Сравнительное исследование микробных сообществ щелочных слабоминерализованных гидротерм Байкальской рифтовой зоны и щелочных минерализованных гидротерм озера Моно-Лейк на острове Паоха

Сравнительное исследование видового состава и геохимической деятельности микроорганизмов щелочных гидротерм с различной минерализацией и химическим составом. Характеристика участия хемотрофных микробных сообществ щелочных гидротерм в минералообразовании.

Рубрика Биология и естествознание
Вид диссертация
Язык русский
Дата добавления 22.01.2015
Размер файла 535,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

116

ВВЕДЕНИЕ

Актуальность проблемы. Системные исследования мезофильных алкалофильных сообществ начались сравнительно недавно (Заварзин, 1993). Однако до последнего времени очень мало внимания уделялось изучению организмов, способных существовать при высоких температурах и высоких значениях рН (Wiegel, 1998).

Традиционными объектами исследования микробиологов являлись гидротермы областей активного современного вулканизма и молодого четвертичного вулканизма, с реакцией среды, близкой к нейтральной. Термальные воды с рН>8.5 и температурой выше 45°C широко распространены в природе (Басков, Суриков, 1989; Соломин, Крайнов, 1998). Физико-химические параметры щелочных термальных вод сильно отличаются от нейтральных и кислых вод, что создает особые условия для существования экстремофильных микроорганизмов. (Крайнов, Швец, 1980; Garrels, Christ, 1959; Belkin et al., 1985). Микробные сообщества этих экосистем и факторы определяющие их разнообразие изучены слабо. Сведения о видовом составе щелочных гидротерм были разрознены (Компанцева, Горленко, 1988; Юрков и др., 1991; Бонч-Осмоловская и др., 1999; Brock et al., 1971, Grant, Tindall, 1986; Duckworth et al., 1996; Marteinsson et al., 2001; Krienitz et al., 2003). Отсутствовали данные об интенсивностях продукционных и деструкционных процессов

В настоящей работе впервые выполнено сравнительное исследование видового состава и геохимической деятельности микроорганизмов щелочных гидротерм с различной минерализацией и различным химическим составом.

Целью настоящей работы являлось сравнительное исследование микробных сообществ щелочных слабоминерализованых гидротерм Байкальской рифтовой зоны (Б.р.з.) и щелочных минерализованых гидротерм озера Моно-Лейк на острове Паоха.

Основные задачи исследования состояли в следующем:

Изучение состава микробных сообществ щелочных термальных источников в связи с изменением физико-химических условий.

Изучение активности продукционных и терминальных деструкционных процессов в фототрофных и хемотрофных микробных сообществах в разных экологических зонах источников.

Исследование экофизиологических особенностей термофильных микроорганизмов участвующих в циклах углерода и серы в сообществах.

Изучение участия микробных сообществ щелочных гидротерм в минералообразовании.

Научная новизна и практическая значимость. Впервые исследованы микробные сообщества щелочных азотных гидротерм Б.р.з. и минерализованного щелочного источника на острове Паоха озера Моно-Лейк (Калифорния). Показано, что щелочные условия в комбинации с другими факторами среды ограничивают распространение фототрофных сообществ, в минерализованных щелочных источниках отсутствует термофильный цианобактериальный мат. В фототрофных сообществах щелочных низкоминерализованных термальных источниках доминируют цианобактерии, приспособленные к росту в щелочных условиях. Алкалотолерантные аноксигенные фототрофные бактерии Chloroflexus aurantiacus обнаружены только в низкоминерализованных гидротермах при температурах от 65 до 35°С. Показано, что микробные сообщества щелочных гидротерм обладают высокой продуктивностью, сравнимой с микробными сообществами нейтральных гидротерм.

В щелочных минерализованных гидротермах рост фототрофных сообществ начинается при температуре ниже 47°С. Термофильных оксигенных и аноксигенных фототрофов в них не обнаружено. Из высокотемпературной зоны источника (от 90 до 50°С) был выделен новый вид анаэробной алкалотермофильной ферментирующей бактерии Anaerobranca californiensis и показана ее способность к восстановлению серы, тиосульфата, полисульфида, Fe(III), Se(VI). Показано участие термофильных фототрофных сообществ в травертинообразовании. В лабораторных экспериментах установлено, что термофильная аноксигенная фототрофная бактерия Chloroflexus aurantiacus образует чехлы накапливающие окисное железо в аэробных темновых условиях. Использование закисного железа в качестве донора электронов при фотоавтотрофном росте этого микроорганизма не наблюдалось. Полученные результаты принципиально важны для развития представлений о функционировании циклов кальция, серы, железа, селена в щелочных гидротермах.

Выделенные микроорганизмы могут быть использованы при очистке горячих вод от неорганических соединений. Результаты диссертации имеют значение для бальнеологической характеристики гидротерм Байкальской рифтовой зоны.

Апробация работы. Результаты исследований доложены автором на: Международной конференции "Thermophiles'98" 6-11 сентября 1998 г., Брест, Франция; Научной конференции "Проблемы экологии и физиологии микроорганизмов: к 110-летию со дня рождения профессора Е.Е. Успенского", 21 декабря 1999 г., Москва; Школе-конференции "Горизонты физико-химической биологии", 28 мая-2 июня 2000 г., Пущино; Международной конференции "Central Asian ecosystems - 2000", 5-7 сентября 2000 г., Улан-Батор, Монголия; Международной конференции "Экология Сибири, Дальнего Востока и Арктики", 5-8 сентября 2001, Томск; Региональной конференции "Природные ресурсы Забайкалья и проблемы природопользования", 10-15 сентября 2001, Чита; ASM-meeting, май 2002, США; I международном симпозиуме "Биокосные взаимодействия: Жизнь и камень", 25-27 июня 2002 г., Санкт-Петербург; International Geobiology Course, 12 июня - 26 июля 2003 г., Каталина, Калифорния; Всероссийской конференции "Биоразнообразие и функционирование микробных сообществ водных и наземных систем Центральной Азии", 21-29 июля 2003 г., Улан-Удэ. Публикации. По теме диссертации опубликовано 13 работ и 1 статья находится в печати.

Объем и структура диссертации. Материалы диссертации изложены на 151 страницах, включая 21 таблицы и 30 рисунок. Диссертация состоит из разделов "Введение", "Обзор литературы", "Экспериментальная часть" (включающая главы "Объекты и методы исследований", "Результаты и обсуждение"), "Заключение", "Выводы" и "Список литературы" (269 наименований).

Благодарности. Автор выражает глубокую признательность научному руководителю д.б.н., проф. В.М. Горленко и сотрудникам Лаборатории экологии и геохимической деятельности микроорганизмов ИНМИ РАН, д.б.н., проф. Б.Б. Намсараеву и сотрудникам Лаборатории микробиологии ИОЭБ СО РАН, проф. К. Nealson и сотрудникам Geobiology Laboratory University of Southern California, сотрудникам Института микробиологии РАН, родным и близким.

