Халькогены и их соединения

Зарождение химии как науки. Общая характеристика халькогенов: история открытия, физические и химические свойства, получение и применение кислорода, серы, селена, теллура, полония и их соединений. Лабораторные опыты по исследованию свойств халькогенов.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 10.09.2014
Размер файла 81,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

I. Теоретическая часть

I.1 Общая характеристика

I.2 Кислород. История открытия

I.2.1 Физические свойства и химические свойства

I.2.2 Получение и применение

I.2.3 Биологическая роль

I.3 Сера

I.4 Селен

I.5 Теллур

I.6 Полоний

II. Экспериментальная часть

Заключение

Литература

Введение

Зарождение химии.

Трудно сказать, где и когда наши далекие предки впервые стали заниматься химией. Считают, что это случилось примерно пять-шесть тысяч лет тому назад в странах с древней цивилизацией - Китае, Египте, Индии и Месопотамии (междуречье Тигра и Евфрата). Уже в то далекое время в этих странах добывали из руд металлы, готовили краски, обжигали глиняные сосуды, умели находить травы для лечения ран и болезней.
Термин "химия" появился в IV веке н.э. в греческом языке. Возможно (и к этому склоняется большинство исследователей), это слово происходит от "Кеми" - "Черная страна"; так в глубокой древности называли Египет.

В 332-331 гг. до н.э. в Египте Александром Македонским был основан город Александрия, ставший международным торговым и культурным центром Востока. Здесь существовала академия наук, Александрийский Мусейон, где "священному искусству химии" было отведено особое здание, храм Сераписа - храм жизни, смерти и исцеления. Этот храм был разрушен фанатиками-христианами в 391 г. н.э., а кочевники-арабы, завоевав Александрию в 640 г. н.э., завершили его уничтожение. Они следовали простому правилу: все представления, которых нет в Коране, ошибочны и вредны, и поэтому их надо искоренить. Притом сочинения, которые находятся в согласии с Кораном, тоже следует уничтожить как совершенно излишние.

Арабы-химики ввели в обиход понятие "алхимия". Алхимию считали искусством превращения неблагородных металлов (железе, свинца, меди) в благородные (золото и серебро) с помощью особого вещества - "философского камня". Алхимики несколько веков упорно искали способы получения чудодейственного вещества. Даже английский физик и математик Исаак Ньютон (1623-1727) значительную часть своей жизни посвятил попыткам получить "философский камень".

Алхимиком был и выдающийся английский философ, монах францисканского ордена Роджер Бэкон (1214-1292). Он проделал немало опытов в поисках способов превращения одних веществ в другие. За отказ открыть секреты получения золота (которых он не знал) Бэкон был осужден собратьями по вере и провел в церковной темнице долгие 15 лет. По велению генерала ордена сочинения монаха-естествоиспытателя в наказание были прикованы цепями к столу в монастырской библиотеке в Оксфорде.

Человечество тысячелетиями по крупицам накапливало химические знания. Первый удар по бесплодным поискам алхимиков был нанесен в XVI веке. Немецкий врач и химик Теофраст Парацельс призвал всех алхимиков заниматься синтезом лекарственных средств, а не искать то, чего в природе существовать не может. Парацельс одним из первых начал использовать в медицинской практике препараты ртути, свинца, сурьмы, меди и мышьяка.

Тем не менее в XVII веке еще не существовало привычных нам химических формул и символов элементов. В употреблении были странные значки, причем почти каждый химик пользовался своей собственной системой изображений элементов, соединений и материалов. К этому времени считалось, что в природе существует только восемь элементов-металлов (золото, серебро, железо, медь, олово, свинец, ртуть и сурьма) и два элемента-неметалла (углерод и сера), из которых состоят все остальные веществ

Халькогены

К элементам VI главной подгруппы периодической системы элементов Д.И.Менделеева относятся кислород (О), сера (S), селен (Se), теллур (Te) и полоний (Ро). Групповое название этих элементов - халькогены (термин "халькоген" происходит от греческих слов "chalkos"-медь и "genos"- рожденный), то есть "рождающие медные руды", обусловлено тем, что в природе они встречаются чаще всего в форме соединений меди (сульфидов, оксидов, селенидов и т.д.).

При переходе от кислорода к полонию размер атомов и их возможные координационные числа увеличиваются, а энергия ионизации (Еион) и электроотрицательность (ЭО) уменьшаются. По электроотрицательности (ЭО) кислород уступает лишь атому фтора, а атомы серы и селена также азоту, хлору, брому; кислород, сера и селен относятся к типичным неметаллам. В соединениях серы, селена, теллура с кислородом и галогенами реализуются степени окисления +6, +4 и +2. С большинством других элементов они образуют халькогениды, где находятся в степени окисления -2. Устойчивость соединений с высшей степенью окисления уменьшается от теллура к полонию, для которого известны соединения со степенью окисления 4+ и 2+ (например, PoC14, PoC12, PoO2).

Элементы этой подгруппы - неметаллы (кроме полония Ро) Химические свойства простых веществ сходны.

Селен Se - от слова "Селена"- Луна. Серое кристаллическое или красное порошкообразное вещество, по свойствам похож на серу: при горении образует оксид SeO2 и далее - селенистую H2SeO3 и селеновую H2SeO4 кислоты. Селен имеет значительное биологическое значение: от содержания его в сетчатке глаза зависит острота зрения. Так, у орлов селена в сетчатке в 100 раз больше, чем у человека. В больших дозах селен и его соединения ядовиты.

Техническое применение селена связано с его полупроводниковыми свойствами, поэтому он применяется в фото- и электротехнике.

Теллур Те (от латинского "теллурис" - Земля) - серебристо-белого цвета, внешне похож на металл. По химическим свойствам - аналог серы, но металлические свойства выражены у него сильнее. Теллуровая кислота H2TeO4 слабее серной. Все соединения теллура ядовиты. Чистый теллур добавляют к свинцу для улучшения его свойств.

Полоний Po - радиоактивный химический элемент, мягкий серебристо-белый металл. В химических соединениях он проявляет те же свойства, что и сера. В природе его чрезвычайно мало, получают его путем ядерного синтеза. По свойствам сходен с селеном и теллуром, а также с висмутом и свинцом. Применяется в источниках тока на космических аппаратах. [7],[4],[5],[2]

Цель: рассмотреть важнейшие физические и химические свойства халькогенов и их соединений.

