Распространение микроорганизмов рода Clostridium в природе и пищевых продуктах

Патогенные микроорганизмы рода Clostridium. Возбудители ботулизма, эмфизематозного карбункула, столбняка. Получение ацетона и бутанола в ходе бактериального брожения представителей рода Сlostridium. Применение ботулинического токсина в медицине.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 05.06.2009
Размер файла 74,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Культивирование. Периодическое выращивание. При периодическом выращивании следят за уровнем источника углерода и рН. Определенный исходный уровень источника углерода обусловлен токсичностью образуемых из него продуктов. Растворители, и в первую очередь бутанол, ингибируют процесс, поэтому при периодическом выращивании редко образуются более 20 кг растворителей в 1 м3. Типичные выходы для этого режима: 0,2 - 0,6 кг/м3*ч в зависимости от субстрата и условий культивирования. Для удаления конечных продуктов ферментации в качестве экстрактантов в ферментер добавляют несмещивающиеся органические растворители. Наилучшие результаты получены при добавлении олеилового спирта и смеси олеилового спирта (50%) в бензилбензоате. В обычной ферментации в периодических условиях поглощения глюкозы приблизительно 80 кг/м3. Удаление бутанола в процессе в процессе экстракции увеличило скорость его образования, и максимальная объемная производительность по бутанолу увеличилась более чем на 60% по сравнению с обычной периодической ферментацией.

Проточное культивирование. Чтобы увеличить продуктивность и снизить цены на продукты ферментации, предложено проточное культивирование.

При одностадийном проточном культивировании с низкими скоростями протока можно одновременно достигать роста клеток и максимального превращения сахаров в растворители. Но при низких скоростях разведения, благоприятных для синтеза растворителей, возникает нестабильность процесса и достичь стационарного состояния бывает очень трудно. Для промышленного применения такой проточный процесс не подходит, так как он должен быть стабильным в течение нескольких недель или лучше нескольких месяцев. Стабильность - один из важнейших критериев непрерывного процесса.

Причину нестабильности усматривают в токсичности бутанола на клетки при его высокой концентрации и во флоккуляции бактерий. Для устранения флоккуляции клеток, которая возникает в условиях высокой концентрации растворителей, рекомендовано добавление к синтетической среде солей хлора (NaCl, KCl, CaCl2).

При высокой концентрации растворителей стабильность ферментации можно улучшить в двустадийном проточной культуре: рост клеток оптимизируют в первой стадии, а продукцию растворителей - во второй.В оптимальных условиях такая конфигурация приводит к длительной стабильности на более чем один месяц, даже при высокой концентрации растворителя (21 г/л). При одностадийном проточном культивировании 20% глюкозы не используется клетками и остается в среде. В двустадийном процессе 87,5% глюкозы превращается в растворители. Комбинируя две техники: двустадийный проточный реактор и рециклирование клеток во втором ферментере, достигают как увеличенную продуктивность, так ихорошую стабильность с высокой концентрацией растворителей (17 г/л).

Проточный процесс ведут при лимитизации по фосфатам (или по сульфатам, но не по азоту или субстрату) в синтетической среде. Растворители образуются в пределах рН 4,3 - 4,7. Первая стадия - это индукция к синтезу растворителей, вторая - непосредственно образование растворителей. Поскольку фосфор почти полностью исчерпан ко времени второй фазы, рост клеток останавливается. При низкой концентрации протока выход растворителей в непрерывной культуре такой же, как в периодической: 0,29 г/г глюкозы.

При культивировании Сl. acetobutylicum в хемостате на синтетической среде с витаминами - биотином (0,01 мг/л) и р-аминобензойной кислотой (1 мг/л) - установили, что рост и образование растворителей лимитируется витаминами. продуктивность увеличивается в 4 раза приувеличении концентрации витаминов в среде. В строго анаэробных условиях выход растворителей в 1,5 раза выше, чем при доступе воздуха. В оптимальных условиях продуктивность растворителей равна ~2,0 г/л·ч.

Среды. Ферментация. Используют три типа сырья как источников углерода и энергии: зерно (крахмал), паточную (неочищенную мелассу) и очищенную мелассу. В качестве субстратов будущего рассматривают различные отходы, гидролизованную древесину, гидролизаты отбросов, сыворотку, сульфитные жидкости: гидрол - побочный продукт производства глюкозы из зерна. Среды из зернового крахмала готовят следующим образом. Мука вносится в количестве 60% к воде, туда же добавляют сброженным остаток ферментации после отгонки растворителей. Конечная концентрация должна составить 8,5% исходного зерна.

