Гея-гипотеза. Кварки

Современные физические представления о кварках. Синтетическая теория эволюции. Гипотеза Геи (Земли). Теория Дарвина в ее сегодняшней форме. Космические лучи и нейтрино. Перспективы развития гравитационной астрономии. Современные методы изучения Вселенной.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 18.10.2013
Размер файла 39,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СОВРЕМЕННЫЕ ФИЗИЧЕСКИЕ ПРЕДСТАВЛЕНИЯ О КВАРКАХ

Кварк -- элементарная частица в квантовой хромодинамике, рассматриваемая как составная часть адронов. Известно 6 разных видов кварков, для различия которых вводится такое понятие как «аромат». Для краткости кваркам присвоены следующие имена: u-кварк, d-кварк, c-кварк, s-кварк, t-кварк, b-кварк.

Адроны подразделяются на барионы и мезоны, при этом полагают, что барионы как частицы с полуцелым спином состоят из трёх кварков, а мезоны включают в себя по кварку и антикварку и имеют целый спин. Среди барионов наиболее хорошо изучены протон и нейтрон, входящие в состав атомных ядер. Гипотеза кварков и составленность из них адронов позволила объяснить многие свойства симметрии (например, мультиплеты частиц), наблюдаемые у адронов.

Особенностью кварков является то, что они не наблюдаются в свободном состоянии. Это означает, что хотя они могут быть внутри адронов, но при распаде частиц кварки каким-то образом комбинируются так, что в результате в продуктах распада видны не кварки, а только какие-то элементарные частицы. Данную ситуацию описывают как конфайнмент, то есть удержание кварков внутри адронов. Вследствие ненаблюдаемости кварков все их свойства определяются путём расчётов косвенным путём через свойства адронов.

Кварковая модель адронов была впервые выдвинута М. Гелл-Манном и, независимо от него, Дж. Цвейгом в 1964 году.

Ранее, в 1960 г., Гелл-Манн сформулировал систему классификации частиц, известную как восьмеричный путь, и основанную на SU(3) симметрии. Неэман (Yuval Ne'eman) также в 1962 г. развил аналогичную систему.

Указанные системы оказались необходимым звеном, приведшим к модели кварков. Сама же идея о том, что адроны вероятно являются составными частицами, возникла в 1949 г., когда Ферми и Янг предположили, что пион составлен из нуклона и антинуклона. Такой пион был необходим для объяснения сильного взаимодействия нуклонов. Затем последовала модель Гольдхабера, где фундаментальными частицами кроме протона и нейтрона считались ещё K-мезоны, и из этих трёх частиц получались остальные. В модели Маркова фундаментальными частицами были восемь барионов, а мезоны строились из барионов и антибарионов. Ситуацию значительно упростила модель Сакаты, в которой все адроны строились из трёх барионов - нейтрона, протона и ?-частицы. При этом должны были выполняться законы сохранения электрического заряда и квантовых чисел (например, изоспина). Отсюда последовала унитарная симметрия состояний частиц в виде U(3) симметрии, а затем и восьмеричный путь Гелл-Манна и Нееемана.

Согласно Гелл-Манну и Цвейгу, каждый из множества адронов должен состоять из определённой комбинации кварков и антикварков. Вначале речь шла только о трёх кварках, типа u, d, s, с присущими им спином и зарядами. В это время научное сообщество занимал вопрос о том, являются ли кварки реальными частицами или просто удобной описательной абстракцией. Конкурентами кваркам были ещё ряд моделей, например трёхцветная модель с тремя ароматами Хана - Намбу, содержащая 9 фундаментальных частиц типа кварков с целыми зарядами, и вводящая новые степени свободы - цвет.

Менее чем через год после появления кварковой модели, Глэшоу и Бьоркен предсказали четвёртый кварковый аромат как новую степень свободы, названный ими очарование. Это позволило им лучше описывать слабое взаимодействие при распадах кварков, уравнять количество кварков с числом известных в то время лептонов, и применять уточнённую массовую формулу для оценки масс мезонов.