Задачи:

1.Сделать обзор по истории открытия, физическим и химическим свойствам, получению и применению халькогенов и их соединений.

2.Проведения лабораторных опытов по исследованию основных свойств халькогенов и их соединений.

Объект исследования: халькогены и их соединения.

халькоген кислород сера селен

I. Теоретическая часть

I.1 Общая характеристика

Халькогенами в неорганической химии называют р-элементы VIA группы или подгруппы кислорода периодической системы Д.И. Менделеева. В неё входят пять элементов: кислород О, сера S, селен Se, теллур Te, полоний Po. Название халькогены происходит от греческих слов "chalkos"-медь и "genos"- рожденный (образующие руды).

Характерное для халькогенов строение внешнего электронного уровня и степени окисления элементов. У атомов халькогенов одинаковое строение внешнего энергетического уровня - ns2np4. Этим объясняется сходство их химических свойств. Для всех элементов (кроме полония и кислорода) характерны степени окисления (+VI), (+IV) и (-II); полоний в соединениях проявляет состояния окисления (+IV), (+II) и (-II); для кислорода типична степень окисления (-II), исключение составляют его фториды OF2 и O2F2 со степенями (+II) и (+I) соответственно и перекись водорода Н2О2, а также её производные, где она равна (-I). Такие значения степеней окисления следуют из электронного строения халькогенов:

У атома кислорода на 2р-подуровне два неспаренных электрона. Его электроны не могут разъединяться, поскольку отсутствует d-подуровень на внешнем (втором) уровне, т.е. отсутствуют свободные орбитали, хотя иногда он может выступать в качестве донора электронов и образовывать дополнительные ковалентные связи по донорно-акцептерному способу. У атомов серы и других элементов подгруппы в невозбужденном состоянии валентность и степени окисления такие же, однако, при подводе энергии (например, при нагревании), число неспаренных электронов может быть увеличено путем перевода s- и р-электронов на d-подуровень внешнего слоя. Устойчивость состояния окисления (+VI) понижается от S к Te, устойчивость состояния (+IV) повышается от S к Po, а устойчивость состояния (-II) понижается от O к Po.

Зависимость физических и химических свойств халькогенов от электронного строения. Физические и химические свойства халькогенов закономерно изменяются с увеличением порядкового номера. Появление новых электронных слоёв влечет за собою увеличение радиусов атомов, уменьшение электроотрицательности, понижение окислительной активности незаряженных атомов и усиление восстановительных свойств атомов со степенью окисления (-II), поэтому с увеличением заряда ядра неметаллические свойства ослабевают, а металлические возрастают от О к Ро. В целом все элементы подгруппы кислорода, кроме полония - неметаллы, хотя и менее активные, чем галогены. Селен и теллур, однако, известны в металлических и аморфных модификациях.

Халькогеноводороды. Водородные соединения элементов подгруппы, они также называются халькогеноводородами (хальководородами), отвечают формуле Н2R: Н2О, Н2S, Н2Se, Н2Те, Н2Ро. Их устойчивость уменьшается от О к Ро. При растворении соединений в воде образуются кислоты (формулы те же), кислотность которых увеличивается в том же порядке, что объясняется уменьшением энергии связи в ряду соединений Н2R. Вода Н2О, диссоциирующая на ионы Н+ и ОН-, является амфотерным электролитом и считается нейтральной. Халькогеноводороды проявляют соответственно большие и меньшие кислотные свойства, чем водородные соединения элементов VА группы и галогеноводороды.

Соединения халькогенов с кислородом (оксиды и гидроксиды). Сера, селен и теллур образуют одинаковые формы соединений с кислородом типа RО2 и RО3, кроме того сера встречается в формах R2О3, (RО3)2, (RО3)3 и RО4. Их гидроксидам соответствуют кислоты типа Н23 и Н24, а также в некоторых случаях Н26 и RО22О. С ростом порядкового номера элемента сила этих кислот убывает. Все они проявляют окислительные свойства, а кислоты типа Н23 еще и восстановительные. По сравнению с элементами VА группы все указанные гидроксиды более кислотные, а по сравнению с элементами VIIА группы - более основные. Полоний образует амфотерный гидроксид

Таблица 1.Свойства атомов элементов VI группы.

Элемент

Свойства

O

S

Se

Te

Po

Атомный номер

8

16

34

52

84

Число стабильных изотопов

3

4

6

8

0

Электронная
конфигурация

[He]2s22p4

[Ne]3s23p4

[Ar]3d104s24p4

[Kr]4d105s25p4

[Xe]4f145d106s26p4

Ковалентный радиус, Е

0.74

1.04

1.40

1.60

1.64

Первая энергия ионизации, Еион, кДж/моль

1313.9

999.6

940.9

869.3

812.0

Элекроотрицательность (Полинг)

3.5

2.5

2.4

2.1

2.0

Сродство атома к электрону, кДж/моль

140.98

200.41

195.0

190.2

183

Таблица 2. Физические свойства элементов VI группы.

Элемент

Плотность

Температуры, оС

Теплота атомизации, кДж/моль

Электрическое Сопротивление(25оС), Ом. см

плавления

кипения

О

1.429. 10-3

1.14(жидк.)

-218.79

-182.97

 

 

S

2.05

95.5

446

 

 

1.96

119.3

 

294.3

 

гекс.

4.819

220

685

206.7

1010

4.389

 

 

 

1.3. 105 (жидк., 400оС)

Те гекс.

гекс.

6.24

449.8

990

192

1

Ро

9.142

254

962

-

4.2. 10-5

-

9.352

-

-

-

-

[4][5] [7][6]

I.2 Кислород

Кислород (лат. Oxygenium) - химический элемент с атомным номером 8, атомная масса 15,9994. В периодической системе элементов Менделеева кислород расположен во втором периоде в группе VI A.

Атомный номер: 8

Атомная масса: 15,9994 а.е.м.

Электроотрицательность: 3,44(второе место среди неметаллов после фтора).