Исследование генотипических свойств проводилось к.б.н. А.М. Лысенко (ИНМИ РАН). Анализ 16S рРНК выполнила к.б.н. Т.П.Турова (ИНМИ РАН). Определение интенсивностей микробных процессов проводилось совместно с В.И. Качалкиным (ИНМИ РАН) и к.б.н. С.П. Бурюхаевым (ИОЭБ СО РАН). Определение видовой принадлежности цианобактерий проводилось совместно с к.б.н. А.В. Брянской (ИОЭБ СО РАН). Исследования тонкого строения клеток проводили совместно с Л.Л. Митюшиной (ИНМИ РАН). Пробы керна Гаргинского травертина были предоставлены д. г.-м. н. А.М. Плюсниным (ИГ СО РАН). Автор приносит искреннюю благодарность всем упомянутым участникам работы.

1. ОБЗОР ЛИТЕРАТУРЫ

1.1 Характеристика основных типов щелочных гидротерм

В настоящее время известно большое количество классификаций термальных вод, использующие различные классификационные признаки: температуру, рН, анионный и газовый состав, условия формирования термальных вод (Посохов, 1975; Перельман, 1972; Басков, Суриков, 1989). Поэтому, необходимо определить, какие именно источники в данной работе будут считаться щелочными термальными.

В геологии принято считать воды термальными, если их температура превышает 20°С (Басков, Суриков, 1989). С точки зрения микробиологии важной температурной границей является температура 45°С (Заварзин, Колотилова, 2001). Эта температура позволяет разделить местообитания с доминированием мезофильных (с оптимумом около 30°С и максимумом до 45°С) и термофильных (с оптимумом около 50°С) микроорганизмов (Wiegel, 1998). Поэтому, в данной работе к гидротермам будут отнесены источники с температурой воды на изливе выше 45°С.

В данной работе значение рН отделяющее щелочные воды от нейтральных составляет 8.0-8.5. Эта граница позволяет исключить из рассмотрения широко распространенный тип углекислых термальных вод со значениями рН от 4.5 до 8.5, в водах которых присутствует карбонат кальция. При рН выше 8.5 воды становятся натриевыми, щелочность таких вод обуславливается присутствием соды, либо присутствием силикатов или боратов (Перельман, 1966; Соломин, Крайнов, 1998; Крайнов и др., 2001). С точки зрения микробиологии значение рН 8.5 позволяет отделить местообитания с доминированием нейтрофильных микроорганизмов от местообитаний с доминированием алкалофильных микроорганизмов (оптимум рН выше 8.5) (Заварзин, Колотилова, 2001).

1.1.1 Основные типы щелочных гидротерм

Щелочные гидротермы широко распространены в природе (рис. 1), но, в отличие от кислых гидротерм, гораздо менее изучены. Существует несколько геохимических типов щелочных термальных вод, среди них наиболее известными и геохимически значимыми являются азотные термальные воды и сульфидные воды (Соломин, Крайнов, 1998).

Азотные термальные воды. По определению Крайнова (Крайнов, Швец, 1980; Соломин, Крайнов, 1998) к щелочным азотным термальным водам относятся азотные термальные воды массивов гранитоидных и вообще кристаллических пород. Азотные термальные воды широко распространены в мире. Большие области Центральной Азии, Индии, Восточной Сибири, Восточной Африки, Южной Африки, Южной Америки, запада США, Европы, западные и восточные районы Исландии (кроме центральных) относятся к провинции щелочных азотных термальных вод (Крайнов, Швец, 1980). Геохимический облик этих вод определяется процессами гидролитического разложения силикатов и потерей кислорода на окислительные процессы, вследствие чего в их газовом составе начинает преобладать азот и происходит частичное восстановление сульфатов с образованием гидросульфидных ионов (Крайча, 1980).

Типичным примером азотных термальных вод могут служить воды гидротерм Байкальской рифтовой зоны (Б.р. з.), ставших одним из объектов нашего исследования. Температура воды на выходах достигает 81-83°С, минерализация не превышает 1 г/л, рН до 10, состав HCO3-Na, SO4-Na с довольно высоким содержанием силикатов (до 100 мг/л). Гидрохимические данные свидетельствуют об инфильтрационном происхождении гидротерм Б.р.з. (Барабанов и др., 1968; Борисенко и др., 1978; Крайнов, Швец, 1980). Гидротермы формируются в восстановительной обстановке вне зависимости от влияния магматических процессов, что отличает гидротермы региона от гидротерм областей активного вулканизма (Голубев, 1982). Даже по данным тех авторов, которые допускают существование в гидротермах Б. р.з. магматогенных вод, доля последних не превышает нескольких процентов (Ломоносов, 1974).

Другим характерным представителем азотных термальных вод являются гидротермы зон рифтогенеза, характеризующихся современным и позднечетвертичным магматизмом (Крайнов, Швец, 1980). Так, в зоне рифта Восточной Африки формируются CO3(HCO3)-Na, Cl-HCO3(CO3)-Na термальные (до 97°С), щелочные (рН 811), минерализованные (до 50-60 г/л) воды, содержащие до 300 мг/л и более фтора. Газовый состав этих вод характеризуется высокой гелиеносностью (до 15-20 об. %). Химический состав этих вод обусловлен взаимодействием с резкощелочными вулканическими породами, содержащими карбонаты (в виде Na2CO3) и соединения фтора. Примером могут служить термальные источники в районе озера Богория (Кения) с рН 9, соленостью 3.5 мг/л и температурой от 35 до 100°С (Krienitz et al., 2003).

На западном побережье Северной Америки широко распространены щелочные хлоридные азотные термальные воды (Басков, Суриков, 1989). Здесь известны источники хлоридного кальциевого-натриевого состава с минерализацией до 15-20 г/л, вытекающие по зонам разломов из разнообразных кристаллических (или сильнометаморфизированных вулканогенных и осадочных) пород. Температура достигает 70-80°С. К особенностям данного типа вод относятся преобладание среди анионов хлора и высокие содержания кальция, что приводит к образованию характерных построек из карбоната кальция при смешении с поверхностными водами, в частности на озере Моно Лейк (The Mono Basin Ecosystem, 1987).

Субаквальные гидротермы данного типа изучены слабее наземных. Недавно у северного побережья Исландии во фьорде Эйджафьордур на глубине 65-100 метров было обнаружено подводное гидротермальное поле. Изливающиеся азотные воды имели рН 10, температуру 71°С, минерализацию 291 мг/л и содержали 0.32 мг/л сульфида. В составе доминирует кремний (93.7 мг/л) и хлор (44.7 мг/л), среди катионов натрий (79.2 мг/л). Гидротермальные постройки сложены из силикатов, металлические сульфиды, характерные для черных курильщиков, не были обнаружены (Marteinsson et al., 2001). Весьма вероятно также наличие термальных вод в крупных океанических поднятиях, сложенных мощными вулканогенными толщами (Басков, Суриков, 1989). В них могут быть встречены щелочные соленые воды хлоридного состава. Газовый состав, возможно, азотный. Данная провинция субаквальных термальных вод выделяется в порядке прогноза.