В 1968 г. эксперименты с глубоко неупругим рассеянием частиц на Стэнфордском линейном ускорителе (SLAC) показали, что протон состоит из каких-то точечноподобных объектов и потому не является элементарной (неразложимой на части) частицей. Данные объекты были названы Фейнманом партонами, в роли которых в конце концов были предложены кварки. Под партонами понимают обычно кварки, антикварки и глюоны, а в теории бесконечной вложенности материи - любые объекты, находящиеся на один масштабный уровень (по массам и размерам) ниже, чем элементарные частицы.

Введение в теорию s-кварка позволило объяснить свойства каонов (K) и пионов (?), открытых в 1947 г. в космических лучах, а также других частиц, обнаруженных в экспериментах на ускорителях.

В 1970 г. Глэшоу и Майани представили дополнительные доказательства для существования c-кварка. Число предполагаемых кварков выросло до шести к 1973 г. В это время Кобаяcи и Маскава определили, что экспериментальное обнаружение нарушения CP-инвариантности могло бы быть объяснено, если ввести ещё два кварка, которые впоследствии назвали истинным и прелестным.

Частицы, содержащие очарованные кварки, были открыты в 1974 г. почти одновременно на протонном синхротроне в Брукхевене и на ускорителе SLAC в Стэнфорде. Вследствие этого открытые частицы, бывшие мезонами, получили разные обозначения J и ?, и стали называться J/? мезонами. В 1977 г. в Национальном центре ядерных исследований им. Ферми (США) был обнаружен прелестный кварк, а в 1995 г. в столкновениях протонов и антипротонов - истинный кварк. Масса последнего кварка оказалась намного больше той, что ожидалась, достигая почти массы атома золота.

Каждый кварк обладает аналогом электрического заряда, служащим источником глюонного поля. Его назвали цветом. Если электромагнитное поле порождается зарядом только одного сорта, то более сложное глюонное поле создается тремя различными цветовыми зарядами. Каждый кварк «окрашен» в один из трех возможных цветов, которые (совершенно произвольно) назвали красным, зеленым и синим. И соответственно, антикварки бывают антикрасные, антизеленые и антисиние.

Кварки могут соединяться друг с другом одним из двух возможных способов: либо тройками, либо парами кварк -- антикварк. Из трех кварков состоят сравнительно тяжелые частицы -- барионы; наиболее известные барионы -- нейтрон и протон. Более легкие пары кварк -- антикварк образуют частицы, получившие название мезоны. Чтобы это «трио» кварков не распадалось, необходима удерживающая их сила, некий «клей». А «цветовые заряды» кварков в совокупности компенсируются так, что в результате адроны оказываются «белыми» (или бесцветными).

Оказалось, что взаимодействие между нейтронами и протонами в ядре представляет собой остаточный эффект более мощного взаимодействия между самими кварками. Это объяснило, почему сильное взаимодействие кажется столь сложным и почему кварки в свободном состоянии не были обнаружены. Когда протон «прилипает» к нейтрону или другому протону, во взаимодействии участвуют шесть кварков, каждый из которых взаимодействует со всеми остальными. Значительная часть энергии тратится на прочное «склеивание» трио кварков, а небольшая -- на скрепление двух трио кварков друг с другом.

Кварки скрепляются между собой в результате сильного взаимодействия. Переносчики последнего -- глюоны (цветовые заряды). Область физики элементарных частиц, изучающая взаимодействие кварков и глюонов, носит название квантовой хромодинамики. Как квантовая электродинамика -- теория электромагнитного взаимодействия, так квантовая хромодинамика -- теория сильного взаимодействия.

В настоящее время большинство физиков считает кварки подлинно элементарными частицами -- точечными, неделимыми и не обладающими внутренней структурой. В этом отношении они напоминают лептоны, и уже давно предполагается, что между этими двумя различными, но сходными по своей структуре семействами должна существовать глубокая взаимосвязь.

На конец XX в. наиболее вероятное число истинно элементарных частиц (не считая переносчиков фундаментальных взаимодействий) равно 48: лептонов (6 * 2) = 12 плюс кварков (6 * 3) * 2 = 36. Эти 48 частиц -- подлинные «кирпичики» вещества, основа материальной организации мира.