Температура плавления: -218,4°C

Температура кипения: -182,962°C

Теплопроводность, Вт/(моль•К): 0,0245 при 273К

Плотность: 0,001429 г/(см3)

Кем открыт: Джозеф Пристли, Карл Вильем Шееле

Цвет в тв. состоянии: Светло-голубой

Тип вещества: Неметалл

Орбитали: 1s2;2s2;2p4

Ковалентный радиус: 0,73 A

Атомный объем: 14 см3/моль

Атомный радиус: 0,65 А

Теплота парообразования: 3,4099 Кдж/моль

Природный кислород состоит из смеси трех стабильных нуклидов с массовыми числами 16 (доминирует в смеси, его в ней 99,759 % по массе), 17 (0,037%) и 18 (0,204%). Радиус нейтрального атома кислорода 0,066 нм. Конфигурация внешнего электронного слоя нейтрального невозбужденного атома кислорода 2s2р4. Энергии последовательной ионизации атома кислорода 13,61819 и 35,118 эВ, сродство к электрону 1,467 эВ. Радиус иона О2- при разных координационных числах от 0,121 нм (координационное число 2) до 0,128 нм (координационное число 8). В соединениях проявляет степень окисления -2 (валентность II) и, реже, -1 (валентность I).

В свободном виде кислород -- газ без цвета, запаха и вкуса.

Особенности строения молекулы О2: атмосферный кислород состоит из двухатомных молекул. Межатомное расстояние в молекуле О2 0,12074 нм. Молекулярный кислород (газообразный и жидкий) -- парамагнитное вещество, в каждой молекуле О2 имеется по 2 неспаренных электрона. Этот факт можно объяснить тем, что в молекуле на каждой из двух разрыхляющих орбиталей находится по одному неспаренному электрону.

Энергия диссоциации молекулы О2 на атомы довольно высока и составляет 493,57 кДж/моль.

История открытия: история открытия кислорода, как и азота, связана с продолжавшимся несколько веков изучением атмосферного воздуха. О том, что воздух по своей природе не однороден, а включает части, одна из которых поддерживает горение и дыхание, а другая -- нет, знали еще в 8 веке китайский алхимик Мао Хоа, а позднее в Европе -- Леонардо да Винчи.

В 1665 английский естествоиспытатель Р. Гук писал, что воздух состоит из газа, содержащегося в селитре, а также из неактивного газа, составляющего большую часть воздуха. О том, что воздух содержит элемент, поддерживающий жизнь, в 18 веке было известно многим химикам. Шведский аптекарь и химик Карл Шееле начал изучать состав воздуха в 1768. В течение трех лет он разлагал нагреванием селитры (KNO3, NaNO3) и другие вещества и получал «огненный воздух», поддерживающий дыхание и горение. Но результаты своих опытов Шееле обнародовал только в 1777 году в книге «Химический трактат о воздухе и огне». В 1774 английский священник и натуралист Дж. Пристли нагреванием «жженой ртути» (оксида ртути HgO) получил газ, поддерживающий горение. Будучи в Париже, Пристли, не знавший, что полученный им газ входит в состав воздуха, сообщил о своем открытии А. Лавуазье и другим ученым.

К этому времени был открыт и азот. В 1775 Лавуазье пришел к выводу, что обычный воздух состоит из двух газов -- газа, необходимого для дыхания и поддерживающего горение, и газа «противоположного характера» -- азота. Лавуазье назвал поддерживающий горение газ oxygene -- «образующий кислоты» (от греч. oxys -- кислый и gennao -- рождаю; отсюда и русское название «кислород»), так как он тогда считал, что все кислоты содержат кислород. Давно уже известно, что кислоты бывают как кислородсодержащими, так и бескислородными, но название, данное элементу Лавуазье, осталось неизменным. На протяжении почти полутора веков 1/16 часть массы атома кислорода служила единицей сравнения масс различных атомов между собой и использовалась при численной характеристике масс атомов различных элементов (так называемая кислородная шкала атомных масс).

Нахождение в природе: кислород -- самый распространенный на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов), приходится около 47,4% массы твердой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода -- 88,8% (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % (по объему), составе живых организмов-- до 65% по массе. Элемент кислород входит в состав более 1500 соединений земной коры.

I.2.1 Физические и химические свойства

В свободном виде встречается в виде двух модификаций О2 («обычный» кислород) и О3 (озон). О2 -- газ без цвета и запаха. При нормальных условиях плотность газа кислорода 1,42897 кг/м3. Температура кипения жидкого кислорода (жидкость имеет голубой цвет) равна -182,9°C. При температурах от -218,7°C до -229,4°C существует твердый кислород с кубической решеткой (-модификация), при температурах от -229,4°C до -249,3°C -- модификация с гексагональной решеткой и при температурах ниже -249,3°C -- кубическая -модификация. При повышенном давлении и низких температурах получены и другие модификации твердого кислорода.

При 20°C растворимость газа О2: 3,1 мл на 100 мл воды, 22 мл на 100 мл этанола, 23,1 мл на 100 мл ацетона. Существуют органические фторсодержащие жидкости (например, перфторбутилтетрагидрофуран), в которых растворимость кислорода значительно более высокая.

Высокая прочность химической связи между атомами в молекуле О2 приводит к тому, что при комнатной температуре газообразный кислород химически довольно малоактивен. В природе он медленно вступает в превращения при процессах гниения. Кроме того, кислород при комнатной температуре способен реагировать с гемоглобином крови (точнее с железом II гема), что обеспечивает перенос кислорода от органов дыхания к другим органам.

Со многими веществами кислород вступает во взаимодействие без нагревания, например, со щелочными и щелочноземельными металлами (образуются соответствующие оксиды типа Li2O, CaO и др., пероксиды типа Na2O2, BaO2 и др. и супероксиды типа КО2, RbO2 и др.), вызывает образование ржавчины на поверхности стальных изделий. Без нагревания кислород реагирует с белым фосфором, с некоторыми альдегидами и другими органическими веществами. 2

Химические свойства

При нагревании, даже небольшом, химическая активность кислорода резко возрастает. При поджигании он реагирует с взрывом с водородом, метаном, другими горючими газами, с большим числом простых и сложных веществ. Известно, что при нагревании в атмосфере кислорода или на воздухе многие простые и сложные вещества сгорают, причем образуются различные оксиды, например:

S+O2 = SO2;

С + O2 = СО2

4Fe + 3O2 = 2Fe2O3;

2Cu + O2 = 2CuO

4NH3 + 3O2 = 2N2 + 6H2O;

2H2S + 3O2 = 2H2O + 2SO2

Если смесь кислорода и водорода хранить в стеклянном сосуде при комнатной температуре, то экзотермическая реакция образования воды

2 + О2 = 2Н2О + 571 кДж

протекает крайне медленно; по расчету, первые капельки воды должны появиться в сосуде примерно через миллион лет. Но при внесении в сосуд со смесью этих газов платины или палладия (играющих роль катализатора), а также при поджигании реакция протекает с взрывом.