Сульфидные воды артезианских бассейнов. Среди сульфидных вод щелочными (с рН до 9.5) являются только воды артезианских бассейнов предгорных прогибов и межгорных впадин, имеющие минерализацию 5-50 г/л, HCO3-Cl-Na или Cl-HCO3-Na состав и высокие концентрации HS- (Басков, Суриков, 1989; Соломин, Крайнов, 1998). Типичным примером могут служить сульфидные воды Терско-Каспийского и Апшеронского бассейнов Кавказа. Все эти воды формируются в молодых (чаще третичных) песчано-сланцевых и карбонатных породах. Глубина формирования этих вод достигает 1-2.5 км, температура может доходить до 70°С и выше, хотя в отдельных структурах, например, Молдавском артезианском бассейне, эти воды могут быть холодными. Процесс сульфатредукции активизируется в присутствии в породах органических веществ и источников сульфатов, которыми достаточно часто являются гипсы вмещающих пород. При высокой гипсоносности пород воды приобретают HCO3-SO4(Cl)-Na и SO4-HCO3(Cl)-Na состав. В местах с повышенной интенсивностью сульфатредукции концентрация сульфидной серы могут достигать сотен мг/л (максимально до 1 г/л). Данный тип щелочных термальных вод в рамках настоящей работы не был исследован.

1.1.2 Свойства щелочных термальных вод

Состав. В исследованных нами пресноводных гидротермах Б.р.з. содержание основных элементов (Ca , Mg , Na , K , Cl , SO4 и HCO ) приведено в таблице 1 (см. раздел "Объекты и методы исследования"). В катионном составе термальных вод доминирует натрий, более активно чем кальций переходящий в воду при гидролитическом разложении силикатов при повышенной температуре (Крайнов, Швец, 1980). В анионном составе, как правило, доминирует сульфат (Ломоносов, 1974; Соломин, Крайнов, 1998; Замана, 2000а,б). В составе термальных вод также обнаружено высокое содержание гидрокарбонатных ионов, что объясняется реакцией нейтрализации углекислым газом гидроксидной группы, образующейся при гидролизе силикатов (Замана, Пиннекер, 1999).

При рН выше 9 и повышении температуры растворимость и диссоциация на ионы ортокремниевой кислоты (H4SiO4) резко возрастает (Го Окамото и др., 1963; Посохов, 1975; Крайнов, Швец, 1980). Поэтому щелочные термальные воды содержат высокие содержания кремния (до 180 мг/л SiO2). Накоплению в гидротермах кремния способствует также высокие давления, при которых уменьшается устойчивость силикатов, и повышенное содержание в растворах солей натрия, способствующее повышению растворимости кремнезема. Судя по максимальной растворимости аморфного кремнезема в щелочных условиях (300-1000 мг/л), исследованые гидротермы Б. р. з. недонасыщены кремнием. Об этом же свидетельствует и отсутствие в районе выхода гидротерм значительных отложений кремнезема (Ломоносов, 1974).

В щелочных термальных водах обнаруживаются также относительно высокие концентрации фтора, селена, вольфрама, молибдена, германия, бора. Возрастание их концентраций обусловлено общими свойствами анионогенных элементов. Степень диссоциации их кислот возрастает с ростом щелочности среды по общей схеме

Н2А -> H+ + HA- -> 2H+ +A2-.

Натриевые соли образующихся при этом анионов хорошо растворимы и могут накапливаться в значительных концентрациях (Крайнов, Швец, 1980).

Щелочность. Щелочные термальные воды содержат сильные катионогенные элементы (Na+, K+) и анионы слабых кислот (HCO3-, CO32-, HS-, H2BO3-, H3SiO4- и др.). Гидролиз этих анионов сопровождается разложением воды и образование ионов ОН-. При химическом анализе вод обычно предполагается, что щелочность обуславливается ионами карбонатной системы (CO32- + H2O -> HCO3- + OH-, HCO3- + H2O -> H2CO3 + OH-), но это не совсем верно для щелочных термальных вод. В азотных термальных водах щелочность в основном связана с силикатными ионами, в сульфидных термальных водах щелочность обуславливается присутствием боратов и карбонатов (Крайнов, Швец, 1980; Соломин, Крайнов, 1998).

Влияние щелочных условий на миграцию элементов. В щелочных водах более активно мигрируют анионогенные элементы (S, Ge, Sn, Sb, As, V, Mo, Se, U, F, B, Si и т.д.), тогда как катионогенные элементы (Ba, Cu, Zn, Fe2+, Mn2+, Ni2+ и др.) в щелочных условиях часто образуют слаборастворимые соединения (Перельман, 1972). Тем не менее, щелочные воды нельзя считать запретными для миграции катионогенных элементов, так как они могут мигрировать в виде комлексов с анионами этих вод (хлоридные, сульфатные, гидрокарбонатные и др. комплексы). Также миграция элементов может происходить в виде гидросульфидных комплексных соединений в сероводородсодержащих водах или в виде комплексных соединений с органическим веществом. (Крайнов, Швец, 1980; Кирюхин и др., 1982; Илялетдинов, 1984; Шпейзер, 1999; Ehrlih, 1981; Bender et al., 1994).

Влияние щелочных условий на переменновалентные элементы. Термальные воды содержат большое число элементов с переменной валентностью, которые могут служить донорами или акцепторами электронов для микроорганизмов. Из уравнения Нернста следует, что увеличение рН среды приводит к уменьшению окислительно-восстановительного потенциала (ОВП), при котором происходит окисление соединений какого-либо элемента. Поэтому в щелочных водах окисление происходит легче и энергичнее, чем в кислых. Например, двухвалентное железо очень легко окисляется в трехвалентную форму в щелочных водах (Е0 < -100 мВ), но очень трудно в кислых (Е0 +771 мВ). То же верно и для многих других элементов (Крайнов, Швец, 1980). Прогнозирование поведения элементов при различном рН может быть сделано на основании Eh-pH диаграмм, разработанных Гаррелсом и Крайстом (Garrels, Christ, 1965). Соответствие термодинамическим данным является необходимым условием любой гипотезы, относящейся к круговоротам элементов с переменной валентностью (Заварзин, 1972б). Хотя необходимо учитывать, что Eh-рН диаграммы характеризуют равновесные условия и указывают, в каком направлении пойдет реакция, если она начнется. Термодинамические данные не позволяют судить о скорости реакции и не утверждают, что возможная реакция обязательно произойдет в действительности (Перельман, 1966; Стащук, 1968).

Серные соединения в щелочных условиях. Среди переменновалентных элементов сера играет важнейшую роль, как в определении геохимического облика термальных вод, так и в функционировании микробного сообщества гидротерм.

Щелочные условия оказывают большое влияние на восстановленные соединения серы. При рН выше 7.7-8.5 доминирует гидросульфид-ион, а не сероводород. Гидросульфид более устойчив к окислению, чем недиссоциированный сероводород. Кроме того, гидросульфид менее токсичен для клетки, так как анион сульфида с трудом проникает сквозь клеточную мембрану. Молекулярная сера слабо устойчива при рН выше 8. В присутствии гидросульфид-иона элементная сера образует полисульфид (Roy, Trudinger, 1970; Schauder, Kroger, 1993; Schauder, Muller, 1993). Тиосульфат устойчив при рН выше 4-5, при более низких значениях тиосульфат быстро разрушается до серы и бисульфита, либо диоксида серы, элементной серы и политионатов (-O3S-Sn-SO3-). В щелочных условиях политионаты разрушаются с образованием тиосульфата, либо сульфита, сульфата и элементной серы (Roy, Trudinger, 1970).