При использовании мелассы концентрация сахара должна быть 5,5-7,5%. К среде добавляют суперфосфат и аммоний. Последний вносят постепенно в случае очищенных меласс для поддержания рН на уровне 5,6-6,0 в количестве 2,2-1,3% NH3 по отношению к концентрации сахара или сразу в случае паточных меласс, которые сильно забуферены. В среду вносят 25-50% горячего остатка после отгонки растворителей. Это увеличивает выход растворителей, снижает количество добавляемых питательных веществ, сокращает затраты на нагревание и дает большую экономию пара, необходимого для выпаривания остатка. Ферментер и среду стерилизуют. Брожение протекает под избыточным давлением газов для создания анаэробных условий. Начальный рН 6,0, который снижается до ~ 5,4 через 24 ч.

Концентрация растворителей (при использовании крахмальной среды) через 50-56 ч ферментации 22,5 г/л, а соотношение ацетона, бутанола и этанола 30 : 60 : 10. Ферментация в мелассных средах завершается за 40-45 ч, а в крахмальных (с питательными добавками) - за 50-60 ч, в крахмальной без питательных добавок за 70-80 ч. Проточное выращивание бактерий ведется с работой серии из пяти ферментеров. За 18 дней получают продуктивность в 3 раза выше, чем при периодическом культивировании, но выходы растворителей низкие в связи с высоким образованием кислот в начальной фазе.

Выделение продуктов. Дистилляция - традиционный способ выделения этанола, ацетона, бутанола из разведенных водных растворов. При дистилляции продуктов ацетоно-бутилового брожения можно использовать тепло, выделяющиеся при охлаждении стерилизованного нагреванием ферментера. Дистилляция - достаточно гибкий процесс, при котором возможно фракционирование и выделение каждого продукта.

Более современными методом выделения продуктов являются мембранные процессы, например ультрафильтрация и обратный осмос. Выделение продуктов проводятся по принципу первапорации; это мембранный процесс, в котором движущей силой служит большой вакуум с одной стороны мембраны, свойства которой определяют эффективность разделения.

Хорошие результаты получают при селективной адсорбции растворителями на силикате (цеолите). Этот процесс можно интегрировать с ферментацией и работать с боле концентрированными растворами. Комбинирование ферментации и выделения продуктов возможно только при проточном культивировании. Возможно применение химического выделения. Это новый метод, основанный на обратимой химической реакции.

Хотя многие из перечисленных методов применяют в лабораториях и на пилотных установках, в большой промышленности они не внедрены в силу недостаточности данных или высокой стоимости. Наиболее реально внедрение в промышленность способа предварительного удаления воды (обратный осмос) с последующей традиционной дистилляцией (Воробьева, 1989).

1.4 Применение ботулинического токсина в медицине

О существовании ботулинического токсина было известно на протяжении сотен лет, однако его благотворное воздействие было оценено по достоинству лишь в последние десятилетия. В 1895 году бельгийский профессор Эмиль Пьер Ван Ерменгем (Emile Pierre van Ermengem) из городка Элизель, Бельгия, идентифицировал бактерию Bacillus botulinus. Эта бактерия, впоследствии переименованная в Clostridium botulinum, производит нейротоксин, который является основной частью комплекса токсина ботулизма типа А.

В 1946 году доктор Эдвард Шанц (Edward J. Schantz) и его коллеги получили очищенный токсин ботулизма типа А в кристаллической форме. Таким образом, у исследователей впервые появился необработанный материал, который был необходим им для более детального изучения. Первый серьезный результат исследований появился в 1950-х годах, когда доктор Вернон Брукс (Vernon Brooks) обнаружил, что при введении в гиперактивную мышцу токсин ботулизма типа А блокирует высвобождение ацетилхолина из окончаний двигательных нервов, вызывая тем самым временное расслабление инъецированной мышцы. Открытие доктора Брукса вызвало новый интерес к ботулиническому токсину как к потенциально значимому терапевтическому средству.

В 1960-1970-х годах офтальмолог Алан Скотт (Alan B. Scott) из Центра исследования глаза Смита Кеттлуэлла (Калифорния,США) провел на приматах ряд опытов по введению токсина ботулизма типа А для лечения косоглазия. Целью опытов было определить возможность применения препарата для лечения косоглазия типа «офтальмологической дистонии» у людей.

В конце 1970-х годов доктор Скотт организовал собственную компанию - Oculinum, Inc., где продолжил изучение токсина ботулизма типа А. В 1978 году доктор Скотт получил разрешение FDA (Управления по контролю за продуктами и лекарствами) на исследование использования ботулинического токсина типа А на людях-добровольцах.

В 1988 году компания Allergan приобрела права на распространение разработанного доктором Скоттом препарата Oculinum, основанного на токсине ботулизма типа А, и проведение клинических исследований эффективности препарата при других показаниях, включая цервикальную дистонию.

