Фенолы: методы синтеза и химические свойства

Органические соединения, содержащие атом гидроксила. Способы получения фенолов, их кислотные свойства. Реакции электрофильного замещения в ароматическом кольце, конденсация фенолов с альдегидами и кетонами, алкилирование, ацилирование по Фриделю-Крафтсу.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 14.05.2012
Размер файла 200,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«СТАВРОПОЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

МЕДИКО-БИОЛОГО-ХИМИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ОРГАНИЧЕСКОЙ, ФИЗИЧЕСКОЙ И ФАРМАЦЕВТИЧЕСКОЙ ХИМИИ

Курсовая работа

на тему: Фенолы: методы синтеза и химические свойства

Выполнила: студентка III курса, МБХФ,

группы Б1 Тараненко А.А.

Научный руководитель: к.х.н.

,доцент кафедры органической,

физической и фармацевтической химии

Демидов О.П.

Ставрополь, 2011

  • Содержание
  • Введение
  • Теоретическая часть
  • 1. Способы получения фенолов
  • 2. Свойства фенолов
    • 2.1 Кислотные свойства фенолов
    • 2.2 Таутомерия фенолов
    • 2.3 Этерификация фенолов
    • 2.4 Реакции электрофильного замещения в ароматическом кольце
      • 2.4.1 Галогенирование фенолов
      • 2.4.2 Нитрование фенолов
      • 2.4.3 Сульфирование фенолов
      • 2.4.4 Нитрозирование фенолов
      • 2.4.5 Алкилирование и ацилирование по Фриделю-Крафтсу
      • 2.4.6 Формилирование фенолов
      • 2.4.7 Конденсация фенолов с альдегидами и кетонами
      • 2.4.8 Реакция Кольбе
      • 2.4.9 Азосочетание
    • 2.5 Перегруппировка Кляйзена
    • 2.6 Окисление фенолов
  • Практическая часть
    • 1. 2,2'-дигидроски-1,1'-бинафтил (в-бинафтол)
      • 2. О- и п-нитрофенолы
  • Заключение
  • Список используемой литературы

Введение

Органические соединения, содержащие атом гидроксила, связанный непосредственно с атомом углерода ароматического ядра, называются фенолами.

Название этого класса соединений происходит от греческого слова «фено» - «несущий свет». Для бензола, впервые выделенного М.Фарадеем в 1825 году из светильного газа, было предложено два названия бензол и «фено», отражающее его происхождение из светильного газа. О6щепринятым стало название бензол, a другое название было использовано для обозначения радикала С6Н5.

Первый представитель гомологического ряда фенолов - окси-бензол C6H5OH называют обычно просто бензолом или карболовой кислотой.

Нумерацию начинают от углеродного атома, связанного с гидроксилом. Многие фенолы сохраняют тривиальные названия:

Обычно фенолы представляют собой твердые кристаллические вещества, но некоторые алкилфенолы являются жидкостями (м-крезол). Сам фенол находится при комнатной температуре в твердом состоянии, его температура плавления (43 °C). Самым характерным свойством фенолов является их слабая кислотность, которая обусловлена тем, что гидроксил связан c ненасыщенным атомом углерода ароматического ядра, т. е. наличием енольной группировки --СН=С(ОН)--. Сам фенол -- слабая кислота, (рКк= 10,0) . Он образует соли (феноляты) c едким натром.

По количеству гидроксильных групп, связанных с ароматическим кольцом фенолы делят на одноатомные, двухатомные и трехатомные. Большинство имеет тривиальные названия:

Многоатомные фенолы дают все характерные реакции фенолов, причем могут участвовать в реакции все гидроксильные группы фенола. С увеличением числа гидроксильных групп молекула становится все менее устойчивой к действию окислителей.

Целью данной курсовой работы является изучение методов получения и химических свойств фенолов.

Задачи курсовой работы:

- изучение методов синтеза фенолов;

- изучение химических свойств фенолов;

- синтез бинафтола;

- синтез о- и п-нитрофенолов.

Теоретическая часть

1. Способы получения фенолов

Фенол и его гомологи образуются при сухой перегонке дерева и в большом количестве - при перегонке каменного угля. Однако коксохимическое производство не может полностью удовлетворить промышленные потребности в феноле.

Кроме того, существует целый ряд синтетических методов получения.

1. Замещение сульфогруппы на гидроксил

Наиболее старый промышленный метод получения фенолов заключается в сплавлении щелочных арилсульфонатов c твердыми гидроксидом натрия или гидроксидом калия или со сравнительно легкоплaвкой смесью этих гидроксидов при 300-350°С.

Для получения самого фенола метод щелочного плавления в настоящее время не используется, но он широко используется для получения 2-нафтола, резорцина, ализарина и других фенолов.