СИНТЕТИЧЕСКАЯ ТЕОРИЯ ЭВОЛЮЦИИ. ГИПОТЕЗА ГЕИ (ЗЕМЛИ)

Синтетическая теория эволюции.

Применительно к живой природе эволюция принимается как образование более сложных видов из простых. Генетика опровергла представления Ламарка о наследовании приобретенных при жизни признаков с помощью очень простых опытов.

Теория эволюции сформулирована Дарвином в 1839 г. Наибольший вклад Дарвина в науку заключался не в том, что он доказал существование эволюции, а в том, что он объяснил, как она может происходить. В 1859 г. Дарвин опубликовал труд «Происхождение видов путем естественного отбора». Гипотеза Дарвина основана на трех наблюдениях и двух выводах.

Наблюдение 1. Особи, входящие в состав популяции, обладают большим репродуктивным потенциалом.

Наблюдение 2. Число особей в каждой данной популяции примерно постоянно.

Вывод 1. Многим особям не удается выжить и оставить потомство. В популяции происходит «борьба за существование».

Наблюдение 3. Во всех популяциях существует изменчивость.

Вывод 2. В «борьбе за существование» те особи, признаки которых наилучшим образом приспособлены к условиям жизни, обладают «репродуктивным преимуществом» и производят больше потомков, чем менее приспособленные особи. Вывод 2 содержит гипотезу о естественном отборе, который может служить механизмом эволюции.

Теория эволюции знаменовала собой крупный прорыв в биологии, наряду с классификацией Линнея и клеточной теорией.

Но вопросы и сомнения оставались. Всю жизнь Дарвина преследовал «кошмар Дженкина» -- возражение следующего содержания: если среди поля красных маков появится белый, то после скрещивания он даст розовое потомство, а через 2-3 поколения исчезнет всякое воспоминание о белом цвете (ведь в природе нет «демона Максвелла»).

Лишь возникновение генетики дало возможность отвергнуть это возражение. Опровергнув концепцию Ламарка, генетика помогла дарвинизму, объяснив, что появившийся признак не может исчезнуть, так как наследственный аппарат сохраняет случайно возникшее в нем, подобно тому, как сохраняются опечатки в книгах при их воспроизводстве.

Генетика привела к новым представлениям об эволюции, получившим название неодарвинизма, который можно определить как теорию органической эволюции путем естественного отбора признаков, детерминированных генетически. Другое общепринятое название -- синтетическая, или общая, теория эволюции. Механизм эволюции стал рассматриваться как состоящий из двух частей: случайные мутации на генетическом уровне и наследование наиболее удачных с точки зрения приспособления к окружающей среде мутаций, т.к. их носители выживают и оставляют потомство.

Мутация > появление нового признака > борьба за существование > естественный отбор

«Теория Дарвина в ее сегодняшней форме содержит, собственно, два независимых утверждения. Согласно одному из них, в процессе воспроизведения испытываются все новые формы, которые в своем большинстве при данных внешних обстоятельствах снова исчезают как непригодные; сохраняются лишь немногие приспособленные. Во-вторых, предполагается, что новые формы возникают вследствие чисто случайных нарушений генной структуры». Некоторые из событий, приводимых в качестве доказательства эволюционной гипотезы, воспроизводимы в лаборатории, однако это не значит, что они действительно имели место в прошлом, а свидетельствует об их возможности. На многие возражения до сих пор нет ответа. Поэтому концепцию Дарвина точнее все же относить к гипотезам, которые требуют дальнейшего подтверждения.

Гипотеза Геи (Земли).

Эта гипотеза возникла в последние два десятилетия на основе учения о биосфере, экологии и концепции коэволюции. Авторами ее являются английский химик Джеймс Лавлок и американский микробиолог Линн Маргулис. Вначале была обнаружена химическая неравновесность атмосферы Земли, которая рассматривается как признак жизни. По мнению Лавлока, если жизнь представляет собой глобальную целостность, ее присутствие может быть обнаружено через изменение химического состава атмосферы планеты.

