Кинетика ферментативных реакций

Природа константы К в уравнении. Преобразование уравнения Михаэлиса-Ментен. Влияние концентрации субстрата на кинетику реакции, образование устойчивого комплекса. Факторы, от которых зависит скорость ферментативной реакции, устройства для их определения.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 23.02.2012
Размер файла 278,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В случае бесконкурентного ингибирования комплекс, содержащий ингибитор, неактивен:

vi / V = [ES] / [E]

[E]T = [E] + [ES] + [ESI]

1 / vi = Ks / V[S] + (1 / V) (1 + [I] / KI) [2]

Субстратное ингибирование

Субстратным ингибированием называется торможение ферментативной реакции, вызванное избытком субстрата. Такое ингибирование происходит вследствие образования фермент-субстратного комплекса, не способного подвергаться каталитическим превращениям, Комплекс ES2 непродуктивный и делает молекулу фермента неактивной. Субстратное торможение вызвано избытком субстрата, поэтому снимается при снижении его концентрации. [6]

Аллостерическое ингибирование

Аллостерическая регуляция характерна только для особой группы ферментов с четвертичной структурой, имеющих регуляторные центры для связывания аллостерических эффекторов. Отрицательные эффекторы, которые тормозят превращение субстрата в активном центре фермента, выступают в роли аллостерических ингибиторов. Положительные аллостерические эффекторы, напротив, ускоряют ферментативную реакцию, и поэтому их относят к аллостерическим активаторам. Аллостерическими эффекторами ферментов наиболее часто выступают различные метаболиты, а также гормоны, ионы металлов, коферменты. В редких случаях роль аллостерического эффектора ферментов выполняют молекулы субстрата.

Механизм действия аллостерических ингибиторов на фермент заключается в изменении конформации активного центра. Снижение скорости ферментативной реакции является либо следствием увеличения Km, либо результатом снижения максимальной скорости Vmax при тех же насыщающих концентрациях субстрата, т.е. фермент частично работает вхолостую.

Аллостерические ферменты отличаются от прочих ферментов особой S-образной кривой зависимости скорости реакции от концентрации субстрата. Эта кривая сходна с кривой насыщения гемоглобина кислородом, она свидетельствует о том, что активные центры субъединиц функционируют не автономно, а кооперативно, т.е. сродство каждого следующего активного центра к субстрату определяется степенью насыщения предыдущих центров. Согласованную работу центров обусловливают аллостерические эффекторы. [1]

Аллостерическая регуляция проявляется в виде ингибирования конечным продуктом первого фермента цепи. Строение конечного продукта после серии превращении исходного вещества (субстрата) не похоже на субстрат, поэтому конечный продукт может действовать на начальный фермент цепи только как аллостерический ингибитор (эффектор). Внешне такая регуляция сходна с регуляцией по механизму обратной связи и позволяет контролировать выход конечного продукта, в случае накопления которого прекращается работа первого фермента цепи. Например, аспартат-карбамоилтрансфераза (АКТаза) катализирует первую из шести реакций синтеза цитидинтрифосфата (ЦТФ). ЦТФ - аллостерический ингибитор АКТазы. Поэтому, когда накапливается ЦТФ, происходит торможение АКТазы и прекращается дальнейший синтез ЦТФ. Обнаружена аллостерическая регуляция ферментов с помощью гормонов. Например, эстрогены являются аллостерическим ингибитором фермента глутаматдегидрогеназы, катализирующего дезаминирование глутаминовой кислоты. [6]

Таким образом, даже простейшее кинетическое уравнение ферментативной реакции содержит несколько кинетических параметров, каждый из которых зависит от температуры и среды, в которой протекает реакция.

Ингибиторы позволяют понять не только суть ферментативного катализа, но и являются своеобразным инструментом для исследования роли отдельных химических реакций, которые с помощью ингибитора данного фермента можно специфически выключать.