В 1989 году компания Oculinum, Inc. получила разрешение FDA на продажу препарата Oculinum в США, как препарата для лечения косоглазия и блефароспазма, включая идиопатический блефароспазм или нарушение VII нерва у пациентов в возрасте от 12 лет.

Вскоре после этого компания Allergan Inc. приобрела компанию доктора Скотта. На основе успешного применения токсина ботулизма типа А в лечении косоглазия и блефароспазма, связанных с дистонией, компания Allergan получила разрешение FDA на изменение названия препарата на BOTOX®. Эта замена названия отразила стратегию Allergan, касающуюся развития других областей применения препарата.

BOTOX® используется в России уже более 10 лет с момента его первой регистрации в 1994 году для лечения блефароспазма и гемифациального спазма. В течение последних 10 лет неизменно возрастало количество показаний для применения BOTOX®. В настоящее время они включают цервикальную дистонию, детский церебральный паралич, спастичность, возникшую в результате инсульта, и подмышечный гипергидроз.

Перед употреблением нейротоксин ботулизма проходит специальную очистку и связывается с альбуминами. Такая связь делает токсин более устойчивым, сохраняет его биологическую активность, обеспечивает локальное действие препарата. Нейротоксин блокирует передачу двигательного импульса с нерва на мышечное волокно. После введения препарата наступает выраженное расслабление мимических мышц. Атрофии мышц не наблюдается, так как их кровоснабжение остаётся прежним. В среднем максимум терапевтического эффекта проявляется на 14-15 день. Нейротоксин блокирует передачу импульса не только на мышцы, но и на потовые железы и, т.о., уменьшает потоотделение. Препараты успешно применяются для лечения повышенного потоотделения на ладонях, в подмышечных впадинах и на стопах.

Продолжительность действия составляет 6-9 месяцев, иногда -- до 1 года. Подвижность мускулатуры частично восстанавливается через 3-4 месяца, полное восстановление наблюдается через 5-8 месяцев. После повторных инъекции продолжительность эффекта доходит до 6-12 месяцев. Для достижения стойкого и длительного эффекта рекомендуется введение препаратов 2-3 раза в течение года. При местном введении в терапевтических дозах ботулинический токсин типа А не вызывает системного (на весь организм) действия, продолжительность лечения им неограниченна.

Относительные противопоказания: миастения, нарушения свёртываемости крови, воспалительный и/или инфекционный процесс в областях предполагаемых инъекций, общие заболевания в стадии обострения, приём лекарственных средств (антибиотиков, антикоагулянтов, антиагрегантов, реланиума, баклофена), хронические обструктивные заболевания лёгких, беременность и период грудного вскармливания, возраст младше 12 лет, нежелательно проводить процедуру в первые дни менструального цикла.

Возможные осложнения, такие как обратимое опущение верхнего века(частота возникновения 0,14%), опущение бровей (менее 1%), двоение в глазах (2%), отёк век (0,14%), не связаны с самими препаратами, они могут возникнуть при неправильном выборе способа и места введения, неадекватной дозе или при несоблюдении стерильности. Важно помнить, что все они бесследно исчезают со временем. Побочные эффекты: болезненность в месте инъекции (частота возникновения 1,3%), головная боль (2%), кровоизлияния в месте введения (6%), онемение в месте инъекции (менее 1%), аллергия (менее 1%). Нечувствительность к нейротоксину встречается редко (менее 0,1%) (www. BOTOX.com).

Род Clostridium включает анаэробные, грамположительные спорообразующие палочки, широко распространенные во внешней среде. Они обнаруживаются в почве, отложениях морских и пресных вод, кишечном тракте людей и животных. Представители рода могут быть патогенны для человека и животных, вызывая раневую инфекцию или кишечные заболевания, однако находят и практическое применение в промышленности (в парфюмерной промышленности, для получения в промышленном масштабе ацетона и бутанола), в медицине (для лечения блефароспазма, гемифациального спазма, цервикальной дистонии, детского церебрального паралича, спастичности, возникшей в результате инсульта, и подмышечного гипергидроза). Описано много видов, их количество в настоящее время превышает 100, однако многие из них остаются слабо изучены (Пивоваров, 2000).

Глава 2. Объекты и методы исследований

2.1 Объекты исследования

Использовались различные объекты, такие как почва из ясеневого леса и поля, растительные волокна, а также пищевые продукты, а именно консервы: килька в томатном соусе и баклажанная икра.

2.2 Выявление мезофильных анаэробных микроорганизмов

(ГОСТ 10444.4)

Метод предназначен для определения стерильности и промышленной стерильности консервов, для выяснения причин возникновения дефектов консервов.