Получение из ароматических галоидных соединений.

Фенолы можно получать по Ульману действием едких щeлoчeй нa ароматические галоидные соединения в присутствии тонкого порошка меди, a также действием водяного пара при выcoких температурах и давлении или в присутствии катализаторов.

2. Замещение диазогруппы на гидроксил

Универсальным методом замещения аминогруппы на гидроксил в ароматическом ряду является диазотирование первичного амина с последующим разложением соли диазония в водном растворе серной кислоты.

3. Получение фенола из гидропероксида кумола (кумольный метод)

Метод включает две стадии: окисление изопропилбензола (кумола) кислородом воздуха до гидропероксида и его кислотное разложение:

Окислительные методы

Один из них основан на переработке циклогексана:

2. Свойства фенолов

Химические свойства фенолов определяются, c одной стороны, наличием в них гидрoкcильoй группы c весьма подвижным атомом водорода, a c другoй - бензольным ядром c его характерными ароматическими свойствами, еще усиленными оксигруппой.

2.1 Кислотные свойства фенолов

Несмотря на то, что фенолы по строению подобны спиртам, они являются намного более сильными кислотами, чем спирты. Вместе с тем делокализация заряда в феноксид-ионе происходит в меньшей степени, чем в карбоксилат-ионе, соответственно фенолы более слабые кислоты по сравнению с карбоновыми кислотами. Фенолы растворяются в водном растворе гидроксида натрия, но они не реагируют c гидрокарбонатом натрия. Это простейший, хотя и не очень надежный тест, по которому можно различать фенолы и карбоновые кислоты, которые взаимодействуют c гидрокарбонатом натрия c выделением углекислого газа. Влияние заместителя в бензольном кольце на кислотность фенолов согласуется с представлениями об их электронных эффектах. Электронодонорные заместители понижают, a электроноакцепторные - усиливают кислотные свойства фенолов. Фенолы диссоциируют в водных растворах с образованием фенолят-ионов и ионов водорода:

В отличие от спиртов, фенолы реагируют не только с щелочными и щелочноземельными металлами, но и с растворами щелочей, образуя феноляты:

С увеличением длины углеводородного радикала скорость этой реакции замедляется. В присутствии следов влаги образующиеся алкоголяты разлагаются до исходных спиртов.

2.2 Таутомерия фенолов

Между амбидентными феноксид- и енолят-ионами существует определенная аналогия. Фенол также является аналогом енола и между ним и его кето-формами (2,4- и 2,5-циклогексадиенами) должны существовать отношения, подобные тем, которые наблюдаются для равновесия кето- и енольной форм кетонов.

Соотношение двух таутомерных форм здесь полностью обратно тому, которое наблюдается для кетонов, где преобладает кето-форма. Устойчивость таутомерных кето-форм возрастает при переходе к полиатомным фенолам. Так, при плавлении 1,4-дигидроксинафталина получается равновесная смесь, содержащая 10%-дикетоформы.

Длительное время не предпринималось попыток фиксации или стабилизации кето-формы фенолов ряда бензола и нафталина и проблема таутомерии фенолов не привлекала внимания исследователей. В 1968 году В.А.Коптюг с сотрудниками предложил простой и чрезвычайно эффективный способ стабилизации кето-формы разнообразных фенолов с помощью сильных кислот Льюиса - хлорида или бромида алюминия. Эти жесткие кислоты Льюиса связывают жесткий карбонильный кислород кето-формы в очень стабильный комплекс, который может быть зафиксирован. Кето-енольная таутомерия лежит в основе замещения фенольного гидроксила на аминогруппу, которое происходит при нагревании 1- или 2-гидроксинафталина, сульфопроизводных б- и в-нафтолов, 6- или 8-гидроксихинолинов и других гидроксипроизводных нафталина, антрацена, хинолина с водным раствором сульфита или гидросульфита аммония при 130-150оС.

2.3 Этерификация фенолов

Ариловые эфиры карбоновых кислот нельзя получать прямой этерификацией фенолов карбоновыми кислотами. Обратимая реакция фенола с уксусной кислотой эндотермична в отличие от реакции этерификации спиртов, которая экзотермична.

Ариловые эфиры карбоновых кислот получают ацилированием фенолов или их Na-, K-солей галогенангидридами или ангидридами кислот.

2.4 Реакции электрофильного замещения в ароматическом кольце

Гидроксильная группа относится к числу групп, активирующих электрофильное замещение в ароматическом кольце и направляющих заместитель в орто- и пара- положения. Активирующее влияние гидроксильной группы настолько сильно, что в отдельных случаях реакцию трудно остановить на стадии введения только одного заместителя. Фенолы вступают практически во все типичные реакции электрофильного замещения как с сильными, так и со слабыми электрофильными агентами.