С азотом N2 кислород реагирует или при высокой температуре (около 1500-2000°C), или при пропускании через смесь азота и кислорода электрического разряда. При этих условиях обратимо образуется оксид азота (II):

N2 + O2 = 2NO

Возникший NO затем реагирует с кислородом с образованием бурого газа (диоксида азота):

2NO + О2 = 2NO2

Из неметаллов кислород напрямую ни при каких условиях не взаимодействует с галогенами, из металлов -- с благородными металлами серебром, золотом, платиной и др.

Со сложными веществами:

4FeS2 + 11O2 ? 2Fe2O3 + 8SO2

2H2S + 3O2 ? 2SO2 + 2H2O

CH4 + 2O2 ? CO2 + 2H2O

Бинарные соединения кислорода, в которых степень окисления атомов кислорода равна -2, называют оксидами (прежнее название -- окислы). Примеры оксидов: оксид углерода (IV) CO2,оксид серы (VI) SO3, оксид меди (I) Cu2O, оксид алюминия Al2O3, оксид марганца (VII) Mn2O7.

Кислород образует также соединения, в которых его степень окисления равна -1. Это -- пероксиды (старое название -- перекиси), например, пероксид водорода Н2О2, пероксид бария ВаО2, пероксид натрия Na2O2 и другие. В этих соединениях содержится пероксидная группировка -- О -- О --. С активными щелочными металлами, например, с калием, кислород может образовывать также супероксиды, например, КО2 (супероксид калия), RbO2 (супероксид рубидия). В супероксидах степень окисления кислорода -1/2. Можно отметить, что часто формулы супероксидов записывают как К2О4, Rb2O4 и т.д.

С самым активным неметаллом фтором кислород образует соединения в положительных степенях окисления. Так, в соединении O2F2 степень окисления кислорода +1, а в соединении O2F -- +2. Эти соединения принадлежат не к оксидам, а к фторидам. Фториды кислорода можно синтезировать только косвенным путем, например, действуя фтором F2 на разбавленные водные растворы КОН.

I.2.2 Получение и применение

В промышленности кислород получают за счет разделения воздуха при низких температурах. Сначала воздух сжимают компрессором, при этом воздух разогревается. Сжатому газу дают охладиться до комнатной температуры, а затем обеспечивают его свободное расширение. При расширении температура газа резко понижается. Охлажденный воздух, температура которого на несколько десятков градусов ниже температуры окружающей среды, вновь подвергают сжатию до 10-15 МПа. Затем снова отбирают выделившуюся теплоту. Через несколько циклов «сжатие--расширение» температура падает ниже температуры кипения и кислорода, и азота. Образуется жидкий воздух, который затем подвергают перегонке (дистилляции). Температура кипения кислорода (-182,9°C) более чем на 10 градусов выше, чем температура кипения азота (-195,8°C). Поэтому из жидкости азот испаряется первым, а в остатке накапливается кислород. За счет медленной (фракционной) дистилляции удается получить чистый кислород, в котором содержание примеси азота составляет менее 0,1 объемного процента.

Еще более чистый кислород можно получить при электролизе водных растворов щелочей (NaOH или KOH) или солей кислородсодержащих кислот (обычно используют раствор сульфата натрия Na2SO4).

В лаборатоных условиях для получения кислорода исползует разложением некоторых солей кислосодежащих кислот, а также оксидов и пероксидов.

Небольшие количества не очень чистого кислорода можно получить при нагревании перманганата калия KMnO4:

2KMnO4 = K2MnO4 + MnO2 + O2.

Более чистый кислород получают разложением пероксида водорода Н2О2 в присутствии каталитических количеств твердого диоксида марганца MnO2:

2О2 = 2Н2О + О2.

Кислород образуется при сильном (выше 600°C) прокаливании нитрата натрия NaNO3:

2NaNO3 =2NaNO2 + О2,

при нагревании некоторых высших оксидов:

4CrO3 = 2Cr2O3 + 3О2;

2PbO2 = 2PbO + О2;

3MnO2 = Mn3O4 + О2.

Ранее кислород получали разложением бертолетовой соли KClO3 в присутствии каталитических количеств диоксида марганца MnO2:

2KClO3 = 2KCl + 3О2.

Однако бертолетова соль образует взрывчатые смеси, поэтому ее для получения кислорода в лабораториях теперь не используют. Разумеется, сейчас никому в голову не придет использовать для получения кислорода прокаливание оксида ртути HgO, так как образующийся в этой реакции кислород загрязнен ядовитыми парами ртути.

Источником кислорода в космических кораблях, подводных лодках и т. п. замкнутых помещениях служит смесь пероксида натрия Na2O2 и супероксида калия KO2. При взаимодействии этих соединений с углекислым газом освобождается кислород:

2Na2O2 + 2CO2 = 2Na2CO3 + O2,

4КО2 + 2СО2 = 2К2СО3 + 3О2.

Если использовать смесь Na2O2 и КО2, взятых в молярном отношении 1:1, то на каждый моль поглощенного из воздуха углекислого газа будет выделяться 1 моль кислорода, так что состав воздуха не будет изменяться за счет поглощения при дыхании кислорода и выделения СО2.

Применение.

Применение кислорода очень разнообразно. Основные количества получаемого из воздуха кислорода используются в металлургии. Кислородное (а не воздушное) дутье в домнах позволяет существенно повышать скорость доменного процесса, экономить кокс и получать чугун лучшего качества. Кислородное дутье применяют в кислородных конвертерах при переделе чугуна в сталь . Чистый кислород или воздух, обогащенный кислородом, используется при получении и многих других металлов (меди, никеля, свинца и др.). Кислород используют при резке и сварке металлов. При этом применяют «баллонный» кислород. В баллоне кислород может находиться под давлением до 15 МПа. Баллоны с кислородом окрашены в голубой цвет.