Проведение анализа. Для выявления анаэробных микроорганизмов посев производится в две пробирки со средой Китта-Тароцци с добавлением 0,15% агара. Непосредственно перед посевом агаризованную (полужидкую) среду Тароцци прогревают 25 мин в кипящей водяной бане и затем быстро охлаждают до температуры 30-40°С. Засеянные пробирки помещают в термостат. Термостатирование посевов консервов с рН выше 4,4 проводят при 37±0,5°С, контролируя ежедневно в течение 5 суток появления в них признаков роста микроорганизмов. Развитие мезофильных анаэробных микроорганизмов в посевах сопровождается помутнением среды, выделением газа, появлением посторонних запахов (гнилостный, сырный, маслянокислый), в некоторых случаях разложением печени, реже почернением среды.

Муть появляется почти по всей толще столбика, иногда отступая от его поверхности на 0,5 - 1,0 см. в дальнейшем клетки мезофильных анаэробных микроорганизмов оседают на дно и помутнение может исчезнуть.

При исследовании под микроскопом мазков из культуры 18-24 возраста можно обнаружить палочки, положительно окрашивающиеся по Грамму и образующие споры. Количество палочек со спорами невелико, а при выявлении Cl. perfringens споры обычно отсутствуют. Для подтверждения принадлежности выявленных спорообразующих микроорганизмов к мезофильным облигатным анаэробам из рода клостридиум проверяют отсутствие в них каталазы. Если в посевах обнаружены спорообразующие грамположительные микроорганизмы, но каталаза не выявлена, то анализ на выявление прекращают и считают, что в посевах присутствуют мезофильные облигатно-анаэробные микроорганизмы из рода клостридиум.

Если при микроскопировании посевов спорообразующие микроорганизмы не обнаружены, то отрицательная проба на каталазу не является достаточной для заключения о присутствии в посевах мезофильных облигатно-анаэробных микроорганизмов и анализ продолжают. Анализ на выявление мезофильных облигатно-анаэробных микроорганизмов продолжают в случае присутствия в посевах смешанной микрофлоры и положительной пробы на каталазу.

После появления признаков роста. из посевов 1 мл переносят в стерильную пробирку и заливают расплавленным агаром температурой не более 45 °С. Пробирку заливают до верха и закрывают пробкой так, чтобы не осталось пузырьков воздуха. Посевы термостатируют 24-48 часов при 37 ± 0,5°С. При обнаружении разрывов в агаре считают, что в посеве присутствуют мезофильные облигатно-анаэробные микроорганизмы (методическое указание, АГТУ,1998).

2.3. Выявление термофильных анаэробных микроорганизмов

( ГОСТ 10444.6)

Метод предназначен: для определения стерильности или промышленной стерильности консервов, предназначенных к реализации в условиях с температурой 30°С и выше; для выяснения причин возникновения дефектов томатопродуктов и консервов с рН выше 4,6.

Сущность метода: выявление в консервах жизнеспособных термофильных анаэробных микроорганизмов размножаться при температуре 55 °С и давать рост на жидких питательных средах с низким окислительно-восстановительным потенциалом. В жидких питательных средах Cl. termosaccharolyticum вызывает обильное газообразование, помутнение среды и ее подкисление.

Проведение анализа. Непосредственно перед посевом питательную среду (Китт-Тароцци) регенерируют, прогревая ее 25 мин в кипящей водяной бане и быстро охлаждая до 40 °С.

Для установления промышленной стерильности и при выявлении возбудителей порчи по 2 см3 пробы высевают в две пробирки с 12-13 см3 регенерированной питательной среды (стерильности по 30 см3 в три флакона с 200 см3 питательной среды).

Посевы термостатируют при 55 ±0,5°С в течение 72 часов. Рост уже обнаруживается через 12-14 часов. После появления признаков роста из посевов приготавливают мазки, окрашивают по Граму, микроскопируют.

Термофильные анаэробные микроорганизмы - тонкие длинные гранулированные палочки, которые нерегулярно образуют споры. Окраска по Грамму отрицательная у Cl. termosaccharolyticum, положительная у Cl. termoaceticum и Cl. nigrificans. Из посевов со дна берут пробу дя определения каталазы.

Если в культуре обнаружена каталаза, то в посеве присутствуют аэробные микроорганизмы. Для выделения из смешанной микрофлоры 1-2 мл подозреваемой культуральной жидкости вносят в стерильную пробирку и заливают расплавленным агаром с температурой не выше 47 °С. Пробирку заливают агаром доверха и закрывают пробкой, чтобы не осталось пузырьков воздуха. При обнаружении в агаре разрывов делают заключение о наличии термофильных анаэробов (методическое указание, АГТУ,1998).