2.4.1 Галогенирование фенолов

Галогенирование фенолов не требует катализа кислотами Льюиса (FeCl3, FeBr3, AlCl3 и др.) и легко осуществляется под действием молекулярного галогена. Галогенирование фенола молекулярным бромом или хлором в полярной среде практически невозможно остановить на стадии моногалогенирования, поскольку реагирующей частицей здесь является фенолят-ион. Фенолят-ион содержит очень сильную активирующую группу - анион кислорода и скорость галогенирования фенолят-иона по крайней мере в тысячу раз выше, чем фенола. Галогензамещенный фенол является более сильной кислотой, чем фенол, он легче диссоциирует, что облегчает введение второго и третьего атома галогена в орто- и пара-положения.

При бромировании фенола в растворе бромистоводородной кислоты или при хлорировании в соляной кислоте диссоциация полностью подавляется и галогенированию подвергается сам фенол. При этом в зависимости от условий и количества галогена может быть получен п-бромфенол или 2,4-дибромфенол.

Аналогичным образом протекает и хлорирование фенола, но здесь получается значительное количество о-хлорфенола. Моногалогензамещенные производные фенолов удобно получать при галогенировании в неполярной среде, что также исключает диссоциацию фенолов.

Во всех случаях соотношение пара- и орто-изомеров при бромировании и иодировании значительно выше, чем при хлорировании.

2.4.2 Нитрование фенолов

Нитрование фенолов разбавленной 20-25%-ной азотной кислотой приводит к получению смеси орто- и пара-нитрофенолов.

Их легко разделить с помощью перегонки с водяным паром, где летучим оказывается только орто-изомер. Летучесть орто-нитрофенолов обусловлена образованием прочной внутримолекулярной водородной связи:

Даже в таких мягких условиях нитрование сопровождается окислением фенола и этот процесс становится доминирующим, если для нитрования использовать концентрированную азотную кислоту. Поэтому для получения 2,4,6-тринитрофенола (пикриновой кислоты) используют видоизмененный способ нитрования. Фенол первоначально сульфируют до 4-гидрокси-1,3-бензолдисульфокислоты, а затем нитруют азотной кислотой.

фенол конденсация алкилирование

Вторая стадия по существу представляет собой электрофильное замещение сульфогруппы на нитрогруппу.

Для нитрования фенолов в качестве нитрующего агента кроме азотной кислоты можно использовать ацетилнитрат и N2O4, эти реагенты способствуют преимущественному нитрованию в орто-положение к гидроксильной группе.

2.4.3 Сульфирование фенолов

Моносульфирование фенола серной кислотой приводит к образованию смеси орто- и пара-изомеров гидроксибензолсульфокислоты. При 20оС в реакционной смеси содержится 49% орто-изомера и 51% пара-изомера, тогда как при 120оС доля пара-изомера возрастает до 96%. Изменение в соотношении продуктов сульфирования обусловлено обратимостью реакций сульфирования, когда в равновесии преобладает термодинамически более стабильный пара-изомер. Сульфирование в орто-положение протекает с большей скоростью, но орто-гидроксибензолсульфокислота легко гидролизуется на исходные реагенты в отличие от пара-изомера, для которого скорость гидролиза мала.

2.4.4 Нитрозирование фенолов

Нитрозирование фенолов осуществляется с помощью азотистой кислоты в воде или уксусной кислоте. Эта реакция отличается очень высокой региоселективностью в пара-положение по отношению к гидроксильной группе. Типичное распределение орто- и пара-изомеров при нитрозировании можно проиллюстрировать на примере самого фенола.

2.4.5 Алкилирование и ацилирование по Фриделю-Крафтсу

Реакция Фриделя -- Крафтса -- способ алкилирования и ацилирования ароматических соединений в присутствии катализаторов кислотного характера. Так как фенолы взаимодействуют с галогенидами алюминия и другими кислотами Льюиса с образованием солей типа ArOAlCl2, прямое их алкилирование в условиях реакции Фриделя-Крафтса провести не удается. Фенолы алкилируют алкенами и спиртами в условиях кислотного катализа. В качестве катализаторов предпочитают использовать серную, фтористоводородную, фосфорную кислоты и катионообменные смолы. Таким образом, из крезола и изобутилена в промышленности получают пространственно затрудненный фенол - 2,6-ди-трет-бутил-4-метилфенол (ионол), который широко применяется для стабилизации полимеров.

Аналогично из фенола и изопропилового спирта получается 2,4,6-триизопропилфенол.