Жидкий кислород -- мощный окислитель, его используют как компонент ракетного топлива. Пропитанные жидким кислородом такие легко окисляющиеся материалы, как древесные опилки, вата, угольный порошок и др. (эти смеси называют оксиликвитами), используют как взрывчатые вещества, применяемые, например, при прокладке дорог в горах.

Кислород необходим практически всем живым существам. Дыхание - это окислительно-восстановительный процесс, где кислород является окислителем. С помощью дыхания живые существа вырабатывают энергию, необходимую для поддержания жизни. К счастью, атмосфера Земли пока не испытывает заметного недостатка кислорода, но такая опасность может возникнуть в будущем.

Вне земной атмосферы человек вынужден брать с собой запас кислорода. Мы уже говорили о его применении на подводных лодках. Точно так же полученный искусственно кислород используют для дыхания в любой чуждой среде, где приходится работать людям: в авиации при полетах на больших высотах, в пилотируемых космических аппаратах, при восхождении на высокие горные вершины, в экипировке пожарных, которым часто приходится действовать в задымленной и ядовитой атмосфере и т.д.

Во всех этих устройствах есть источники кислорода для автономного дыхания.

В медицине кислород используют для поддержания жизни больных с затрудненным дыханием и для лечения некоторых заболеваний. Однако чистым кислородом при нормальном давлении долго дышать нельзя - это опасно для здоровья.

Но главными потребителями кислорода, конечно, являются энергетика, металлургия и химическая промышленность.

Электрические и тепловые станции, работающие на угле, нефти или природном газе используют атмосферный кислород для сжигания топлива. Если даже небольшой автомобиль является настоящим "пожирателем" кислорода (как мы выяснили в предыдущей главе), то гигантские тепловые и электрические станции расходуют кислорода неизмеримо больше. До сих пор они вырабатывают около 80 % всего электричества в нашей стране и только остальные 20 % электроэнергии дают гидростанции и атомные станции, не расходующие атмосферного кислорода.

Для металлургической и химической промышленности нужен уже не атмосферный, а чистый кислород. Ежегодно во всем мире получают свыше 80 млн. тонн кислорода. Для его производства требуется огромное количество электроэнергии, получение которой, как мы уже знаем, тоже связано с расходованием кислорода.

Чистый кислород расходуется главным образом на получение стали из чугуна и металлолома. С этим важным процессом вы познакомитесь в следующем классе.

В машиностроении, в строительстве кислород используют для сварки и резки металлов. Горючий газ ацетилен, сгорая в токе кислорода, позволяет получить температуру выше 3000? С! Это приблизительно вдвое больше температуры плавления железа.

I.2.3 Биологическая роль

Кислород в атмосфере Земли начал накапливаться в результате деятельности первичных фотосинтезирующих организмов, появившихся, вероятно, около 2,8 млрд. лет назад. Полагают, что 2 млрд. лет назад атмосфера уже содержала около 1% кислорода; постепенно из восстановительной она превращалась в окислительную и примерно 400 млн. лет назад приобрела современный состав. Наличие в атмосфере кислорода в значительной степени определило характер биологической эволюции. Аэробный (с участием О2) обмен веществ возник позже анаэробного (без участия О2), но именно реакции биологического окисления, более эффективные, чем древние энергетические процессы брожения и гликолиза, снабжают живые организмы большей частью необходимой им энергии. Исключение составляют облигатные анаэробы, например, некоторые паразиты, для которых кислород является ядом. Использование кислорода, обладающего высоким окислительно-восстановительным потенциалом, в качестве конечного акцептора электронов в цепи дыхательных ферментов, привело к возникновению биохимического механизма дыхания современного типа. Этот механизм и обеспечивает энергией аэробные организмы.

Кислород -- основной биогенный элемент, входящий в состав молекул всех важнейших веществ, обеспечивающих структуру и функции клеток -- белков, нуклеиновых кислот, углеводов, липидов, а также множества низкомолекулярных соединений. В каждом растении или животном кислорода гораздо больше, чем любого другого элемента (в среднем около 70%). Мышечная ткань человека содержит 16% кислорода, костная ткань -- 28.5%; всего в организме среднего человека (масса тела 70 кг) содержится 43 кг кислорода. В организм животных и человека кислород поступает в основном через органы дыхания (свободный кислород) и с водой (связанный кислород). Потребность организма в кислороде определяется уровнем (интенсивностью) обмена веществ, который зависит от массы и поверхности тела, возраста, пола, характера питания, внешних условий и др. В экологии как важную энергетическую характеристику определяют отношение суммарного дыхания (то есть суммарных окислительных процессов) сообщества организмов к его суммарной биомассе.

Небольшие количества кислорода используют в медицине: кислородом (из так называемых кислородных подушек) дают некоторое время дышать больным, у которых затруднено дыхание. Нужно, однако, иметь в виду, что длительное вдыхание воздуха, обогащенного кислородом, опасно для здоровья человека. Высокие концентрации кислорода вызывают в тканях образование свободных радикалов, нарушающих структуру и функции биополимеров. Сходным действием на организм обладают и ионизирующие излучения. Поэтому понижение содержания кислорода (гипоксия) в тканях и клетках при облучении организма ионизирующей радиацией обладает защитным действием -- так называемый кислородный эффект. Этот эффект используют в лучевой терапии: повышая содержание кислорода в опухоли и понижая его содержание в окружающих тканях усиливают лучевое поражение опухолевых клеток и уменьшают повреждение здоровых. При некоторых заболеваниях применяют насыщение организма кислородом под повышенным давлением -- гипербарическую оксигенацию. [1],[5],[6],[4],[7],[8]

I.3 Сера

Сера (лат. Sulfur),, S, химический элемент с атомным номером 16, атомная масса 32,066. Химический символ серы S произносится «эс».

Атомный номер: 16

Атомная масса: 32,064 а.е.м.