3. Некоторые устройства, удобные для определения начальных скоростей реакции

К определению начальных скоростей реакций (v0) приводят многие задачи ферментативной кинетики. Основное достоинство этого метода в том, что определяемые в начальный момент времени значения v0 будут давать наиболее точные представления об активности изучаемых ферментов, поскольку накапливающиеся продукты реакции не успевают еще оказывать ингибирующего влияния на фермент и, кроме того, реагирующая система находится в состоянии стационарного равновесия.

В лабораторной практике, однако, при использовании обычной спектрофотометрической, титриметрической или другой техники регистрации протекания таких реакций теряется в лучшем случае до 15-20 с начального времени на внесение фермента к субстрату, перемешивание реагирующей системы, установку ячейки и т.п. А это недопустимо, так как касательная в этом случае приводится уже в точку, где tg Ь2 < tg Ь1. Не компенсируется потеря начального времени и при математической обработке таких кривых при записи выхода v0 на максимальный уровень (V). Кроме того, протекание реакций без постоянного перемешивания осложняется еще и флуктуациями концентраций реагентов по объему.

Предлагаемые ниже простые устройства к спектрофотометру, рН-метру и тому подобному позволяют в значительной мере снизить источники указанных погрешностей определения v0. [1]

3.1 Устройство к спектрофотометру

Устройство к спектрофотометр состоит из дозатора 1, вращающейся тефлоновой нити 2 (мешалка) и крышки-фиксатора 3.

Дозатор - это микропипетка, один конец которой оформляется иглой 4, второй - уширением 5 (для предотвращения попадания фермента в резиновый наконечник 6).

В тефлоновой крышке 3, закрывающей спектральную кювету 7, имеются два отверстия: одно (8) в центре крышки, второе (9) над серединой промежутка между непрозрачной стенкой кюветы 7 и лучом света 10. Тефлоновая трубка 11 (внутренний диаметр 1 -1,5 мм) одним концом закрепляется в отверстии 9, вторым - на неподвижном выступе 12 перед ротором мотора 13. Внутрь трубки вводится тефлоновая нить 2 (толщина нити 0,5-0,6 мм). Один конец нити укрепляется на вращающемся роторе мотора 13, второй - пропущенный в кювету 7 - оформляется в виде спирали (для усиления перемешивания). Положение нити определяет крышка-фиксатор 3 вне зависимости от удаления мотора, что удобно при работе, требующей частой смены кювет.

Принцип работы. Кварцевая кювета спектрофотометра 7 наполняется субстратом 14 (около 1,5-2,0 мл), вставляется в термостатический кюветодержатель спектрофотометра, закрывается крышкой 3 с вращающейся тефлоновой нитью 2, которая погружается в субстрат 14, и все дальнейшие операции выполняются уже в луче света спектрофотометра и регистрируются на самописце.

В начале работы осуществляется перемешивание субстрата, и перо самописца пишет ровную горизонтальную (или «нулевую») линию. Дозатор (с ферментом) вставляется в отверстие 8 (игла погружается в раствор субстрата 14), быстрым сдавливанием наконечника 6 фермент (обычно около 0,03-0,05 мл) вводится в субстрат, и дозатор удаляется. Перемешивание компонентов заканчивается за 2,5-3 с, и перо самописца фиксирует начало реакции отклонением кривой зависимости оптической плотности (ДА) от времени.

Такое приспособление позволяет также отбирать пробы из реагирующей системы на анализ; вносить в систему добавки ингибиторов и активаторов; изменять условия протекания реакций (изменять рН, ионную силу и т.п.) без нарушения регистрации хода реакций, что оказывается очень удобным, например, при исследовании расщепления n-НФФ «кислыми» фосфатазами, где расщепление n-НФФ проводят при рН 5,0 (или рН 6-7), а активность ферментов определяют по накоплению n-нитрофенолят ионов при рН 9,5-10,0. [4]

Удобно такое устройство и для проведения спектрофотометрического титрования ферментов и т.п.