2.4 Выявление возбудителей брожения пектиновых веществ

Постановка опыта. Снопик льняной соломы высотой 6-7 см перевязывают в двух местах ниткой и вносят в пробирку лучше большего, чем стандартный, размера, наполненную на 2/3 водопроводной водой. Пробирку зажимают пинцетом и кипятят на горелке 2-3 мин для удаления экстрактивных (легкосбраживаемых) веществ, которые могут служить источником углерода для других маслянокислых бактерий. Вода приобретает желто-зеленый цвет. Ее сливают. Вновь наполняют пробирку водопроводной водой, кипятят несколько минут и сливают. Так поступают 5-6 раз. После последнего кипячения жидкость не сливают. Охлаждают пробирку под краном, и в снопик вводят свежую соломину, не подвергшуюся нагреванию.

Пробирку со снопиком ставят в термостат при 30-35°С. Через 2-3 дня в ней начинается брожение, а через 5-8 суток оно заканчивается. Накопление в культуральной жидкости масляной кислоты наряду с уксусной, образующейся при сбраживании продуктов гидролиза пектина, можно обнаружить при помощи качественных реакций на масляную кислоту.

Микроскопирование. Извлекают снопик изпробирки, из его середины вынимают несколько соломинок и выжимают из него немного жидкости на предметное стекло. Добавляют каплю раствора Люголя, накрывают покровным стеклом и микроскопируют с иммерсионной системой.

На препарате обычно видны крупные палочковидные бактерии с плектридиальным типом спорообразования (барабанная палочка) и прерывистым расположением гранулезы, окрашенной в синий цвет. Это Clostridium pectinovorum. Нередко обнаруживается Cl. felsineum - палочки меньшего размера сигарообразной формы со спорой на конце. Гранулеза может заполнять всю вегетативную часть клетки (Шильникова, 2004).

2.5 Выявление возбудителей брожения целлюлозы

Постановка опыта. Для получения накопительной культуры целлюлозоразрушающих бактерий используют среду Омелянского (приложение). В высокие пробирки на 2/3 заливают среду Омелянского, добавляют 1 г исследуемой почвы, затем пастеризуют 10 мин при 80° в целях освобождения от сопутствующих аэробных бесспоровых бактерий. На дно пробирки помещают полоски фильтровальной бумаги слоем 1,5-2 см, доливают стерильной питательной среды доверху и закрывают пробкой. Пробирки инкубируют при 30-35°С. Через 5-7 суток начинается брожение целлюлозы, в ходе которого интенсивно выделяются газы, фильтровальная бумага по мере сбраживания слегка ослизняется, желтеет и постепенно разрушается.

Микроскопирование. При исследовании целлюлозоразрушающих бактерий извлекают пинцетом со дна пробирки кусочек разлагающейся бумаги и размазывают по предметному стеклу без добавления воды. Мазок сушат обычным способом, фиксируют на пламени горелки и окрашивают фуксином. В пробирках развиваются длинные тонкие палочки с круглой спорой на конце - Clostridium omelianskii, также наблюдается развитие длинных крупных палочек с грушевидной спорой на конце - Clostridium dissolvens (Шильникова, 2004).

2.6 Выявление анаэробных азотфиксирующих микроорганизмов, вызывающих маслянокислое брожение

Постановка опыта. Для обнаружения в почве анаэробных азотфиксирующих бактерий рода, которые также вызывают маслянокислое брожение, Clostridium пользуются методом накопительной культуры в жидкой среде Виноградского (приложение). Среду наливают в пробирки высоким слоем, засевают комочками исследуемой почвы и пастеризуют 10 мин при 80° в целях освобождения от сопутствующих аэробных бесспоровых бактерий. Через 2-3 суток после посева среда мутнеет, из нее начинают выделятся пузырьки газа, что свидетельствует о развитии анаэробных споровых бактерий, вызывающих в соответствующих элективных условиях маслянокислое брожение. Глюкоза при этом превращается в масляную кислоту и углекислый газ, а в пробирках образуется много пены, появляется запах масляной и уксусной кислот. Последняя также является одним из продуктов маслянокислого брожения. Обычно этот метод используют для обнаружения клеток Clostridium pasteurianum, которые легко увидеть при микроскопировании осадка. Перед спорообразованием в клетках Clostridium pasteurianum накапливается много гранулезы, для которой характерно окрашивание раствором Люголя. Каплю жидкости, содержащую клетки клостридиев, накрывают покровным стеклом и к одному краю стекла подносят пипетку с раствором Люголя, а к другому - фильтровальную бумагу, которая засасывает раствор под покровное стекло. При микроскопировании препарата видны клетки клостридиев с потемневшим содержимым. Спора в клетке остается при этом неокрашенной и хорошо различима на темном фоне (Зенова, 2002).