Электроотрицательность: 2,58

Температура плавления: 115,21°C

Температура кипения: 444,6°C

Плотность: 2,07 г/(см3)

Кем открыт: Известна с глубокой древности

Цвет в тв. состоянии: Лимонно-желтая (ромбическая)

Тип вещества: Неметалл

Орбитали: 1s2;2s2;2p6;3s2;3p4

Электропроводность в тв.фазе, см/м: 5•10-22 при 293K

Ковалентный радиус: 1,02 A

Атомный объем: 15,5 см3/моль

Атомный радиус: 1,09 А

Теплота распада: 1,7175 Кдж/моль

Радиус атома серы 0,104 нм. Радиусы ионов: иона S2- 0,170 нм (координационное число 6), иона S4+ 0,051 нм (координационное число 6) и иона S6+ 0,026 нм (координационное число 4). Энергии последовательной ионизации нейтрального атома серы от S0 до S6+ равны, соответственно, 10,36, 23,35, 34,8, 47,3, 72,5 и 88,0 эВ. Сера расположена в VIA группе периодической системы Д. И. Менделеева, в 3-м периоде, и принадлежит к числу халькогенов. Конфигурация внешнего электронного слоя 3s23p4. Наиболее характерны степени окисления в соединениях -2, +4, +6 (валентности соответственно II, IV и VI). Значение электроотрицательности серы по Полингу 2,6. Сера относится к числу неметаллов.

В свободном виде сера представляет собой желтые хрупкие кристаллы или желтый порошок.

Физические и химические свойства: атомы серы обладают уникальной способностью образовывать устойчивые гомоцепи, т. е. цепи, состоящие только из атомов S (энергия связи S-S составляет около 260 кДж/моль). Гомоцепи серы имеют зигзагообразную форму, так как в их образовании принимают участие электроны, расположенные в соседних атомах на взаимно перпендикулярных р-орбиталях. Эти цепи могут достигать большой длины, или, наоборот, образовывать замкнутые кольца S20, S8, S6, S4.

Поэтому сера образует несколько десятков как кристаллических, так и аморфных модификаций, отличающихся как составом молекул и полимерных цепей, так и способом их упаковки в твердом состоянии.

При нормальном давлении и температурах до 98,38°C стабильна a-модификация серы (иначе эту модификацию называют ромбической), образующая лимонно-желтые кристаллы. Ее кристаллическая решетка орторомбическая, параметры элементарной ячейки a = 1,04646, b = 1,28660, c = 2,4486 нм. Плотность 2,07 кг/дм3. Выше 95,39°C стабильна b-модификация серы (так называемая моноклинная сера). При комнатной температуре параметры элементарной ячейки моноклинной b-S a = 1.090, b = 1.096, c = 1,102 нм, t = 83,27°. Плотность b-S 1,96 кг/дм3.

В структурах как a-, так и b-модификаций серы имеются неплоские восьмичленные циклические молекулы S8. Такие молекулы немного похожи на короны.

Две эти модификации серы отличаются взаимной ориентацией молекул S8 в кристаллической решетке.

Еще одну модификацию серы -- так называемую ромбоэдрическую серу -- можно получить выливанием раствора тиосульфата натрия Na2S2O3 в концентрированную соляную кислоту при 0°C с последующей экстракцией серы толуолом. После испарения растворителя возникают ромбоэдрические кристаллы, содержащие молекулы S6 в форме кресла.

Аморфную серу (плотность 1,92 г/см3) и резиноподобную пластическую серу получают при резком охлаждении расплавленной серы (выливая расплав в холодную воду). Эти модификации состоят из нерегулярных зигзагообразных цепей Sn. При длительном выдерживании при температурах 20-95°C все модификации серы превращаются в a-серу.

Температура плавления ромбической a-серы 112,8°С, а моноклинной b-серы 119,3°С. И в том, и в другом случае образуется легкоподвижная желтая жидкость, которая при температуре около 160°С темнеет; ее вязкость повышается, и при температуре выше 200°С расплавленная сера становится темно-коричневой и вязкой, как смола. Это объясняется тем, что сначала в расплаве разрушаются кольцевые молекулы S8. Возникающие фрагменты объединяются друг с другом с образованием длинных цепей S из нескольких сотен тысяч атомов. Дальнейшее нагревание расплавленной серы (выше температуры 250°C) ведет к частичному разрыву цепей, и жидкость снова становится более подвижной. Около 190°C ее вязкость примерно в 9000 раз больше, чем при 160°C.

При температуре 444,6°C расплавленная сера закипает. В зависимости от температуры в ее парах можно обнаружить молекулы S8, S6, S4 и S2. Изменение состава молекул вызывает изменение окраски паров серы от оранжево-желтого до соломенно-желтого цвета. При температуре выше 1500°C молекулы S2 диссоциируют на атомы.

Молекулы S2 парамагнитны и построены аналогично молекуле O2. Во всех других состояниях сера диамагнитна.

В воде сера практически нерастворима. Некоторые ее модификации растворяются в органических жидкостях (толуоле, бензоле) и особенно хорошо -- в сероуглероде CS2 и жидком аммиаке NH3.

Сера -- достаточно активный неметалл. Даже при умеренном нагревании она окисляет многие простые вещества, но и сама довольно легко окисляется кислородом и галогенами.

S + O2 = SO2; S + 3F2 = SF6,

2S + Cl2 = S2Cl2 (c примесью SCl2)

С водородом при нагревании сера образует сероводород H2S и в небольшом количестве сульфаны (соединения состава H2Sn):

H2 + S -H2S.

Примеры реакций серы с металлами:

2Na + S = Na2S,

Ca + S = CaS,

Fe + S = FeS

С некоторыми неметаллами сера образует бинарные соединения:

2P + 3S ? P2S3

C + 2S ? CS2

Образующиеся в этих реакциях сульфиды характеризуются не постоянным, а, как правило, переменным составом. Так, состав сульфида кальция может непрерывно изменяться в границах от CaS до CaS5. Полисульфиды типа СаSn или Na2Sn при взаимодействии, например, с соляной кислотой образуют сульфаны H2Sn, причем значение n может составлять от 1 до приблизительно 10.

Концентрированная серная кислота при нагревании окисляет серу до SO2:

S + 2H2SO4 = 2H2O + 3SO2.

Царская водка (смесь азотной и соляной кислот) окисляет серу до серной кислоты.

Разбавленная азотная кислота, соляная кислота без окислителей и серная кислота на холоде с серой во взаимодействие не вступают. При нагревании в кипящей воде или растворах щелочей сера диспропорционирует:

3S + 6NaOH - 2Na2S + Na2SO3 + 3H2O;

Сера может присоединяться к сульфидам

Na2S + (n-1)S = Na2Sn

и к сульфитам:

Na2SO3 + S = Na2S2O3

В результате протекания данной реакции из сульфита натрия Na2SO3 образуется тиосульфат натрия Na2S2O3.

