Характеристика общих свойств микроорганизмов
Схожесть и отличия прокариотических и эукариотических клеток. Строение муреина у бактерий. Характеристика микроорганизмов по способам питания. Химическое строение, структурная организация вирусов, морфология, особенности взаимодействия с клеткой-хозяином.
Рубрика | Биология и естествознание |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 23.05.2009 |
Размер файла | 3,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Цианкобаламин (витамин В12)
Пангамовая кислота (витамин В15)
Аскорбиновая кислота (витамин С)
Цитрин (витамин Р)
Биотин (витамин Н)
Парааминобензойная кислота Фолиевая кислота
Инозит S-Метилметионин (витамин U)
Характерным для этой группы витаминов является хорошая растворимость в воде и нерастворимость в жирах и органических растворителях.
Как правило, витамины, растворимые в воде, содержатся в продуктах растительного происхождения; большинство из них в своем составе содержит азот. В отличие от жирорастворимых вита-минов они не накапливаются в животном организме и проявляют свое биологическое действие, входя в состав ферментов.
Витамин В, (тиамин) является первым витамином, хими-ческий состав которого был подробно изучен. Название "тиамин" он получил благодаря наличию в его молекуле серы и азота:
Отсутствие в пище витамина В, вызывает тяжелое заболевание полиневрит, или бери-бери, распространенное в странах, где ос-новным продуктом питания населения служит полированный рис.
По химической природе витамин В2 представляет собой про-изводное азотистого основания -- изоаллоксазина, связанное с остатком спирта -- рибитола:
При отсутствии витамина В2 у животных наблюдается задерж-ка роста, у человека -- выпадение волос. Характерным признаком авитаминоза В2 является заболевание глаз, сопровождающееся вас-куляризаиией роговицы (прорастание кровеносными сосудами). За-тем происходит воспаление роговицы и помутнение хрусталика.
Витамин В3 (пантотеновая кислота). При изучении условий, необходимых для роста дрожжей, в рисовых отрубях было открыто вещество, которое оказалось фактором роста. Оно было названо пантотеновой кислотой (от греч. pamothen -- везде присутствую-щий). Такое название витамин В3 получил за свое широкое распро-странение в природе.
Отсутствие пантотеновой кислоты в пище вызывает ряд расстройств в организме человека: нарушается деятельность сер-дца, нервной системы, почек, пищевого канала, развиваются дерматиты, обесцвечиваются волосы, снижается аппетит и т. д.
Витамин В5, РР (никотиновая кислота).
Биологическое значение витамина РР заключается'в том, что он является составной частью коферментов НАД и НАДФ. После-дние входят в состав многих дегидрогеназ -- ферментов, катализи-рующих реакции биологического окисления. Эту функцию фермен-ты (их известно около 100) выполняют благодаря наличию в соста-ве их молекул витамина РР, способного обратимо присоединять атомы водорода.
Витамин В6 (пиридоксин).
Биологической активностью обладают пиридоксаль и пири-доксамин, образующиеся из пиридоксола, который в связи с этим можно рассматривать скорее как провитамин В6.
В организме пиридоксаль и пиридоксамин легко превращаются в фосфорилированную форму, образуя пиридоксальфосфат и пи-ридоксаминфосфат:
Биологическая роль витамина В6 состоит в том, что он явля-ется коферментом так называемых трансаминаз или аминотранс-фераз. Это ферменты, участвующие в белковом обмене, в реакци-ях превращений а-аминокислот.
Витамин В12 (цианкобаламин).
Следует подчеркнуть, что цианкобаламин -- единственный известный в настоящее время витамин, содержащий в" своей моле-куле металл и практически не образующийся ни в растениях, ни в тканях животных.
Витамин В12 синтезируется главным образом микроорганизма-ми, в том числе обитающими в кишках человека. Очень богаты этим витамином стоячие и сточные воды, почва, ил. Живущие в них ана-эробные бактерии отличаются высоким содержанием витамина В12.
Витамин Ви (пангамовая кислота) принадлежит к числу недавно открытых витаминов. По химическому строению пангамо-вая кислота представляет собой эфир D-глюконовой и диметила-миноуксусной кислот:
Витамин С (аскорбиновая кислота). По своему химическому строению аскорбиновая кислота близка к углеводам гексозам.
23. Характеристика жирорастворимых витаминов. Их значение.