3. Выделение бактерий рода Clostridium из разных объектов

3.1 Результаты посевов в жидкую среду Китт-Тароцци для выявления мезофильных и термофильных анаэробных микроорганизмов

Во всех пробирках (таблица 1, 2, 3) наблюдается помутнение среды, появление мути и гнилостного запаха, в некоторых пробирках - газообразование и образование пены на поверхности среды. Микроскопия показала наличие во всех пробирках спорообразующих грамположительных и грамотрицательных палочек. Тест на каталазу во всех пробирках отрицательный.

3.2 Результаты посевов для выявление возбудителей брожения пектиновых веществ

Во всех трех пробирках наблюдается помутнение среды, выделение газа, небольшое пенообразование. При микроскопировании обнаружены крупные палочковидные спорообразующие бактерии в виде барабанной палочки, окрашенные в синий цвет, с хорошо различимыми неокрашенными спорами, что свидетельствует о присутствии предположительно Clostridium pectinovorum и Clostridium felsineum.

3.3 Результаты посевов в жидкую среду Омелянского для выявление возбудителей брожения целлюлозы

При осмотре накопительных культур со средой Омелянского через несколько суток в пробирках с разными пробами почвы получены следующие результаты.

Проба почвы №1 (ясеневый лес): появление неприятного гнилостного запаха, небольшое газообразование, помутнение среды, выпадение осадка белого цвета, появление на бумаге желтых пигментных пятен. При микроскопировании обнаружены длинные тонкие палочки с круглой спорой на конце, что свидетельствует о присутствии предположительно Clostridium omelianskii.

Проба почвы №2 (поле): появление неприятного гнилостного запаха, обильное газообразование, помутнение среды, пожелтение и разрушение бумаги в некоторых местах. При микроскопировании обнаружены длинные тонкие палочки с круглой спорой на конце, что свидетельствует о присутствии предположительно Clostridium omelianskii.

3.4 Результаты посевов на жидкую среду Виноградского

При осмотре накопительных культур со средой Виноградского через несколько суток в пробирках с разными пробами почвы получены следующие результаты.

Проба почвы №1 (ясеневый лес): четко видимые изменения, такие как помутнение среды, выделение пузырьков газа, образование пены, появление запаха уксусной кислоты. При микроскопировании капли жидкости накопительной культуры, окрашенной раствором Люголя, видны клетки с потемневшим содержимым и неокрашенными спорами, хорошо различимой на темном фоне. Это свидетельствует о присутствии в среде предположительно Clostridium pasteurianum.

Проба почвы №2 (поле): видимых изменений практически нет, за исключением небольшого, едва заметного, помутнения. Однако, при микроскопировании капли жидкости накопительной культуры, окрашенной раствором Люголя, обнаружены клетки с потемневшим содержимым и неокрашенными спорами, хорошо различимой на темном фоне, в небольшом количестве. Это свидетельствует о присутствии в среде предположительно Clostridium pasteurianum.

Таблица 1

Результаты посевов на среду Китт-Тароцци пробы №1 (килька в томатном соусе)

Температура

Культуральные признаки

Морфологические признаки

33°С

Помутнение среды, появление желеобразного оранжевого осадка по всему столбику жидкости, газообразование, появление гнилостного запаха, разрушение печени.

Мелкие Г«+» палочки, споры.

55°С

Обильное газообразование, помутнение среды, появление желеобразного осадка по всему столбику жидкости, частичное разрушение печени,

Длинные тонкие Г«+» палочки, гранулированные, иногда встречаются скопления Г«-» палочек.

При сравнении морфологических и культуральных признаков с данными в определителе бактерий можно сказать, что данные микроорганизмы предположительно Cl. perfringens , Cl. termoaceticum, Cl. nigrificans, Cl. termosaccharolyticum.

Таблица 2

Результаты посевов на среду Китт-Тароцци пробы №2 (кабачковая икра)

Температура

Культуральные признаки

Морфологические признаки

33°С

Появление мути по всему столбику пробирки, полное разрушение печени, небольшое газообразование,

Грамвариабельные кокки, извитые, Г«+» спорообразующие палочки в виде барабанной палочки.

55°С

Появление желеобразной мути по всему столбику жидкости, небольшое количество пены на поверхности жидкости, частичное разрушение печени, слабое газообразование.

Скопление тонких и очень длинных Г«+» палочки.

Также можно сказать о присутствии предположительно Cl. perfringens , Cl. termoaceticum и Cl. nigrificans.

Таблица 3

Результаты посевов на среду Китт-Тароцци пробы №3 (кишечник свежей рыбы)

Температура

Культуральные признаки

Морфологические признаки

33°С

Помутнение среды по всему столбику жидкости, разрушение печени с выделением крови, обильное газообразование, появление пены на поверхности жидкости.