3.2 Устройство к рН-метру

Устройство к рН-метру состоит из модифицированного наконечника проточного электрода 1, полумикроячейки 2, дозатора 3 и электронной схемы подключения рН-метра к самописцу. Кроме того, устройство включает стандартный электрод рН-метра (4), крышку-держатель ячейки (5), термостатическую проточную камеру (6), раствор субстрата (7), пассивный магнит (8), активный магнит (9).

Стандартный наконечник проточного электрода рН-метра (ЛПУ-01) заменяется тефлоновой трубкой 1 (внутренний диаметр 1,3-1,5 мм), заполняется асбестовой нитью, предварительно обработанной насыщенным раствором KCl. Плотность заполнения нити регулируется таким образом, чтобы скорость протока раствора KCl через трубку была близкой к скорости протока исходного немодифицированного электрода. Такая замена наконечника дает возможность снизить размеры исходной рабочей ячейки с 20-25 до 2 мл, что позволяет обходиться минимальными объемами (1,5 мл) растворов дорогостоящих биохимических препаратов. [4]

Электронная схема подключения рН-метра (ЛПУ-01) к самописцу состоит из источника питания (батареи постоянного тока 12 В), переменного проволочного сопротивления R1 (10 - 100 Ом), задающего по показанию вольтметра напряжение 9 В на стабилотроне Д809, переменного проволочного сопротивления R2 (15-150 Ом), регулирующего установку «нуля» (начала отсчета) показаний рН-метра на шкале самописца, и переменного проволочного сопротивления R3 (35-500 Ом), регулирующего масштаб расширения (усиления) показаний шкалы рН-метра на самописце. Схема работает надежно до падения напряжения источника не ниже 9 В.

Принцип работы. В ячейку (стеклянный цилиндр 1,7х2,4 см) вносится 1,5 мл субстрата, и ячейка закрепляется на крышке-фиксаторе 5. Включается перемешивание 9, и перо самописца пишет ровную (базисную) линию отсчета. При помощи дозатора 0,03 мл раствора фермента вносится в субстрат, и перо самописца фиксирует начало реакции отклонением кривой зависимости рН от времени (t).

Такое устройство не заменяет рН-стата, но с учетом возможности расширения шкалы рН-метра позволяет надежно фиксировать незначительные изменения рН 0,004-0,005.

3.3 Номограммные линейки, удобные для определения начальной скорости

Значительную трудоёмкость определений начальной скорости в методе касательных составляет подсчёт отношений изменения концентраций реагентов (Д[S]) за единицу времени (Дt), т.е. выражение v0 в М/мин из условий, что

v0 = lim Д[S] / Дt, при, t 0.

На практике такая процедура складывается обычно из трех-четырех отдельных операций: проводят касательную к начальному участку кривой хода реакции, затем подсчитывают число единиц регистрируемой величины (оптическая плотность, угол вращения и т.п.), приходящихся на определенный интервал времени, приводят это к единице времени и, наконец, делают пересчет показаний самописца на изменение концентраций реагента за 1 мин (М/мин). Предлагаемые два типа номограммной линейки позволяют упростить эту процедуру.

Прямоугольная линейка. v0 есть отношение Д[S]/Дt, т.е. tg Ь, где Ь - угол наклона касательной к оси времени t. Эта же касательная является и гипотенузой соответствующего прямоугольного треугольника с катетами [S] иt. Чем больше v0, тем круче наклон касательной. Следовательно, если мы ограничимся определенным интервалом времени, например 1 мин, то получим серию прямоугольных треугольников с разной величиной катета [S] (в действительности разной величиной v0). Если же проградуировать оба катета: горизонтальный - в единицах отсчета времени (1 мин), а вертикальный- в единицах изменения концентраций реагента, например в миллимолях (мМ), и нанести полученные отрезки на подходящий формат из прозрачного материала (оргстекло толщиной около 2 мм), то можно получить удобную линейку для определения начальных скоростей реакций. Все цифры и линии наносятся на обратной стороне линейки, чтобы исключить погрешности на параллакс при определениях v0.