Повышение температуры оказывает влияние на полиморфные превращения элементной серы. При температуре 95°С сера переходит из более устойчивой орторомбической формы в моноклинальную. При температуре 119°С происходит плавление (Roy, Trudinger, 1970). При температурах выше 80°С сера диспропорционирует на гидросульфид и тиосульфат согласно реакции S8 + 8OH- -> 2S2O32- + 4HS- + 2H2O (Roy, Trudinger, 1970; Belkin et al., 1985). Добавление дрожжевого экстракта (до 1 г/л) стимулирует абиогенное восстановление, дальнейшее увеличение содержание дрожжевого экстракта не оказывает влияния на восстановление серы. Абиогенная сероредукция сильно зависит от рН среды. Повышение рН на 1 единицу приводит к 10-60-кратному увеличению продукции сульфида (опыт проводился в диапазоне рН 5.5-8.0 при температуре 98°С) (Belkin et al., 1985).

1.2 Распространение и состав микробных сообществ в зависимости от физико-химических факторов среды

В термальных источниках распространение эукариот ограничено 45-55°С (Brock, 1967а; Castenholz, 1969; Wickstrom, Castenholz, 1985). Поэтому микробные сообщества гидротерм представляют значительный интерес с точки зрения эволюции биосферы и, по мнению многих исследователей, являются аналогами сообществ, доминировавших на ранних этапах развития жизни на Земле (Заварзин, 1972а, 1997, 2001; Baross, Hoffman, 1985; Nisbet, 1986; Walter et al., 1998).

Микробные сообщества гидротерм можно разделить на два типа: с доминированием фототрофных микроорганизмов и с доминированием хемотрофных микроорганизмов. Хемотрофные сообщества часто развиваются в виде обрастаний. Фототрофные сообщества в гидротермах, при отсутствии выедания со стороны эукариотных организмов, могут обладать значительной биомассой и образовывать микробные маты - органоминеральные структуры, отличающиеся от бактериальных обрастаний своей оструктуренностью (слоистостью) (Cohen et al., 1989). Граница между фототрофными и хемотрофными сообществами определяется, по-видимому, устойчивостью фотосинтетического аппарата к факторам окружающей среды, в первую очередь к температуре (Brock, 1978). В источниках с рН 5-10 верхняя температурная граница распространения фототрофного микробного мата расположена при 61-73°С. В кислых гидротермах с рН 1-5 развитые маты встречаются только при температурах ниже 55°С и образованы из эукариотической водоросли Cyanidium caldarium (Castenholz, 1969, 1984; Hiraishi et al., 1999). При более высоких температурах, либо при отсутствии света развиваются хемотрофные сообщества.

1.2.1 Микробные сообщества щелочных гидротерм

Фототрофные микробные сообщества были исследованы на щелочных гидротермах Байкальской и Восточно-Африканской рифтовых зон. Показано, что в микробных матах пресных источников Байкальской рифтовой зоны присутствуют цианобактерии и аноксигенные фототрофные бактерии (АФБ). Так, по изливу источника Котельниковский (рН 9.2-9.8, Т 60°С, сульфид 6 мг/л) развивается три типа матов. При температуре 50-60°С доминируют нитчатая цианобактерия Phormidium sp. и термофильная нитчатая АФБ Chloroflexus aurantiacus, при 50-45°С доминируют нитчатые цианобактерии Oscillatoria sp. и Phormidium sp., в меньшем количестве представлены одноклеточные цианобактерии Synechococcus sp. и Gloeocapsa sp. При температуре 25-35°С на смешении термальных вод и вод озера Байкал развиваются обрастания Thiotrix sp. Численность Chloroflexus aurantiacus учтенная методом посева не превышала 104 кл/мл, несерных пурпурных бактерий Rhodopseudomonas palustris -105 кл/мл, Rh. gelatinosus - 105 кл/мл (Горленко и др., 1985; Компанцева, Горленко, 1988). Также из источников Б. р.з. (Республика Бурятия: источники Ильинский, Аллинский, Кучигерский, Сеюйский, Гаргинский) с рН 8-9 были выделены культуры Meiothermus ruber и, в меньшем количестве, Thermus flavus. Также представлены спорообразующие формы и целлюлозолитические бактерии с оптимумом развития при температуре 50°С и рН 8 (Храпцова и др., 1984).

На Большереченском источнике (Т 72-74°С, рН 9,25, сульфид 13.4 мг/л) в зоне излива фототрофные микробные маты отсутствуют. Высказано предположение, что это связано с одновременным присутствием сульфида и кислорода в воде источника. В микробных матах источника доминируют нитчатые цианобактерии рода Phormidium, также из матов был выделен ряд неизвестных ранее аноксигенных фототрофных бактерий (Юрков, Горленко, 1989, 1990, 1991, 1992; Юрков и др., 1992). Более подробная информация о микробном сообществе Большереченского источника приведена в разделе "Результаты".

В зоне Восточно-Африканского рифта были исследованы микробные сообщества развивающиеся по изливу гидротерм около озера Богория (Кения, рН 8.5-9.5, Т 35-100°С, минерализация до 3.5 мг/л). В составе матов доминируют цианобактерии Synechococcus bigranulatus, Spirulina subsalsa, Phormidium terebriformis, Oscillatoria willei (Krienitz et al., 2003). Также в значительном количестве присутствует Chloroflexus sp. (Grant, Tindall, 1986). Из источников было выделено два штамма "Thermopallium natronophilumT, принадлежащих к порядку Thermotogales (Duckworth et al., 1996).

Хемотрофные микробные сообщества в виде обрастаний были обнаружены в источнике Боулдер спринг (Йеллоустон) при температуре 90-93°С, рН 8.9 и содержании сульфида 3 мг/л. При исследовании стекол обрастания были обнаружены миксотрофные сероокисляющие бактерии, использующие ацетат (Brock et al., 1971). В источниках Накабуса (Япония) хемотрофные микробные обрастания развивались при температурах 76-66°С, рН 8.5 и 8.7, содержании сульфида 2.5 и 0.9 мг/л. В составе сообщества по данным DGGE доминировали представители Thermodesulfobacteria sp., Thermus sp., Staphylothermus marinus, Sulphobococcus zilligii. Представители Aquifex доминировали в одном из источников Накабуса с рН 7.3, но в щелочных источниках обнаружены в малом количестве (Nakagawa, Fukui, 2002). . Также из мата были выделены культуры Roseiflexus castenholzii и Chloroflexus aurantiacus (Hanada et al., 2002).

В пробах из гейзера Удачный (долина Гейзеров, Камчатка) с рН 8.5, азотного типа, было зафиксировано литотрофное образование метана при 60°С, в полученных накопительных культурах доминировали тонкие палочки фенотипически сходные с Methanobacterium thermoautotrophicum (Бонч-Осмоловская и др., 1999).