Длинные бесспоровые Г«+» палочки, Г «-» кокки.

55°С

Появление однородной желеобразной мути по всему столбику жидкости, небольшое газообразование, частичное разрушение печени.

Тонкие длинные бесспоровые Г«+» палочки, скопление спорообразующих Г«+» палочек в виде барабанной палочки.

При сравнении морфологических и культуральных признаков с данными в определителе бактерий можно сказать, что данные микроорганизмы предположительно Cl. perfringens , Cl. termoaceticum и Cl. nigrificans.

Таблица 4

Результаты теста на каталазу

Объект

Предположительный вид

Результаты теста на каталазу

Окончательный вид

Почва ясеневый лес

Cl. pasteurianum, Cl. omelianskii

отрицательный

Cl. pasteurianum, Cl. omelianskii

Почва поле

Cl. omelianskii,

Cl. pasteurianum

отрицательный

Cl. omelianskii,

Cl. pasteurianum

Растительные волокна

Cl. pectinovorum,

Cl. felsineum

отрицательный

Cl. pectinovorum,

Cl. felsineum

Свежая рыба

Cl. perfringens, Cl. termoaceticum, Cl. nigrificans

отрицательный

Cl.perfringens, Cl. termoaceticum, Cl. nigrificans

Консервы (мезофиллы)

Cl. perfringens

отрицательный

Cl. perfringens

Консервы (термофилы)

Cl. termoaceticum, Cl. nigrificans, Cl. termosaccharolyticum

отрицательный

Cl. termoaceticum, Cl. nigrificans, Cl. termosaccharolyticum

Выводы

Бактерии рода Clostridium выделены из следующих объектов:

- из почвы - Cl. pasteurianum (обладающий азотфиксирующими свойствами и вызывающий маслянокислое брожение), Cl. omelianskii, вызывающий брожение целлюлозы;

- из волокон растений Cl. pectinovorum и Cl. felsineum;

- из стерильных консервов мезофильные микроорганизмы Cl. perfringens, термофильные микроорганизмы Cl. termoaceticum, Cl. nigrificans, Cl. termosaccharolytic;

- из сырой рыбы Cl. perfringens , Cl. termoaceticum, Cl. nigrificans.

Список литературы

1. Ассонов Н.Р. Микробиология. - 2-е изд., перераб. и доп. - М.: Агропромиздат, 1989. - 350 с.

2. Воробьева Л.И. Промышленная микробиология. - М.: Высшая школа, 1989. - 293 с.

3. Емцев В.Г. Некоторые вопросы морфологии и физиологии азотфиксирующих Clostridium. - М.: Колос, 1966. - 60 с.

4. Зенова Г.М., Степанов А.Л. Практикум по биологии почв. Изд. Московского университета, 2002. - 120с.

5. Инструкция 4.2.10-15-21-2 Микробиологические методы выделения и идентификации возбудителей при бактериальных пищевых отравлениях. Министерство здравоохранения Республики Беларусь, 2004. - 62 с.

6. Методическое указание к лабораторным работам. Санитарно-микробиологический контроль консервного производства. - Астрахань: АГТУ, 1998. - 32 с.

7. Нетрусов А.И. Практикум по микробиологии.- М.: Академия, 2005. - 600 с.

8. Овруцкая И.Я., Погодяева А.Я. Микробиология и микробиологический контроль производства сухих картофельных и овощных продуктов. - М:. Легкая и пищевая промышленность, 1983. - 88 с.

9. Пивоваров Ю.П., Королин В.В. Санитарно-значимые микроорганизмы. -М.: Издательство ИКАР, 2000. - 268 с.

10. Практикум по микробиологии / Под редакцией Шильниковой В.К. - М.: Дрофа, 2004. - 256 с.

11. Работнова И.Л. Общая микробиология. - М.: Высш. школа, 1966. - 271 с.

12. Рогачева А.И. Микробиологический контроль консервного производства. - М.: Пищепромиздат, 1983. - 95 с.

13. www. BOTOX.com

Приложение № 1

Рецепты основных питательных сред:

Среда Виноградского для анаэробных азотфиксаторов рода Clostridium

Глюкоза 20,0 г

К2НРО4 1,0 г

MgSO4 * 7H2O 0,5 г

СаСО3 20,0 г

NaCl 0,5 г

MnSO4 и FeSO4 следы

Вода дистиллированная 1000 мл

В среду рекомендуется вносить смесь микроэлементов по Федорову 1мл/л.