Процедура определения v0 сокращается в этом случае до двух простых операций: к начальному участку кинетической кривой t проводят касательную 2 и совмещают нулевую точку горизонтального катета t линейки с началом касательной, продолжение касательной пересечет теперь шкалу концентраций [S] в точке, определяющей значение v0 в М/мин (при горизонтальном положении катета t на. Никаких дополнительных операций больше не требуется. [4]

Дуговая линейка. Процедуру определения v0 можно упростить до одной операции, если шкалу концентраций отложить по дуге определенного радиуса.

На пластинку из прозрачного материала наносят прямую («базисную») линию 2 (все цифры и линии также наносят на обратной стороне линейки) и из нулевой точки (t=0, мин) этой линии радиусом, равным длине катета t=1 мин [, проводят дугу [S], сверху вниз по которой откладывают шкалу изменения концентраций реагента (например, субстрата в мМ).

Процедура определения v0 сводится в этом случае к одной операции. На кинетическую кривую 1 накладывают линейку так, чтобы ее «базисная» линия 2 к начальному участку кривой 1, а нулевая точка (0) этой базисной линии находилась на одной из горизонтальных линий 3 бумаги самописца. Продолжение этой горизонтальной линии в таком случае пересечет шкалу концентраций расщепляемого субстрата (дуга [S]) в точке, определяющей значение v0 в М/мин. Никаких дополнительных операций и в данном случае больше не требуется. [4]

Описанные типы линеек, устройство к спектрофотометру и рН-метру в течение ряда лет используются для определения начальных скоростей реакций (v0), при исследовании субстратной специфичности ферментов, для спектрофотометрического титрования и т.п.

Заключение

В данной работе был рассмотрен раздел энзимологии, изучающий зависимость скорости химических реакций, катализируемых ферментами, от ряда факторов окружающей среды. Основоположниками данной науки по праву считаются Михаэлис и Ментен, к оторые опубликовали свою теорию общего механизма ферментативных реакций, вывели уравнение, ставшее фундаментальным принципом всех кинетических исследований ферментов, оно служит отправной точкой при любом количественном описании действия ферментов. Исходное уравнение Михаэлиса - Ментен является уравнением гиперболы; свой вклад в кинетику внесли Лайнуивер и Бэрк, которые преобразовали уравнение Михаэлиса - Ментен и получили график прямой, по которой можно наиболее точно определить значение Vmax.

С течением времени изменение скорости ферментативной реакции в ферментативной реакции в экспериментальных условиях уменьшается. Снижение скорости может происходить за счёт ряда факторов: уменьшение концентрации субстрата, увеличение концентрации продукта, который может оказывать ингибирующее действие, могут происходить изменения рН раствора, изменения температуры среды. Так при повышении температуры на каждые 10°С скорость реакции увеличивается в 2 раза и даже меньше. Низкая температура обратимо инактивирует ферменты. Зависимость скорости ферментативной реакции от рН свидетельствует о состоянии функциональных групп активного центра фермента. Каждый фермент по-разному реагирует на изменение рН. Химические реакции можно останавливать путём действия на них различными видами ингибирования. Начальную скорость реакции можно быстро и точно определить при помощи таких приспособлений, как номограммные линейки, устройство к спектрофотометру и рН-метру. Это позволяет наиболее точно представить активность изучаемых ферментов.

Всё это активно используется в наши дни в медицинской практике.

Список использованных источников

1. Белясова Н.А. Биохимия и молекулярная биология. - Мн.: книжный дом, 2004. - 416 с., ил.

2. Келети Т. Основы ферментативной кинетики: Пер. с англ. - М.: Мир, 1990. -350 с., ил.