Ретинолы и каротиноиды (витамины группы А)
Кальциферолы (витамины группы D)
Токоферолы (витамины группы Е)
Филохиноны (витамины группы К)
Жирорастворимые витамины нерастворимы в воде, но раство-ряются в органических растворителях. Они термостабильны, устой-чивы к изменению рН среды. Особенностью всех жирорастворимых витаминов является их способность всасываться в кишках только в присутствии жиров, а также иногда накапливаться в организме в больших количествах, вызывая гипервитаминозы.
Жирорастворимые витамины выполняют ряд функций: спо-собствуют формированию, росту и развитию эмбрионов, образова-нию и регенерации костной и эпителиальной тканей, свертыва-нию крови.
С химической точки зрения они имеют.одну общую особенность: в состав их молекулы входят строительные блоки изопренового типа, что наиболее ярко выражено в молекулах витаминов А, Е и К, кото-рые составлены из изопреновых единиц
Витамин А содержится только в животных тканях. Растения лишены этого витамина, однако они содержат группу веществ, которые в организме млекопитающих служат предшественниками витамина А -- каротиноиды. Они довольно широко распространены в природе. Каротинами богат стручковый перец, красная и кормо-вая морковь, зеленый клевер, абрикосы.
Различают а-, р- и у- каротины, среди которых наиболее ценны-ми в биологическом отношении являются Р-каротины.
В группу витамина А входит несколько витаминов, основным из которых является витамин А, (ретинол):
Витамин D. Известно несколько витаминов группы D (D2, D3, D4, D5, D6, D7), имеющих сходное строение. Наибольшей био-логической активностью обладают витамины D2 (эргокальциферол) и D3 (холекальциферол). Витамины группы D содержатся главным образом в организме человека и животных.
В последнее время получено много данных, свидетельствую-щих о том, что функция витамина D не ограничивается только регулированием обмена кальция и фосфора, а более многогран-на. Витамин D активирует деятельность фермента щелочной фос-фатазы в очагах окостенения и тем самым способствует образо-ванию костной ткани.
Витамин D оказывает стимулирующее действие на синтез бел-ка, связывающего кальций, и ДНК-зависимый синтез РНК, что положительно отражается на биосинтезе белков-переносчиков, от-ветственных за всасывание кальция. Он способствует реабсорбции фосфатов, аминокислот и ионов Са2+ из первичной мочи в плазму крови, усиливает реакции окисления углеводов, пировиноградной кислоты, а также ускоряет реакции цикла трикарбоновых кислот.
Витамин Е представлен целой группой витаминов, содер-жащихся в больших количествах в растительных маслах и называе-мых токоферолами. Отсутствие этих витаминов в пище отрицатель-но сказывается на способности организма к размножению. Поэто-му витамин Е называется также антистерильным витамином, или витамином размножения.
Наиболее высокой биологи-ческой активностью обладает а-токоферол следующего строения:
а-Токоферол -- триметилгидрохинон, соединенный с остатком спирта фитола. В настоящее время известно несколько витаминов группы К. Все они обладают сходной структурой и общим названием -- филлохиноны. Наиболее активным из этой группы является вита-мин К,, выделенный из люцерны:
24. Особенности строения и значение нуклеиновых кислот
Нуклеиновые кислоты (ДНК и РНК) относятся к сложным высокомолекулярным соединениям, состоят из небольшого числа индивидуальных химических компонентов более простого строения. Так, при полном гидролизе нуклеиновых кислот (нагревание в присутствии хлорной кислоты) в гидролизате обнаруживают пуриновые и пиримидиновые основания, углеводы (рибоза и дезоксирибоза) и фосфорную кислоту :
В молекуле ДНК углевод представлен дезоксирибозой, а в молекуле РНК - рибозой, отсюда их названия: дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК) кислоты. Кроме того, они содержат фосфорную кислоту, по два пуриновых и по два пиримидиновых основания; различия только в пиримидиновых основаниях: в ДНК содержится тимин, а в РНК - урацил. В составе ДНК и РНК открыты так называемые минорные (экзотические) азотистые основания (строение некоторых из них приводится далее).
Углеводы (рибоза и дезоксирибоза) в молекулах ДНК и РНК находятся в в-D-рибофуранозной форме:
В составе некоторых фаговых ДНК обнаружена молекула глюкозы, которая соединяется гликозидной связью с 5-оксиметилцитозином.
Основу структуры пуриновых и пиримидиновых оснований составляют два ароматических гетероциклических соединения - пиримидин и пурин :
Молекула пурина состоит из двух конденсированных колец: пиримидина и имидазола.