Из субаквальных гидротерм изливающихся на литорали фьорда Эйджафьордур (Исландия) с рН 10, температурой 71°С, минерализацией 291 мг/л и содержанием сульфида 0.32 мг/л было выделено 50 штаммов аэробных бактерий. Все штаммы способны к росту при 60-65°С и рН 9.0, 20 штаммов способны расти при рН 10. По результатам анализа 16S-рРНК бактерии были отнесены к видам Geobacillus thermoleovorans, "G. caldotenax", G. flavothermus, G. caldovelox, G. thermodenitrificans, G. caldoxylozilyticus и Thermonema sp. (Marteinsson et al., 2001). Примечательно, что типовые штаммы данных организмов не способны расти при рН выше 8 (Назина, Григорьян - личное сообщение). Также был выделен анаэробный организм, археобактерия Desulfurococcus mobilis (Marteinsson et al., 2001). Анализ нативной ДНК с помощью 16S рРНК-ориентированных праймеров показал, что большинство последовательностей принадлежат эубактериям (45 клонов), археобактерии представлены 10 клонами (Korarchaeota). Большинство эубактериальных клонов (31 клон) относятся к группе Aquificales, из них к Hydrogenobacter thermophilus принадлежит 15 клонов. Также были обнаружены последовательности принадлежащие к группам Nitrospira, Firmicutes (Propionibacterium acnes), б-Proteobacteria (Caulobacter crescentus), в-Proteobacteria (Alcaligens sp.). Представители рода Thermus не были обнаружены (Marteinsson et al., 2001).

микроорганизм щелочной минерализация геохимический

1.2.2 Микробные сообщества нейтральных гидротерм

Фототрофные микробные сообщества нейтральных гидротерм исследованы более подробно чем сообщества щелочных гидротерм. Данные сообщества могут быть разделены на два типа: маты с доминированием цианобактерий (цианобактериальные маты) и маты с доминированием АФБ ("Аноксигенные маты").

Кастенхольц выделяет несколько основных типов цианобактериальных матов в зависимости от особенностей их строения (Castenholz, 1984).

1) Мат с "обычной вертикальной последовательностью" доминирует в гидротермах с содержанием сульфида менее 1 мг/л в широком диапазоне температур (до 73°С). В верхнем слое толщиной 1-2 мм доминируют термофильные цианобактерии, в нижнем слое, как правило, доминирует термофильные нитчатые АФБ (Castenholz, 1984; Ramsing et al., 2000; Nubel et al., 2002). Благодаря различающемуся составу пигментов, поглощающих свет разных длин волн, слои не затеняют друг друга, и фотосинтез может происходить до глубины 3-4 мм. Под матом расположена зона деструкции, с доминированием сульфатредукторов или метаногенов. В микробном мате источника Октопус спринг значительной численности достигает термофильная цианобактерия Synechococcus lividus (до 1010 кл/мл), бродильщик Thermobacteroides acetoethylicus (до 107 кл/мл) и метаноген Methanobacterium thermoautotrophicum (до 107 кл/мл). Меньшей численности достигают бродильщики Clostridium thermohydrosulphuricum и C. thermosulfurogenes (до 103 кл/мл) (Bauld, Brock, 1974; Wiegel et al., 1979; Zeikus et al., 1980; Ben-Bassat, Zeikus, 1981; Schink, Zeikus, 1983; Ward et al., 1998). Также из микробного мата были выделены АФБ Chloroflexus aurantiacus, Heliotrix oregonensis, Roseiflexis castenholzii и Heliobacterium modesticaldum, аэробные хемоорганототрофные бактерии Thermomicrobium roseum, Isosphaera pallida, Thermus aquaticus, Meiothermus ruber, бродильщики Thermoanaerobacter brockii, Th. ethanolicus, Thermoanaerobacterium thermosulfurigenes, Moorella thermoautotrophica, сульфатредуцирующая бактерия Thermodesulfotobacterium commune (Ward et al., 1998). Анализ выделенной из природных образцов нативной ДНК с помощью 16S рРНК-ориентированных праймеров и зондов разной степени специфичности показал, что наибольшее число последовательностей принадлежит цианобактерии Synechococcus lividus (около 30%), также в мате обнаружены последовательности принадлежащие цианобактериям Oscillatoria amphigranulata, Pseudoanabaena galeata. Значительное количество последовательностей принадлежит к некультивируемым видам. Интересно, что генетические методы показали большее разнообразие популяций Synechococcus и Chloroflexus чем считалось ранее. В мате присутствует одновременно до 3-9 популяций, принадлежащих к одному роду или виду (Bateson et al., 1989; Weller et al., 1992; Ferris et al., 1996; Ward et al., 1998; Nubel et al., 2002).

Особенностью "перевернутых матов" является расположение слоя АФБ над слоем цианобактерий. Образование этого типа мата связано с способностью некоторых АФБ существовать в аэробных условиях. Heliotrix oregonensis, не обладающий хлоросомами и нуждающийся в более высокой интенсивности света чем близкородственный Chloroflexus aurantiacus, образует поверхностный слой мата над слоем цианобактерий в слабощелочных бессульфидных (Варм спрингс: рН 8.5, Т 35-56°С, сульфид - менее 1 мг/л, кислород - 6 мг/л) гидротермах Орегона (США) (Castenholz, 1984; Pierson et al., 1984). Образование "перевернутого мата" также может быть связано с большей толерантностью АФБ к сульфиду чем цианобактерий (Ward et al. 1989). В источнике Йистихвер спринг (Исландия) при температуре 58-60°С, рН около 8.5 и содержании сульфида 1.3-2 мг/л развивается микробный мат, в котором Chloroflexus sp. развивается над слоем цианобактерии Chlorogloeopsis sp. При этом Chloroflexus sp. использует сульфид содержащийся в воде источника и тем самым создает нишу для развития Chlorogloeopsis sp. чувствительной к сульфиду и осуществляющей оксигенный фотосинтез (Jorgensen et al., 1988). Аналогичный тип мата обнаружен в источнике Термофильный в кальдере Узон при температуре 60-62°С и содержании сульфида 7.7-8.5 мг/л. В нем под слоем АФБ Chloroflexus aurantiacus расположен слой с доминированием цианобактерий Phormidium sp. и Synechococcus lividus (Горленко, Бонч-Осмоловская, 1989).

"Прозрачные маты" развиваются при температурах около 45°С и отличаются от других значительной толщиной (до 5-6 см). По мнению Кастенхольца (Castenholz, 1984) его развитие возможно благодаря тому, что кальцификация, отложение кремния или резко изменяющаяся температура воды препятствовуют развитию эукариотных организмов разрушающих мат. В составе мата доминируют цианобактерии рода Phormidium, образующие большие количества прозрачного полисахаридного геля и относительно небольшое количество хлорофилла. Это позволяет свету проникать на глубину до 1.5 см и фотосинтез происходит на больших глубинах чем в матах с доминированием Synechococcus lividus (Castenholz, 1984).

Особенностью "аноксигенных матов" является отсутствие, либо незначительное количество цианобактерий в составе микробного мата. Существование подобных матов имеет эволюционное значение, так как показывает, что образование древнейших строматолитов могло быть не связанным с цианобактериями и оксигенным фотосинтезом (Ward et al., 1989). Вард с соавторами выделяют несколько типов "аноксигенных матов" в зависимости от доминирующей в составе мата АФБ (Ward et al., 1989).