Среда Китт-Тароцци для мезофильных и термофильных анаэробных микроорганизмов

Для приготовления среды стерильные пробирки заполняют на 1,0-1,5 см кусочками печени, мяса или рыбы и заливают приготовленным мясо-пепетонным бульоном с глюкозой и агаром. В 1 дм3 мясо-пептоного, рыбо-пептонного или печеночного бульона вносят 10 г глюкозы и 1,5 г агара, который при нагревании постепенно расплавляют (высота слоя бульонав обычных пробирках 12-13 см, в высоких 15-18 см) и стерилизуют 20 мин при температуре (121±1) °С. Требуемую величину рН проверяют до и после стерилизации рН среды после стерилизации должно быть (7,1±0,1).

Мясо-пептонный бульон (МПБ)

Основой для приготовле6ния служит мясная вода, которую готовят следующим образом: мясо освобождают от костей жира и сухожилий, мелко нарезают или пропускают через мясорубку. 500 г полученного мясного фарша заливают 1 л водопроводной водой и оставляют для экстракции при комнатной температуре на 12 ч или в термостат при температуре 37-39°С на 2 ч, а при 50°С - на 1 ч. За это время из мяса экстрагируются различные вещества, в том числе водорастворимые витамины. Затем мясо отжимают через марлю, и полученный настой кипятят 30 мин. При этом свертываются белки. Остывшую массу фильтруют через ватный фильтр и доливают водопроводной воды до первоначального объема. К полученной мясной воде добавляют 1 % пептона и 0,5 NaCl. В случае необходимости добавляют углеводов в количестве 1-2 г на 100 мл. МПБ стерилизуют при 1 ати 20-30 мин.

Среда Омелянского для выделения возбудителей анаэрробного брожения целлюлозы.

МПБ 500 мл

стерильная вода 500 мл

мел 3 г


Подобные документы

  • Распространение и происхождение растений рода бессмертник. Химический состав и применение в медицине растений рода бессмертник. Характеристика и физико-химические показатели эфирного масла бессмертника итальянского. Фенольные соединения и полисахариды.

    реферат [77,9 K], добавлен 07.07.2011

  • Ботаническое описание рода бурачниковых. Классификация и редкие виды рода. Виды, занесенные в Красную книгу России. Подсемейства кордиевых, эретиевых, гелиотропиевых, бурачниковых и велыптедиевые. Практическое применение растений рода бурачниковых.

    реферат [39,2 K], добавлен 02.01.2013

  • Понятие и сущность рода Pulmonaria, его биологическое описание и распространение. Способы размножения медуницы, особенности ухода, болезни и вредители. Описание видов рода Рulmonaria, введенных в культуру. Использование медуницы в ботанических садах.

    курсовая работа [4,7 M], добавлен 27.01.2018

  • Принципы классификации бактерий, их разновидности и общая характеристика. Научная классификация рода Salmonellа. Краткое описание семейства Enterobacteriaceae. Рост и развитие патогенов in vivo и in vitro. Сальмонеллезная инфекция, распространение.

    курсовая работа [64,8 K], добавлен 03.06.2014

  • Изучение рода Vibrio cholerae. Хронология изучения его представителей, систематика, морфология этого рода вибрионов, их физиология, культуральные свойства. Межродовая, внунтривидовая и межвидовая идентификация, патогенность, устойчивость к антибиотикам.

    реферат [2,9 M], добавлен 16.03.2011

  • Общая характеристика рода Cucurbita. Краткая историческая справка изучения процессов транспирации. Определение продуктивности транспирации и транспирационного коэффициента у представителей рода Cucurbita. Характеристика водного баланса растения.

    курсовая работа [615,2 K], добавлен 14.06.2012

  • Морфология рода Hypericum L., таксономический состав. Признаки и ареалы видов рода. История создания и состояние популяций коллекции рода Hypericum L. Биоэкологический анализ, фенологические наблюдения. Засухоустойчивость и зимостойкость, размножение.

    дипломная работа [4,8 M], добавлен 03.11.2015

  • Систематическое положение рода Лапчатки. Эколого-географические особенности распространения двух типов экобиоморф рода Potentilla L. Деревянистые и травянистые формы лапчаток. Охрана и рациональное использование растений. Применение лапчаток в медицине.

    курсовая работа [7,2 M], добавлен 17.06.2017

  • Ботаническая характеристика рода одуванчика, систематика, химический состав и ареал обитания. Виды одуванчика и применение в медицине для улучшения секреторной и моторной деятельности желудка и кишечника, для повышения секреции пищеварительных желез.

    реферат [176,4 K], добавлен 02.01.2013

  • Основные виды процессов брожения. Характеристика продуктов, получаемых путем ацетоно-бутилового брожения - ацетона, бутанола, масляной кислоты. Методы культивирования продуцентов биологически активных веществ. Пути интенсификации процессов биосинтеза.

    дипломная работа [1,2 M], добавлен 09.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.