В составе нуклеиновых кислот встречаются три главных пиримидиновых основания: цитозин, урацил и тимин.
Помимо главных пиримидиновых оснований, в составе нуклеиновых кислот открыты минорные пиримидиновые основания, 5-метил- и 5-окси-метилцитозин, дигидроурацил, псевдоурацил, 1-метилурацил, оротовая кислота, 5-карбоксиурацил, 4-тиоурацил и др. Забегая несколько вперед, укажем, что только для тРНК список минорных оснований приближается к 50. На долю минорных оснований приходится до 10% всех нуклеотидов тРНК, что имеет, очевидно, важный физиологический смысл (защита молекулы РНК от действия гидролитических ферментов). Структурные формулы ряда минорных пиримидиновых оснований представлены в форме нуклеозидов - соединений с углеводным компонентом:
Два пуриновых основания, постоянно встречающихся в гидролизатах нуклеиновых кислот, имеют следующее строение:
К минорным нуклеозидам пуринового ряда, обнаруживаемым в составе ДНК и РНК, относятся инозин, N6-метиладенозин, N2-метилгуанозин, ксантин, гипоксантин, 7-метилгуанозин и др.
Одним из важных свойств свободных азотистых оснований (содержащих оксигруппы) является возможность их существования в двух таутомерных формах, в частности лактим- и лактамной формах, в зависимости от значения рН среды: при рН 7,0 они представлены в лактамной форме, при снижении величины рН - в лактимной форме. Таутомерные превращения можно представить на примере урацила.
Оказалось, что в составе природных нуклеиновых кислот все оксипроиз-водные пуринов и пиримидинов находятся в лактамной форме.
О локализации и количественном содержании нуклеиновых кислот в клетках получены определенные данные. Доказано, что количественное содержание ДНК в клетках одного и того же организма отличается удивительным постоянством и исчисляется несколькими пикограммами, однако в клетках разных видов живых организмов имеются существенные количественные различия в содержании ДНК. Хорошо известно также, что ДНК преимущественно сосредоточена в ядре, а в митохондриях и хлоро-пластах содержится только небольшой процент клеточной ДНК. О количестве РНК нет точных данных, поскольку содержание ее в разных клетках в значительной степени определяется интенсивностью синтеза белка. На долю РНК приходится около 5-10% от общей массы клетки. Современная классификация различных типов клеточной РНК основывается на данных топографии, функции и молекулярной массы. Выделяют три главных вида РНК: матричную (информационную) - мРНК, которая составляет 2-3% от всей клеточной РНК; рибосомную - рРНК, составляющую 80-85% и транспортную - тРНК, которой около 16%. Эти 3 вида различаются нуклеотид-ным составом и функциями.
Матричная РНК (мРНК) синтезируется в ядре на матрице ДНК, затем поступает в рибосому, выполняя матричную функцию при синтезе белка. По предположению акад. А.С. Спирина, часто мРНК при поступлении из ядра в цитоплазму образует со специфическими РНК-свя-зывающими белками комплексы - так называемые информосомы, способные к обратимой диссоциации. Информосомы рассматриваются как транспортная форма мРНК, способствующая образованию полирибосом в цитоплазме. Транспортные РНК (тРНК) имеют небольшую молекулярную массу и содержатся в растворимой фракции цитоплазмы, выполняя функцию переноса аминокислот к месту белкового синтеза - рибосоме. Рибосом-ные РНК (рРНК), как видно из данных табл. 3.1, имеют разную и значительно большую молекулярную массу. Они локализуются в двух субчастицах рибосом 50S и 30S у Е.coli и 60S и 40S в клетках животных (табл. 3.2).
Субчастица 60S содержит три разных рРНК (5S, 5,8S и 28S рРНК), в то время как субчастица 40S - одну молекулу 18S рPHK. Детально роль рРНК в белковом синтезе пока не выяснена.