При нагревании сера реагирует почти со всеми элементами, кроме инертных газов, иода, азота, платины и золота. С остальными металлами (кроме Au, Pt) - при повышенной t?:

2Al + 3S -t??? Al2S3

Zn + S -t??? ZnS

Восстановительные свойства сера проявляет в реакциях с сильными окислителями:

(S - 2з ? S+2;

S - 4з ? S+4;

S - 6з ? S+6)

c кислородом:

S + O2 -t?> S+4O2

2S + 3O2 -t?;pt> 2S+6O3

c галогенами (кроме йода):

S + Cl2 ? S+2Cl2

c кислотами - окислителями:

S + 2H2SO4(конц) ? 3S+4O2 + 2H2O

S + 6HNO3(конц) ? H2S+6O4 + 6NO2 + 2H2O

Реакции диспропорционирования:

3S0 + 6KOH ? K2S+4O3 + 2K2S-2 + 3H2O

сера растворяется в концентрированном растворе сульфита натрия:

S0 + Na2S+4O3 ? Na2S2O3 (тиосульфат натрия)

Известно несколько оксидов серы. Кроме устойчивых диоксида серы SO2 [другие названия: сернистый газ, сернистый ангидрид, оксид серы (IV)] и триоксида серы SO3 [другие названия: серный газ, серный ангидрид, оксид серы (VI)], получены неустойчивые оксиды S2O (при пропускании тока SO2 через тлеющий разряд) и S8O (при взаимодействии H2S с SOCl2). Пероксиды SO4 и S2O7 образуются при пропускании SO2 в смеси с кислородом через тлеющий разряд или за счет окисления SO2 озоном.

Кислотному диоксиду серы SO2 соответствует неустойчивая кислота средней силы H2SO3 (сернистая кислота):

Н2О + SO2 -H2SO3,

а кислотному триоксиду серы SO3 -- сильная двухосновная серная кислота H2SO4:

SO3 + H2O = H2SO4

И сернистой кислоте H2SO3, и серной H2SO4 соответствуют по два ряда солей: кислые [соответственно гидросульфиты NaHSO3, Ca(HSO3)2 и др. и гидросульфаты КНSO4, NaНSO4 и другие] и средние [сульфиты Na2SO3, K2SO3 и сульфаты CaSO4, Fe2 (SO4)3].

Сера входит в состав многих органических соединений.

История открытия:

Сера встречается в природе в свободном (самородном) состоянии, поэтому она была известна человеку уже в глубокой древности. Сера привлекала внимание характерной окраской, голубым цветом пламени и специфическим запахом, возникающим при горении (запах сернистого газа). Считалось, что горящая сера отгоняет нечистую силу. В Библии говорится об использовании серы для очищения грешников. У человека средневековья запах «серы» ассоциировался с преисподней. Применение горящей серы для дезинфекции упоминается Гомером. В Древнем Риме с помощью сернистого газа отбеливали ткани.

Издавна использовалась сера в медицине -- ее пламенем окуривали больных, ее включали в состав различных мазей для лечения кожных заболеваний. В 11 в. Авиценна (Ибн Сина), а затем и европейские алхимики полагали, что металлы, в том числе золото и серебро, состоят из находящихся в различных соотношениях серы и ртути. Поэтому сера играла важную роль в попытках алхимиков найти «философский камень» и превратить недрагоценные металлы в драгоценные. В 16 в. Парацельс считал серу наряду с ртутью и «солью» одним из основных «начал» природы, «душою» всех тел.

Практическое значение серы резко возросло после того, как изобрели черный порох (в состав которого обязательно входит сера). Византийцы в 673 г., защищая Константинополь, сожгли флот неприятеля с помощью так называемого греческого огня -- смеси селитры, серы, смолы и других веществ -- пламя которого не гасилось водой. В средние века в Европе применялся черный порох, по составу близкий к смеси греческого огня. С тех пор началось широкое использование серы для военных целей.

Издавна было известно и важнейшее соединение серы -- серная кислота. Один из создателей ятрохимии, монах Василий Валентин, в 15 веке подробно описал получение серной кислоты путем прокаливания железного купороса (старинное название серной кислоты -- купоросное масло).

Элементарную природу серы установил в 1789 А. Лавуазье. В названиях химических соединений, содержащих серу, часто содержится приставка «тио» (например, применяемый в фотографии реактив Na2S2O3 имеет название тиосульфат натрия). Происхождение этой приставки связано с греческим названием серы -- theion.

Нахождение в природе: сера довольно широко распространена в природе. В земной коре ее содержание оценивается в 0,05% по массе. В природе часто встречаются значительные залежи самородной серы (обычно вблизи вулканов); в Европе они расположены на юге Италии, в Сицилии. Еще большие залежи самородной серы имеются в США (в штатах Луизиана и Техас), а также в Средней Азии, в Японии, в Мексике. В природе сера встречается как россыпями, так и в виде кристаллических пластов, иногда образуя изумительные по красоте группы полупрозрачных желтых кристаллов (так называемые друзы).

В вулканических местностях часто наблюдается выделение из-под земли газа сероводорода H2S; в этих же регионах сероводород встречается в растворенном виде в серных водах. Вулканические газы часто содержат также сернистый газ SO2.

На поверхности нашей планеты широко распространены месторождения различных сульфидных соединений. Наиболее часто среди них встречаются: железный колчедан (пирит) FeS2, медный колчедан (халькопирит) CuFeS2, свинцовый блеск PbS, киноварь HgS, сфалерит ZnS и его кристалическая модификация вюртцит, антимонит Sb2S3 и другие. Известны также многочисленные месторождения различных сульфатов, например, сульфата кальция (гипс CaSO4·2H2O и ангидрит CaSO4), сульфата магния MgSO4 (горькая соль), сульфата бария BaSO4 (барит), сульфата стронция SrSO4 (целестин), сульфата натрия Na2SO4·10H2O (мирабилит) и др.

Каменные угли содержат в среднем 1,0-1,5% серы. Сера может входить и в состав нефти. Целый ряд месторождений природного горючего газа (например, Астраханское) содержат как примесь сероводород.

Сера относится к элементам, которые необходимы для живых организмов, так как она является существенной составной частью белков. Белки содержат 0,8-2,4% (по массе) химически связанной серы. Растения получают серу из сульфатов, содержащихся в почве. Неприятные запахи, возникающие при гниении трупов животных, объясняются главным образом выделением соединений серы (сероводорода: и меркаптанов), образующихся при разложении белков. В морской воде присутствует около 8,7·10-2 % серы.