Лавлок ввел понятие геофизиологии, обозначающее системный подход к наукам о Земле. Согласно Гея-гипотезе, сохранение длительной химической неравновесности атмосферы Земли обусловлено совокупностью жизненных процессов на Земле. С начала жизни 3,5 млрд. лет назад существовал механизм биологической автоматической термостатики, в котором избыток двуокиси азота в атмосфере играл регулирующую роль, препятствуя тенденции потепления, связанной с возрастанием яркости солнечного света. Другими словами, действует механизм обратной связи.

Лавлок сконструировал модель, в соответствии с которой при изменении яркости потоков солнечного света растет разнообразие, ведущее к возрастанию способности регулировать температуру поверхности планеты, а также к росту биомассы.

Суть Гея-гипотезы: Земля является саморегулирующейся системой, созданной биотой и окружающей средой, способной сохранять химический состав атмосферы и тем самым поддерживать благоприятное для жизни постоянство климата. По Лавлоку, мы -- обитатели и часть квазиживой целостности, которая обладает способностью глобального гомеостаза, снисходительного к нарушениям, если она в хорошей форме, в пределах своей способности к саморегуляции. Когда подобная система попадает в состояние стресса, близкого к границам саморегуляции, даже маленькое потрясение может толкнуть ее к переходу в новое стабильное состояние или даже полностью уничтожить.

В то же время «Гея» превращает даже отбросы в необходимые элементы и, видимо, может выжить даже после ядерной катастрофы. Эволюция биосферы, по Лавлоку, может быть процессом, который выходит за рамки полного понимания, контроля и даже участия человека.

Подходя к Гея-гипотезе с биологических позиций, Л. Маргулис полагает, что жизнь на Земле представляет собой сеть взаимозависимых связей, позволяющих планете действовать как саморегулирующаяся и самопроизводящая система.

Совместная жизнь приводит к появлению новых видов и признаков. Эндосимбиоз (внутренний симбиоз партнеров) -- механизм усложнения строения многих организмов. Изучение ДНК простых организмов подтверждает, что сложные растения произошли из соединения простых.

С точки зрения концепции коэволюции естественный отбор, который играл главную роль у Дарвина, является не «автором», а скорее «редактором» эволюции. Конечно, в этой сложной области исследований науку ждет еще немало важных открытий.

дарвин вселенная нейтрино гравитационный

СОВРЕМЕННЫЕ МЕТОДЫ ИЗУЧЕНИЯ ВСЕЛЕННОЙ

На смену классического пришел «неклассический» способ астрономического познания. Свидетельством этого является радикальная смена методологических установок астрономического познания.

Основа астрономического познания -- признание объективного существования предмета астрономической науки (космических тел, их систем и Вселенной в целом) и их принципиальной познаваемости научно-рациональными средствами (причем не только структурного, но и исторического аспекта Вселенной). Следовательно, можно говорить о полной победе материалистического принципа познаваемости природы, истории Вселенной в системе методологии астрономии XX в.

Эмпирическая основа современной астрономии -- наблюдение во всеволновом диапазоне. Теоретические исследования и экспериментальные попытки регистрации гравитационных волн открывают перспективы развития гравитационной астрономии. Сведения о космосе несут космические лучи и нейтрино. Важная особенность наблюдений во внеоптических диапазонах состоит в том, что они дают информацию, как правило, о нестационарных процессах во Вселенной.

Теоретическая основа современной астрономии -- не только классическая механика, но и релятивистская и квантовая механика, квантовая теория поля. Все расчеты движений тел планетной системы и искусственных спутников Земли, Луны и планет, космических аппаратов, созданных человеком, осуществляются на базе ньютоновской механики.

Физическая реальность состоит из трех качественно несводимых друг к другу уровней: микро-, макро- и мегамиров.