1)"Мат Chloroflexus". Микробные маты с доминированием Chloroflexus aurantiacus развиваются в сульфидсодержащих гидротермах (более 1 мг/л) при температурах выше 50°С. Это источники Нью Пит Спринг (Йеллоустон) температура развития мата 52-58°С, рН 6.3, содержание сульфида 1 мг/л; Маммот спринг (Йеллоустон), температура 50-65°С, содержание сульфида 1.5-8 мг/л, рН 6.2-6.8; Бадстофухвер (Исландия) с температурой развития мата 65-70°С, рН 8.3 и содержанием сульфида 1 мг/л (Giovannoni et al., 1987; Madigan et al., 1989; Ward et al., 1989; Skirnisdottir et al., 2000). Анализ нативной ДНК с помощью 16S рРНК-ориентированных праймеров показал, что в мате развивающемся в источнике Бадстофухвер цианобактерии представлены в небольшом количестве (2 клона из 123, около 1%). 45% клонов было близко Chloroflexus aurantiacus, который, очевидно, является первичным продуцентом в этом мате. Следующими, по убыванию встречаемости клонов, были группы: Aquificales (Calderobacterium hydrogenophilum, Thermocrinis ruber), Thermus- Deinococcus (Thermus sp.), Meiothermus (Meiothermus ruber), Nitrospira (Thermodesulfovibrio sp.), Thermotogales (Fervidobacterium gondwanalandicum), Stigonematales (Chlorogloeopsis sp.), Proteobacteria (Craurococcus roseus, Thiobacillus hydrothermalis). 4 выделенных клона не могли быть отнесены к каким-либо известным группам (Skirnisdottir et al., 2000).

"Мат Chromatium". Мат с доминированием Chromatium tepidum развивается при более низких температурах и обнаружен в источнике Роландс велл (Йеллоустон), температура развития мата 52-55°С, рН 6.3, содержание сульфида 1.3 мг/л (Madigan et al., 1989; Ward et al., 1989).

"Мат Chlorobium". Мат с доминированием Chlorobium tepidum обнаружен в источнике Травелодж стрим (Новая Зеландия), температура 42-56°С, рН 5.3-7.1, содержание сульфида 9-27 мг/л (Ward et al., 1989; Castenholz et al., 1990).

Доминирование в составе микробного мата в одних случаях аноксигенных, а в других случаях оксигенных фототрофных бактерий Кастенхольц связывает с различным содержанием сульфида в воде гидротерм. По его мнению, содержание сульфида выше 0.96-1.92 мг/л при рН 6-10 и температуре выше 55°С полностью исключает развитие цианобактерий и создает условия для доминирования АФБ (Castenholz, 1984). Тем не менее, эта гипотеза не объясняет, почему в источниках с высоким содержанием сульфида и высокой температурой (Термофильный и Ийстихвер спринг) цианобактерии развиваются в большом количестве под слоем АФБ и чисто "аноксигенного" мата не возникает.

В термофильных хемотрофных сообществах первичными продуцентами являются хемолитоавтотрофные микроорганизмы циклов серы и железа (Бонч-Осмоловская, Заварзин, 1989; Jannasch, Mottl, 1985; Moyer et al., 1995; Kashefi et al., 2002). При температуре 65-93°С, рН от 6.7 до 8.3, содержании сульфида свыше 1 мг/л развивается микробное сообщество с доминированием микроаэрофильных хемолитотрофных микроорганизмов, часто образующих космы белого цвета с выпадением глобул элементной серы на поверхности. Анализ нативной ДНК с помощью 16S рРНК-ориентированных праймеров показал, что в исследованных гидротермах 27-74% последовательностей принадлежит представителям группы Aquifex-Hydrogenobacter, способных к аэробному хемолитотрофному росту используя водород и соединения серы в качестве доноров электронов. Второй по значимости группой являются представители Proteobacteria. В меньших количествах представлены последовательности принадлежащие Thermodesulfobacterium, Thermodesulfovibrio, Thermus, Thermotogales, зеленым несерным бактериям. До 30% эубактериальных последовательностей принадлежит неизвестным группам организмов. Из представителей археобактерий были обнаружены последовательности близкие к представителям родов Pyrobaculum, Pyrodictium, Thermophilum, Archaeoglobus, Desulfurococcus и последовательности принадлежащие к группе Korarchaeota (до 77% клонов археобактерий) (Barns et al., 1994; Barns et al., 1996; Blank et al., 2002; Huber et al., 1998; Hugenholtz et al., 1998; Skirnisdottir, 2000; Reysenbach et al. 1994; Yamamoto et al., 1998; Reysenbach et al., 2000а).

О сообществе "Thermothrix" известно немного. Было показано, что в гидротермах с температурой 65-85°С, рН около 7 и содержанием сульфида свыше 1 мг/л развивается сообщество основанное на жизнедеятельности Thermothrix thiopara или Thermotrix azorensis Эти бактерии, относящиеся к fi-Proteobacteria, окисляют глубинный сероводород до элементной серы, которая откладывается на поверхности бактериальных обрастаний, приобретающих вид белых "косм" (Бонч-Осмоловская и др., 1987; Бонч-Осмоловская, Заварзин, 1989; Caldwell et al., 1976; Odintsova et al., 1996). Обращает на себя внимание то, что физико-химические факторы среды, при которых развивается сообщество "Thermothrix", совпадают с условиями развития сообществ с доминированием представителей группы Aquifex-Hydrogenobacter. Не ясно, какие именно факторы среды способствуют развитию того или иного типа сообществ.

В субаквальных гидротермах рН флюида, как правило, не превышает 4.5 (Von Damm, 1995). Тем не менее, при смешении с морскими водами возникает резкий градиент физико-химических условий. рН изменяется от 3-5 до 6-7 и температура от 300°N (в наиболее высокотемпературных глубоководных гидротермах) до 4-20°С. Поэтому в гидротермальных системах создаваются условия для развития нейтрофильных термофильных микроорганизмов (Sievert et al., 1999; Takai et al., 2001). Литотрофные термофильные микроорганизмы полученные в настоящее время в чистых культурах включают метаногены, сульфат-, тиосульфат-, сероредукторы и денитрификаторы, а также факультативные анаэробы. Наибольшим количеством видов представлены метаногены, представители родов Methanococcus и Methanopyrus. Сульфатредуцирующие археи представлены родом Archaeoglobus. Органотрофные термофильные бактерии представлены родами Thermococcus, Pyrococcus, Staphylothermus, Hyperthermus, Pyrodictium (Бонч-Осмоловская, 2002). Анализы нативной ДНК с помощью 16S рРНК-ориентированных праймеров показали, что в субаквальных гидротермах присутствуют представители филогенетических групп эубактерий: e-Proteobacteria, в-Proteobacteria, Desulfurobacterium, Aquificales. Археи представлены: Archaeoglobales, Thermococcales, Thermopasmales (Reysenbach et al., 2000б; Takai et al., 2001). В функционировании хемотрофных микробных сообществ важную роль играет окисление восстановленных соединений серы поступающих с флюидом на границе с кислород содержащими океаническими водами (Jannasch, Mottl, 1985; Karl et al., 1980). Большое количество окислов железа, вероятно бактериального происхождения, в районах субаквальных гидротерм может свидетельствовать о высокой роли окисления железа в функционировании сообщества (Намсараев и др., 1991; Горшков и др., 1992; Juniper et al., 1988; Puteanus et al., 1991; Duhig et al., 1992; Stoffers et al., 1993; Bogdanov et al,. 1997; Iizasa et al,. 1998; Little et al., 1999; Trewin, Knoll, 1999; Preat et al., 2000; Emerson, Moyer, 2002). Также заметную роль может играть окисление метана (Гальченко, 2002; Teske et al., 2002).