Получение: серу получают, в основном, выплавляя ее из горных пород, содержащих самородную (элементарную) серу. Так называемый геотехнологический способ позволяет получать серу без подъема руды на поверхность. Этот способ был предложен в конце 19 века американским химиком Г. Фрашем, перед которым встала задача извлечения на поверхность земли серы из месторождений юга США, где песчаный грунт резко усложнял ее добычу традиционным шахтным методом.

Фраш предложил использовать для подъема серы на поверхность перегретый водяной пар. Перегретый пар по трубе подают в подземный слой, содержащий серу. Сера плавится (ее температура плавления немного ниже 120°С) и по трубе, расположенной внутри той, по которой под землю закачивают водяной пар, поднимается наверх. Для того чтобы обеспечить подъем жидкой серы, через самую тонкую внутреннюю трубу нагнетают сжатый воздух.

По другому (термическому) методу, получившему особое распространение в начале 20 века на Сицилии, серу выплавляют, или возгоняют, из дробленной горной породы в специальных глиняных печах.

Существуют и другие методы выделения самородной серы из породы, например, экстракцией сероуглеродом или флотационными методами.

В связи с тем, что потребность промышленности в сере очень велика, разработаны методы ее получения из сероводорода H2S и сульфатов.

Метод окисления сероводорода до элементарной серы был впервые разработан в Великобритании, где значительные количества серы научились получать из остающегося после получении соды Na2CO3 по методу французского химика Н. Леблана сульфида кальция CaS. Метод Леблана основан на восстановлении сульфата натрия углем в присутствии известняка CaCO3.

Na2SO4 + 2C = Na2S + 2CO2;

Na2S + CaCO3 = Na2CO3 + CaS.

Соду затем выщелачивают водой, а водную суспензию плохо растворимого сульфида кальция обрабатывают диоксидом углерода:

CaS + CO2 + H2O = CaCO3 + H2S

Образующийся сероводород H2S в смеси с воздухом пропускают в печи над слоем катализатора. При этом за счет неполного окисления сероводорода образуется сера:

2H2S + O2 = 2H2O +2S

Аналогичный метод используют для получения элементарной серы и из сероводорода, сопутствующего природным газам.

Так как современная техника нуждается в сере высокой чистоты, разработаны эффективные методы рафинирования серы. При этом используют, в частности, различия в химическом поведении серы и примесей. Так, мышьяк и селен удаляют, обработав серу смесью азотной и серной кислот.

Использованием методов, основанных на дистилляции и ректификации, удается получить высокочистую серу с содержанием примесей 10-5 - 10-6 % по массе.

Применение: около половины производимой серы используется на производство серной кислоты, около 25% расходуется для получения сульфитов, 10-15% -- для борьбы с вредителями сельскохозяйственных культур (главным образом винограда и хлопчатника) (наибольшее значение здесь имеет раствор медного купороса CuSO4·5H2O), около 10% используется резиновой промышленностью для вулканизации резины. Серу применяют при производстве красителей и пигментов, взрывчатых веществ (она до сих пор входит в состав пороха), искусственных волокон, люминофоров. Серу используют при производстве спичек, так как она входит в состав, из которого изготовляют головки спичек. Серу до сих пор содержат некоторые мази, которыми лечат заболевания кожи. Для придания сталям особых свойств в них вводят небольшие добавки серы (хотя, как правило, примесь серы в сталях нежелательна).


Подобные документы

  • Характеристика строения атома, аллотропии, способа получения, окислительных и восстановительных свойств серы. Исследование истории открытия химических элементов теллура, полония, селена, физических свойств и работы с ними, основных областей применения.

    презентация [4,4 M], добавлен 27.11.2011

  • Общая характеристика элементов VIA подгруппы, их получение, физические и химические свойства, распространение в природе. Водородные и кислородные соединения халькогенов. Обоснование степеней окисления +IV, +VI. Основные области применения серной кислоты.

    презентация [6,3 M], добавлен 11.08.2013

  • Первые систематические исследования химии теллура. Нахождение теллура в природе. Физические и химические свойства. Применение в сплавах с повышенной прочностью. Термоэлектрические модули Пельтье. Запасы на месторождениях теллура. Цена на мировом рынке.

    презентация [1,8 M], добавлен 17.12.2013

  • Химические и физические свойства серы. История открытия вещества. Основные месторождения самородной серы, способы получения и применение, пожароопасные свойства. Взаимодействие серы с кислородом, аллотропные модификации. Особенности плавления серы.

    презентация [1,7 M], добавлен 12.01.2012

  • Общая характеристика меди. История открытия малахита. Форма нахождения в природе, искусственные аналоги, кристаллическая структура малахита. Физические и химические свойства меди и её соединений. Основной карбонат меди и его химические свойства.

    курсовая работа [64,2 K], добавлен 24.05.2010

  • Особенности серы как химического элемента таблицы Менделеева, ее распространенность в природе. История открытия этого элемента, характеристика его основных свойств. Специфика промышленного получения и способов добычи серы. Важнейшие соединения серы.

    презентация [152,3 K], добавлен 25.12.2011

  • Общая характеристика кислорода. Физические и химические свойства. История открытия. Нахождение в природе. Получение за счет разделения воздуха при низких температурах. Использование в металлургии. Биологическая роль. Кислород в атмосфере Земли.

    реферат [14,3 K], добавлен 09.03.2007

  • Общая характеристика группы. Бериллий и магний. История, распространенность, получение, особенности, физические свойства, применение щелочноземельных металлов. Химические свойства щелочноземельных металлов и их соединений.

    реферат [59,1 K], добавлен 30.05.2003

  • История открытия, физические, химические свойства, распространённость в природе, получение, применение. Соединения марганца в биологических системах. Объем производства марганцевой руды по Орджоникидзевскому и Марганцевому горно-обогатительным комбинатам.

    презентация [68,7 K], добавлен 15.06.2014

  • История открытия магния. Характеристика по положению в периодической системе Д.И. Менделеева. Применение магния и его соединений. Его физические свойства. Химические свойства магния и его соединений. Распространение в природе и особенности получения.

    реферат [37,0 K], добавлен 26.08.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.