического соматического и вегетативного отдела нервной системы.
курсовая работа [1,6 M], добавлен 26.08.2009Функции нервной системы в организме человека. Клеточное строение нервной системы. Виды нервных клеток (функциональная классификация). Рефлекторный принцип работы нервной системы. Отделы центральной нервной системы. Учение о высшей нервной деятельности.
реферат [1,6 M], добавлен 15.02.2011Нейробиологические концепции нервной системы. Составляющие нервной системы, характеристика их функций. Рефлекс - основная форма нервной деятельности. Понятие рефлекторной дуги. Особенности процессов возбуждения и торможения в центральной нервной системе.
реферат [55,5 K], добавлен 13.07.2013Анализ этапов развития нервной системы в онтогенезе. Клеточные элементы нервной ткани. Описание схемы строения рефлекторной дуги. Изучение особенностей образования серого и белого веществ нервной системы. Характеристика проводящих путей спинного мозга.
контрольная работа [41,4 K], добавлен 10.11.2013Значение нервной системы в приспособлении организма к окружающей среде. Общая характеристика нервной ткани. Строение нейрона и их классификация по количеству отростков и по функциям. Черепно-мозговые нервы. Особенности внутреннего строения спинного мозга.
шпаргалка [87,9 K], добавлен 23.11.2010Состав нервной ткани. Возбуждение нервных клеток, передача электрических импульсов. Особенности строения нейронов, сенсорного и моторного нервов. Пучки нервных волокон. Химический состав нервной ткани. Белки нервной ткани, их виды. Ферменты нервной ткани.
презентация [4,1 M], добавлен 09.12.2013Суть отличия клетки различных областей нервной системы в зависимости от ее функции. Гомеотические гены и сегментация, хорда и базальная пластинка. Строение и функции нервной системы позвоночных. Индукционные взаимодействия при развитии глаз дрозофилы.
реферат [406,1 K], добавлен 31.10.2009Изучение строения биологической мембраны, ионоселективного канала, видов электрических явлений в возбудимых тканях. Характеристика устройства синапса и механизма передачи возбуждения. Анализ возрастных особенностей развития центральной нервной системы.
курсовая работа [61,7 K], добавлен 09.06.2011Изучение протеолитических ферментов нервной ткани. Пептидгидролазы нервной ткани и их функции. Протеолитические ферменты нервной ткани нелизосомальной локализации и их биологическая роль. Эндопептидазы, сигнальные пептидазы, прогормонконвертазы.
реферат [49,4 K], добавлен 13.04.2009