1.3 Активности продукционных и терминальных деструкционных процессов в фототрофных и хемотрофных микробных сообществах гидротерм

1.3.1 Микробные сообщества щелочных гидротерм

Определение интенсивностей продукционных и терминальных деструкционных процессов в фототрофных микробных сообществах щелочных гидротерм ранее не проводилось.

Хемотрофные микробные обрастания были исследованы в источнике Боулдер спринг (Йеллоустон) с температурой 90-93°С, рН 8.9 и содержанием сульфида 3 мг/л. Было обнаружено, что добавление раствора сульфида натрия (13 мг/л сульфида) в пробу значительно стимулировало потребление 14С-ацетата. Стимулирующий эффект также оказывали сульфиды алюминия, кальция и сурьмы, легко гидролизующиеся в растворе. Слаборастворимые сульфиды не оказывали стимулирующего эффекта (сульфиды цинка, меди, свинца и т. д.). Тиосульфат и элементная сера не стимулировали потребление ацетата, сульфит и метабисульфит стимулировали (Brock et al., 1971).

В пробах ила на подводных термальных выходах в слабоминерализованном щелочном озере Танганьика (Восточно-Африканский рифт, рН (озеро) 8.5-9.2, рН (гидротермальные воды) 7.7-8.8, глубина термальных выходов от 0 до 6 м, температура на изливе 66-103°С) была измерена интенсивность сульфатредукции в зависимости от рН. Было обнаружено, что оптимум процесса находится при рН 7, процесс полностью ингибируется при рН 8.8-9.2 (Elsgaard et al., 1994).

В пробах из гейзера Удачный (долина Гейзеров, Камчатка) с рН 8.5, азотного типа (72.2% в газовом составе), была определена скорость темновой продукция при 60 и 85°С (до 107.07 мкгС/л сут). Также было показано наличие слабого процесса метаногенеза при 70°С (0.072 мкгС/л сут) и активное образование ацетата из СО2, снижающееся с повышением температуры (до 25.41 мкгС/л сут) (Бонч-Осмоловская и др., 1999).

1.3.2 Микробные сообщества нейтральных гидротерм

Продукционные процессы в цианобактериальных матах. Значения продуктивности цианобактериальных матов нейтральных гидротерм близки к значениям продуктивности других высокопродуктивных экосистем. Содержание хлорофилла а может достигать 700-800 мг/м2, что сравнимо с аналогичными данными полученными для микробных матов соленых озер и гиперсоленых лагун (до 551 мг хл а/м2, до 75.4 мг бхл а/м2) и несколько уступает значениям полученных в матах мелководных нейтральных гидротерм бухты Кратерной с температурой до 34°C (до 1.6 г хл а/м2, до 1 г бхл а/м2) (Brock, 1967б; Castenholz, 1969; Bauld, 1984; Gerdes et al, 1985; Tarasov et al., 1990).

Максимальная фотосинтетическая продукция может достигать нескольких грамм углерода на метр в сутки. Например, 2.3 гС/м2 сут в "зеленом" мате источника Термофильный (Камчатка), 4.32-5.4 гС/м2 сут в источнике Октопус спринг (Йеллоустон) (Горленко, Бонч-Осмоловская, 1989; Revsbech, Ward, 1984; Ferris et al., 1997), что сравнимо с значениями полученными в матах бухты Кратерной (до 3.7 гС/м2 сут), и несколько уступает значениям фотосинтетической продукции в микробных матах гиперсоленого озера Солар лейк (до 12 гС/м2 сут), гиперсоленых лагун Шарк бей и Спенсер Галф (до 6.13 гС/м2 сут) (Jorgensen, Cohen, 1977; Guerero, Mas, 1989; Skyring et al.,1989; Tarasov et al., 1990).

Максимальная темновая продукция в цианобактериальных матах нейтрального источника Термофильный достигает 0.29 гС/м2 сут, что значительно уступает темновой продукции в матах бухты Кратерной (до 29.7 гС/м2 сут) (Tarasov et al., 1990).

Максимальная фотосинтетическая продукция отмечена при температурах 55-45°С (Горленко, Бонч-Осмоловская, 1989; Doemel, Brock, 1977; Castenholz, 1984; Revsbech, Ward, 1984). Максимальная скорость роста мата, определенная внесением в качестве маркера биологически инертного силиката карбида, также отмечена при температурах около 50°С и составляет 18-45 мкм/сут (Doemel, Brock, 1977). Необходимо учитывать, что эта скорость может отражать сукцессионную фазу после нарушения целостности микробного мата и может не соответствовать скорости роста ненарушенного мата (Nold et al., 1996).

Наибольшая активность продукционных процессов в микробном мате отмечена в верхнем слое до глубины 2 мм, что в большинстве случаев соответствует максимальной глубине проникновения солнечного света (Bauld, Brock, 1973; Castenholz, 1984; Pierson et al., 2000). Исключение составляет мат, развивающийся в источнике Йистихвер (Исландия), где оксигенный фотосинтез отмечен на глубине до 14 мм (Jorgensen, Nelson, 1988). Глубина проникновения света определяется содержанием пигментов в верхнем слое мата в связи с затенением нижних слоев и нехваткой света для фотосинтеза (Brock, Brock, 1969; Bauld, Brock, 1973). Максимальное содержание белка также отмечено в верхних 2 мм мата (Doemel, Brock, 1977). При удалении верхнего слоя скорость оксигенного фотосинтеза уменьшается более чем в 10 раз (Ferris et al., 1997). В течение дня, в ходе оксигенного фотосинтеза, происходит подщелачивание поверхностного слоя цианобактериального мата. В микробном мате источника Хантерс спринг (Орегон, США) рН в поверхностном слое повышается до 9, тогда как в нижних слоях мата в ходе деструкционных процессов происходит подкисление до 6.3 (Revsbech, Ward, 1984). Интересно, что в "аноксигенных матах" подщелачивание поверхностного слоя не наблюдается, значения рН с глубиной практически не изменяются (Giovannoni et al., 1987; Castenholz et al., 1990).

Соотношение оксигенного и аноксигенного фотосинтеза может колебаться в широких пределах. На примере микробных матов источника Термофильного было показано, что доля аноксигенного фотосинтеза уменьшается с понижением температуры от 76-40% при 62-56°С до 1-10% при температурах ниже 50°С. Доля оксигенного фотосинтеза, соответственно, возрастает (Горленко, Бонч-Осмоловская, 1989).