В системе астрономического познания большую роль играет исследование закономерностей микромира, связанных с процессами излучения звезд, ранних этапов эволюции Вселенной и т.п., поэтому современная астрономия пользуется и аппаратом микрофизики (квантовая механика, квантовая электродинамика, теория электрослабого взаимодействия, квантовая хромодинамика и др.). Вопрос о глубинных внутренних связях между микро-, макро- и мегамирами, о том, что на определенном уровне они представляют, собой некое (диалектическое) единство, также входит в поле зрения современной астрономии.

Одним из вариантов изучения принятого от звезды света является спектральный анализ. В основе спектрального анализа лежит закон Кирхгофа. Он формулируется так: при термодинамическом равновесии отношение коэффициента излучения к коэффициенту поглощения равно интенсивности излучения, являющейся универсальной функцией частоты и температуры. Он выражается формулой: I = k/a, где I - интенсивность излучения, k - излучательная способность в данной длине волны, а - поглощательная способность в той же длине волны. Эта формула показывает, что у излучающего тела с температурой Т, отношение излучательной способности k к поглощательной способности a для любой длины волны не зависит ни от характера вещества излучающего тела, ни от вида его поверхности, а зависит только от длины волны и температуры.

Интенсивность излучения называют излучательной способностью абсолютно черного тела. Абсолютно черное тело - это тело, которое поглощает полностью излучение любых длин волн при любой температуре. Для него поглощательная способность а = 1, а k=I.

Три закона Кирхгофа.

1. Накаленное твердое тело или сильно нагретая жидкость излучают непрерывный спектр.

2. Нагретый газ при низком давлении излучает спектр, состоящий из отдельных ярких линий испусканий.

3. Газ, помещенный перед более горячим источником непрерывного излучения, создает в спектре источника темные линии (линии поглощения), которые приходятся на те же длины волн, что и линии излучения этого газа.

Современная астрономия теоретически и эмпирически обосновывает идею нестационарности Вселенной: мир астрономических объектов находится в состоянии постоянного качественного изменения, развития. Идея развития пронизывает всю современную астрономию. Эта идея носит не умозрительный характер, а воплощается в конкретных астрофизических и космологических моделях.

Общая идея о нестационарности Вселенной (пространственной и структурной) конкретизируется в следующих методологических установках:

во-первых, развитие космических тел рассматривается диалектически со взрывами, скачками, перерывами постепенности; при этом учитывается многообразие путей развития, включая моменты нисходящего, регрессивного движения;

во-вторых, в качестве факторов, определяющих процесс развития космических тел, рассматриваются все четыре известных сейчас фундаментальных взаимодействия; прибегать ко всем четырем приходится в моделировании начальных стадий эволюции Вселенной, вблизи сингулярности; в масштабах Метагалактики решающая роль принадлежит силе тяготения;

в-третьих, признается необходимость доведения теоретического описания астрономического объекта и его эволюции до выделения его индивидуальных черт, поскольку астрономические объекты даже одного типа (например, звезды или даже звезды определенного класса) имеют заметные индивидуальные различия (масса, светимость, химический состав, температура и др.).

Современная астрономия исходит из установки о космогоническом смысле (прямом или опосредованном) любой астрономической проблемы. Именно космогонический аспект исследования Вселенной начинает все больше выступать в виде того организующего центра, который объединяет различные разделы дифференцировавшейся астрономической науки.

В современной неклассической астрономии нет свободы выбора условий наблюдения. Современная астрономия осознает зависимость результата наблюдения от условий, в которых находится наблюдатель. Но в отличие от классической современная астрономия не во всех случаях допускает возможность пренебречь этой зависимостью или внести в нее поправку. В современной астрономии на эмпирическом уровне познания возрастает роль субъекта.

Изменяемость структуры познавательной деятельности в астрономии одна из новых методологических установок.

Принципы и способы познавательной деятельности в развитии астрономии периодически изменяются. Эпохи, когда происходят такие изменения, -- это эпохи научных революций в астрономии.

Итак, методологические установки современной астрономии существенно отличаются от методологических установок классической астрономии.

Такая смена методологических установок позволяет сделать вывод о том, что в XX в. в астрономии произошла научная революция, которая привела к изменению способов астрономического познания и астрономической картины мира.