Для понимания ряда особенностей структуры ДНК важное значение имели закономерности состава и количественного содержания азотистых оснований, установленные впервые Э. Чаргаффом. Оказалось, что азотистые основания ДНК обычно варьируют у разных видов организмов, однако почти не претерпевают изменений у одного и того же вида в процессе развития или в зависимости от изменений окружающей среды либо характера питания. Показано также, что ДНК, выделенная из разных тканей одного и того же вида, имеет одинаковый состав азотистых оснований. Полученные количественные соотношения были названы правилами Чар-гаффа. При анализе состава очищенной ДНК, выделенной из разных источников, были сделаны следующие выводы:
1) молярная доля пуринов равна молярной доле пиримидинов:
2) количество аденина и цитозина равно количеству гуанина и тимина:
3) количество аденина равно количеству тимина, а количество гуанина равно количеству цитозина: А = Т и Г = Ц; соответственно
4) существенным для характеристики вида (таксономическое значение) оказался так называемый коэффициент специфичности, отражающий отношение
Это отношение часто выражают в молярных процентах (Г + Ц), или процентах ГЦ-пар. Для животных и большинства растений этот коэффициент ниже 1 (от 0,54 до 0,94), у микроорганизмов он колеблется в значительных пределах (от 0,45 до 2,57).
Литература
1. Прокариотические и эукариотические клетки (Т.А. Козлова, В.С. Кучменко. Биология в таблицах. М.,2000).
2. Б.Албертс, Д.Брей, Дж.Льюис, М.Рэфф, К.Робертс, Дж.Уотсон. "Молекулярная биология клетки", 2-е издание, "Мир", 1994.
3. С.Бейкер. Камень преткновения.Верна ли теория эволюции? - М., «Протестант», 1992.
4. Гилберт С. Биология развития 3 томам., "Мир", 1993г.
5. Грин Н., Стаут У., Тейлор Д., Биология 3 тома, М, "Мир", 1990г.
6. Дубинин Н.П. Новое в современной генетики М, "Наука", 1989г.
Подобные документы
История микроскопа и изучение морфологии микроорганизмов как собирательной группы живых организмов: бактерии, археи, грибы, протисты. Формы, размер, морфология и строение бактерий, их классификация и химический состав. Строение и классификация грибов.
реферат [130,0 K], добавлен 05.12.2010Систематика микроорганизмов по фенотипическим, генотипическим и филогенетическим признакам. Отличия прокариот и эукариот, анатомия бактериальной клетки. Морфология микроорганизмов: кокки, палочки, извитые и нитевидные формы. Генетическая система бактерий.
презентация [6,4 M], добавлен 13.09.2015Основные разновидности живых клеток и особенности их строения. Общий план строения эукариотических и прокариотических клеток. Особенности строения растительной и грибной клеток. Сравнительная таблица строения клеток растений, животных, грибов и бактерий.
реферат [5,5 M], добавлен 01.12.2016Химический состав бактериальной клетки. Особенности питания бактерий. Механизмы транспорта веществ в бактериальную клетку. Типы биологического окисления у микроорганизмов. Репродукция и культивирование вирусов. Принципы систематики микроорганизмов.
презентация [35,1 M], добавлен 11.11.2013Исторические сведения об открытии микроорганизмов. Микроорганизмы: особенности строения и форма, движение, жизнедеятельность. Строение клетки, доклеточные формы жизни – вирусы. Экология бактерий, селекция микроорганизмов, их распространение в природе.
реферат [37,3 K], добавлен 26.04.2010Облигатные внутриклеточные паразиты. Морфология, строение вирусов. Сложно устроенные вирусы. Продуктивный тип взаимодействия вируса с клеткой. Представители однонитевых ДНК-вирусов. Культивирование, индикация вирусов. Внутриклеточная репродукция вирусов.
презентация [2,4 M], добавлен 23.02.2014Исследование морфологических признаков бактерий, микроскопических грибов и дрожжей. Изучение внешнего вида, формы, особенностей строения, способности к движению, спорообразованию, способов размножения микроорганизмов. Форма и строение дрожжевой клетки.
реферат [28,8 K], добавлен 05.03.2016Систематика - распределение микроорганизмов в соответствии с их происхождением и биологическим сходством. Морфология бактерий, особенности строения бактериальной клетки. Морфологическая характеристика грибов, актиномицетов (лучистых грибов) и простейших.
реферат [27,2 K], добавлен 21.01.2010Роль микроорганизмов в природе и сельском хозяйстве. Классификация микроорганизмов по способам питания. Сущность автотрофного и гетеротрофного питания. Сапрофиты и паразиты. Методы определения суммарной биохимической активности почвенной микрофлоры.
контрольная работа [392,8 K], добавлен 27.09.2009Методика и задачи проведения урока биологии на тему: "Строение клеток", а также формы работы с учащимися. Сравнительная характеристика прокариотических и эукариотических клеток. Структура, назначение и функции основных органоидов клеток живых организмов.
конспект урока [34,4 K], добавлен 16.02.2010