Соотношение аноксигенного и оксигенного фотосинтеза также зависит и от времени суток. Так, на примере цианобактериального мата с доминированием Synechococcus lividus (55-50еС) развивающегося в источнике Октопус спринг, было показано, что в течение дня фотосинтетическая фиксация углекислоты осуществляется Synechococcus lividus (Doemel, Brock, 1977). Тем не менее, присутствующий в мате Chloroflexus aurantiacus способен к фотоавтотрофному росту на сульфиде, хотя условия для этого создаются только в течение ограниченного периода времени утром, когда свет уже проникает в мат, а содержание сульфида все еще довольно высоко (Madigan, Brock, 1975; Revsbech, Ward, 1984).

В мате цианобактерии осуществляют оксигенный фотосинтез с высокой скоростью, но скорость деления клеток не высока в обычных условиях (Nold et al., 1996). Основным продуктом фотосинтеза цианобактерий в микробном мате являются полисахариды (67-84% меченого углерода обнаруживается в составе полисахаридной фракции) расходуемые цианобактериями в ходе темновых реакций (Konopka, 1992; Nold et al., 1996; Ferris et al., 1997). Также, значительная часть фотосинтетически фиксированного углерода выделяется клетками наружу. По разным оценкам доля внеклеточной продукции составляет от 12 до 46% (Горленко, Бонч-Осмоловская, 1989; Bauld, Brock, 1974). Среди выделяемых цианобактериями соединений доминирует гликолят (до 60% от внеклеточной продукции). Далее гликолят быстро поглощается Chloroflexus aurantiacus (Ward et al., 1984).

Внесение закисного железа (1 мМ) стимулирует оксигенный фотосинтез (до 500%) и темновую фиксацию (до 175%), но не стимулирует аноксигенный фотосинтез, как было показано на примере железистого источника Чоколейт пот (Йеллоустон, 54°C, рН 6, Fe(II) 5.1 мг/л). Интересно, что стимулирование фиксации 14С-бикарбоната выше в пробах мата из более высокотемпературных зон с доминированием Synechococcus sp., чем в зонах с умеренной температурой и доминированием Oscillatoria sp. (Pierson et al., 1999; Pierson et al., 2000).

Деструкционные процессы в цианобактериальных матах. Биомасса цианобактериальных матов намного меньше, чем биомасса других экосистем, хотя значения продуктивности близки. Поэтому скорость деструкционных процессов в цианобактериальных матах должна быть очень велика (Guerrero, Mas, 1989). Измерение процесса деструкции с помощью силиката карбида показало, что деструкция проходит в 2 этапа. Первый протекает в течение 2-4 недель, в течение которого, вероятно, разрушаются легко разрушаемые вещества. Второй этап протекает в течение года, на этой стадии, вероятно, разрушаются трудно разрушаемые вещества (Doemel, Brock, 1977).

Популяция Chloroflexus aurantiacus является наиболее многочисленной в микробном мате среди организмов осуществляющим аеробную деструкцию органического вещества. Эта способность скорее всего проявляется в ходе ночной миграции на поверхность микробного мата. Также в процессе аэробной деструкции участвуют Isosphaera pallida, представители родов Thermus и Meiothermus, протеобактерии, грамположительные бактерии (Santegoeds et al., 1996).

В течение суток в микробном мате происходят значительные колебания содержания кислорода и темновое сбраживание полиглюкозы цианобактериями рассматривается как важный механизм обеспечивающий поток углерода через сообщество (Richardson, Castenholz, 1987). В темновых анаэробных условиях Synechococcus lividus переключается на ферментативный метаболизм, что подтверждается уменьшением содержания меченой полиглюкозы и увеличением содержания меченых продуктов брожения (Nold et al., 1996). Ацетат и пропионат являются основными продуктами брожения (ацетат в соотношении 3:1 к пропионату, остальные кислоты в незначительных концентрациях) накапливающимися в мате ночью, при этом в образовании ацетата участвуют как цианобактерии, так и ацетогены (Anderson et al., 1987; Nold et al., 1996). При этом накопление ацетата происходит в верхних 3-4 мм мата (Ward et al., 1984). В дальнейшем ацетат и другие продукты брожения на свету поглощается Chloroflexus aurantiacus (Anderson et al., 1987). В основном ацетат включался в состав клеточного материала, только небольшая часть использовалась для образования СО2 (Sandbeck, Ward, 1982).


Подобные документы

  • Выявление видового состава, структурных особенностей сообществ герпетобионтных жесткокрылых прибрежных экосистем рек Сож и Березины. Изучение фауны жесткокрылых прибрежных экосистем Гомельской области. Отряд жесткокрылых как объект биоиндикации.

    курсовая работа [439,1 K], добавлен 10.11.2016

  • Значение воды в жизнедеятельности клетки. Виды микроорганизмов, состав питательной среды, характер обмена и условия существования во внешней среде. Практическое использование микробных ферментов. Питание, дыхание, рост и размножение микроорганизмов.

    лекция [603,0 K], добавлен 13.11.2014

  • Изучение мышевидных грызунов, обитающих на территории Гомельского района Республики Беларусь. Изучение видового состава, особенностей распределения и видовой структуры сообществ микромаммалий лесных станций и сопутствующих биотопов Гомельского района.

    курсовая работа [1,7 M], добавлен 28.11.2017

  • Выявление и уточнение видового состава долгоносиков-хортобионтов, обитающих на участках с разной степенью антропогенной нагрузки. Анализ таксономической структуры долгоносиков исследованных территорий. Составление электронной базы данных особей.

    курсовая работа [3,1 M], добавлен 17.06.2016

  • Растительные и животные жиры как основные источники липидов для человека. Технологический процесс получения микробных липидов. Использование микробиологического способа производства липидов. Применение микробных липидов в пищевых производствах.

    реферат [137,7 K], добавлен 18.06.2013

  • Метод светорассеяния в изучении микробных популяций, использование установки для регистрации светорассеяния. Анализ зависимости светорассеяния популяций Staphilococcus aureus и Esherichia coli в питательном бульоне с добавками и физиологическом растворе.

    лабораторная работа [38,5 K], добавлен 02.08.2013

  • Факторы, влияющие на формирование микробных ценозов почв различных типов. Использование метода питательных пластин (Коха) и метода обрастания комочков для определения микроорганизмов в дрново-подзолистых почвах, проведение микробиологического анализа.

    курсовая работа [1,3 M], добавлен 25.12.2014

  • Обследование биотопов Днепровского бассейна. Характеристика естественных водоемов Беларуси. Изучение видового состава ихтиофауны Лоевского района. Расчет индексов биологического разнообразия. Поиск путей воспроизводства ценных промысловых видов рыб.

    курсовая работа [7,0 M], добавлен 28.07.2017

  • Инвентаризация флоры луговых сообществ флористического округа Тургая Республики Казахстан. Природные условия района исследования. Характеристика и анализ видового состава луговой растительности Тургая, ее классификация с учетом распространения в долине.

    дипломная работа [2,3 M], добавлен 06.06.2015

  • Общая характеристика, строение, питание и размножение сине-зеленых водорослей. Основные типы спор у низших и высших грибов. Семейства покрытосеменных растений, распространенных в умеренных широтах, их роль в сложении различных растительных сообществ.

    курсовая работа [11,1 M], добавлен 27.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.