СПИСОК ИСТОЧНИКОВ И ЛИТЕРАТУРЫ

1. Горелов А.А. Концепции современного естествознания. - М.: Центр, 1997. 208 с.

2. Концепции современного естествознания: Учебник для вузов / Под ред. проф. В.Н. Лавриненко, проф. В.П. Ратникова. -- 3-е изд., перераб. и доп. -- М.: ЮНИТИ-ДАНА, 2006. - 317 с.

3. Мухин К.Н. Занимательная ядерная физика. - 3-е изд., перераб. и доп. - М.: Энергоатомиздат, 1985. - 312 с.

4. Найдыш В.М. Концепции современного естествознания: Учебник. - Изд. 2-е, перераб. и доп. - М.: Альфа-М; ИНФРА-М, 2004. - 622 с.

Размещено на Allbest.ru


Подобные документы

  • Додарвинистские представления об эволюции. Распространение идей эволюционизма в эпоху Возрождения и Просвещения. Теория эволюции Чарльза Дарвина. Искусственный и естественный отбор. Синтетическая теория эволюции: возникновение, основные положения.

    реферат [40,0 K], добавлен 01.03.2010

  • Эволюционные идеи в античности, Средневековье, эпохи Возрождения и Нового времени. Теория Чарльза Дарвина. Синтетическая теория эволюции. Нейтральная теория молекулярной эволюции. Основные эмбриологические доказательства биологической эволюции.

    реферат [26,6 K], добавлен 25.03.2013

  • Основные принципы эволюционной теории. Антидарвинизм и его проявления. Факты, опровергающие теорию. Синтетическая теория эволюции. Мировоззренческое и методологическое значение эволюционных представлений и формирование современной научной картины мира.

    реферат [45,7 K], добавлен 18.11.2013

  • Виды и популяции, эволюционные явления. Современные представления о возникновении жизни, природа "живого" и "неживого". Концепция естественного отбора, теория Дарвина. Ошибочные представления об эволюции. Теория наследования приобретенных признаков.

    реферат [1,5 M], добавлен 19.09.2009

  • Состояние Вселенной в момент Большого Взрыва. Синтетическая теория эволюции. Естественный процесс развития живой природы. Изменение генетического состава популяций. Современная эволюционная теория. Чарльз Дарвин как основоположник теории эволюции.

    реферат [119,1 K], добавлен 18.09.2013

  • Теория эволюции. Синтетическая теория эволюции. Причины появления креационистских теорий. Доказательства эволюции. Виды и направления креационизма. Религиозный креационизм. Современный креационизм. Столкновение мировоззрений. Идея развития в биологии.

    реферат [33,2 K], добавлен 04.10.2008

  • Вехи биографии автора теории эволюции Чарльза Дарвина. История написания и издания "Происхождения видов". Основные положения эволюционного учения. Предпосылки и движущие силы эволюции. Мнения ученых о теории Ч. Дарвина. Анализ положений антидарвинизма.

    реферат [59,1 K], добавлен 07.12.2014

  • Происхождение жизни. Процесс развития живого. Общие тенденции эволюции живого и неживого в природе. Дарвиновская теория эволюции, и процесс ее утверждения. Теории эволюционных учений. Синтетическая теория эволюции. Теория прерывистого равновесия.

    курсовая работа [59,1 K], добавлен 07.12.2008

  • Характеристика основных теорий происхождения Земли: гипотеза Канта-Лапласа и теория Большого Взрыва. Сущность современных теорий эволюции Земли. Образование Солнечной системы, возникновение условий для жизни. Возникновение гидросферы и атмосферы.

    контрольная работа [24,6 K], добавлен 26.01.2011

  • Гипотеза о цикличности состояния Вселенной. Теория "Большого взрыва" как объяснение ее происхождения. Общая характеристика мегамира. Первые теории возникновения Солнечной системы. Что такое галактика. История изучения учеными Вселенной. Строение мегамира.

    реферат [26,3 K], добавлен 14.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.