3. Кнорре Д.Г. Биологическая химия: Учеб. для хим., биол. и мед. спец. вузов. - 3-е изд., испр. - М.: Высш. шк. 2002. - 479 с.: ил.

4. Крупяненко В.И. Векторный метод представления ферментативных реакций. - М.: Наука, 1990. - 144 с.

5. Ленинджер А. Биохимия. Молекулярные основы структуры и функции клетки: Пер. с англ. - М.: Мир, 1974.

6. Строев Е.А. Биологическая химия: Учебник для фармац. ин-тов и фармац. фак. мед. ин-тов. - М.: Высшая школа, 1986. - 479 с., ил.

7. Северин Е.С. Биохимия. а. - 5-е изд. - М.: ГЭОТАР - Медиа, 2009. - 786 с., ил.

Размещено на Allbest.ru


Подобные документы

  • Кинетические исследования ферментативных реакций для определения ферментов и сравнения их скоростей. Образование из фермента и субстрата фермент-субстратного комплекса за счет сил физической природы. Факультативные организмы, автотрофы и гетеротрофы.

    контрольная работа [858,4 K], добавлен 26.07.2009

  • Методы определения аффинности антител. Способы расчета констант комплексообразования реакции антиген—антитело, ее кинетические закономерности. Сущность метода равновесного диализа. Экспериментальные методы и определения кинетических констант реакции.

    контрольная работа [744,7 K], добавлен 19.09.2009

  • Капли микроэмульсии как микрореакторы для химических реакций, растворители для органического синтеза, среды для ферментативных реакций; их применение для получения наноразмерных латексов. Поверхностно-активные вещества в реакциях мицеллярного катализа.

    реферат [783,6 K], добавлен 17.09.2009

  • Ферменты (энзимы) - органические катализаторы белковой природы. История изучения, общая характеристика строения и функций. Мультиферментные комплексы. Зависимость скорости реакции от температуры, pH, концентрации субстрата. Продукты, богатые ферментами.

    презентация [3,2 M], добавлен 09.02.2011

  • Общая характеристика и основные типы ферментов. Химические свойства ферментов и катализируемых ими реакций. Селективность и эффективность ферментов. Зависимость от температуры и от среды раствора. Активный центр фермента. Скорость ферментативных реакций.

    презентация [1,8 M], добавлен 06.10.2014

  • Классификация ферментов, их функции. Соглашения о наименовании ферментов, структура и механизм их действия. Описание кинетики односубстратных ферментативных реакций. Модели "ключ-замок", индуцированного соответствия. Модификации, кофакторы ферментов.

    презентация [294,1 K], добавлен 17.10.2012

  • Исследование строения и физико-химических свойств химических соединений, входящих в состав живых организмов, метаболизма и молекулярных механизмов его регуляции. Квалификационные требования к выпускнику-биохимику. Область профессиональной деятельности.

    учебное пособие [24,4 K], добавлен 19.07.2009

  • Классификация непрерывного культивирования микроорганизмов. Концентрации биомассы и лимитирующего рост субстрата. Критическая скорость разбавления. Хемостатный реактор с рециклом по биомассе и культуральной жидкости. Специальные цели хемостатной культуры.

    курсовая работа [334,2 K], добавлен 20.12.2012

  • Понятие и виды энергии. Основа и структура календаря. Смена дня и ночи. Законы определения теплового излучения тел. Корпускулярные свойства света. Скорость хода реакции. Смысл волновой функции. Процессы дыхания и фотосинтеза. Жизнь и эволюция звезд.

    контрольная работа [113,0 K], добавлен 18.04.2011

  • Понятие "аллергии", патогенетической значимости аллергических реакций, сходства и отличия иммунных и аллергических реакций, причины и последствия повреждений ткани при аллергических реакциях. Аллергическая реакция как разновидность иммунной реакции.

    реферат [19,1 K], добавлен 13.04.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.