Ацилирование фенолов в классических условиях реакции Фриделя-Крафтса комплексом ацилгалогенида и хлорида алюминия также приводит к неудовлетворительным результатам, так как ацилированию подвергается гидроксильная группа фенола. Более эффективна такая модификация этого метода, когда в качестве ацилирующего агента используется комплекс карбоновой кислоты и трехфтористого бора. Ацильная группа при этом вводится практически исключительно в пара-положение бензольного кольца. Так, например, фенол при взаимодействии с комплексом уксусной кислоты и BF3 дает пара-гидроксиацетофенон с 95%-ным выходом.

В отличие от самих фенолов их простые эфиры очень легко подвергаются региоселективному ацилированию по Фриделю-Крафтсу в мягких условиях с образованием пара-алкоксиарилкетонов.

2.4.6 Формилирование фенолов

Формилирование - это введение формильной группы в ароматическое кольцо. Реакция Гаттермана. Попытки введения формильной группы в ароматическое кольцо фенолов, нафтолов и их простых эфиров с помощью СО и HCl (реакция Гаттермана-Коха) оказались безуспешными. Поэтому Гаттерман предложил метод введения альдегидной группы, в котором в качестве формилирующего агента использовалась смесь безводного HCN и газообразного хлористого водорода (катализатор ZnCl2). Формильная группировка вступает в пара-положение к ОН- и RO-группе фенолов или их простых эфиров.

Следует отметить, что истинная природа электрофильной частицы, принимающей участие при введении формильной группы с помощью HCN, HCl и кислоты Льюиса точно не установлена. Для того чтобы избежать применения ядовитой синильной кислоты, Р. Адамс модифицировал условия реакции, заменив ее цианидом цинка. Это позволило из цианида цинка и HCl получать непосредственно в реакционной смеси HCN и безводный хлористый цинк, играющий роль слабой кислоты Льюиса. Этот метод дает хорошие результаты при формилировании фенолов и их простых эфиров.

Реакция Гаттермана стала очень популярной после того, как было установлено, что вместо цианидов для введения формильной группы можно использовать нетоксичный и легко доступный симметричный 1,3,5-триазин. Этот метод обеспечивает высокие выходы альдегидов при формилировании алкилбензолов, фенолов, эфиров фенолов, конденсированных углеводородов и гетероциклических соединений.

Реакция Вильсмейера-Хаака. N-Алкиламиды муравьиной кислоты - диметилформамид и N-метилформамид - в присутствии хлорокиси фосфора являются превосходными региоселективными формилирующими агентами. С помощью этих реагентов альдегидная группа вводится в пара-положение по отношению к имеющейся ОН- или OR-группе. Электрофильным агентом в реакции Вильсмейера-Хаака является иминиевая соль, которая образуется при взаимодействии ДМФА и хлорокиси фосфора, тионилхлорида или фосгена.

Иминиевая соль при необходимости может быть выделена в индивидуальном виде. Однако обычно ее не выделяют и используют непосредственно после ее образования.

Реакция Вильсмейера-Хаака чрезвычайно проста в экспериментальном отношении и обеспечивает очень высокие выходы ароматических альдегидов, содержащих OR- и ОН-группу.

Реакция Реймера-Тимана. Формилирование фенолов по Реймеру-Тиману достигается при нагревании смеси фенола и большого избытка хлороформа с водным раствором гидроксида натрия при 50-70оС. Выходы альдегидов обычно невелики и редко превышают 30%, однако метод исключительно прост и доступен в практическом отношении. Главное достоинство реакции Реймера-Тимана заключается в преимущественном образовании орто-, а не пара-изомеров, как это имеет место для реакций Гаттермана и Вильсмейера-Хаака.

2.4.7 Конденсация фенолов с альдегидами и кетонами

Конденсация альдегидов и кетонов с фенолами идет с удалением карбонильного атома =О (в виде воды), а метиленовая группа СН2- или замещенная метиленовая группа (-СНR либо -СR2) встраивается между двумя молекулами фенола. Наиболее широко эту реакцию применяют для получения фенолоформальдегидных смол. Фенол конденсируется с ацетоном в кислой среде с образованием так называемого бисфенола А.

2.4.8 Реакция Кольбе

Оригинальный метод введения карбоксильной группы в ароматическое кольцо был открыт Г.Кольбе в 1860 году. При нагревании сухих фенолятов натрия или лития с СО2 при 150-180оС и давлении 5 атм, образуются натриевые или литиевые соли салициловой кислоты. В аналогичных условиях из фенолятов калия, рубидия и цезия получаются только соли пара-гидроксибензойной кислоты.

Такое различие в направлении карбоксилирования Na- и К-солей фенола принято объяснять различием в хелатообразовании этих двух катионов с атомом кислорода CO2 в переходном состоянии реакции приводящем к салициловой кислоте. Катионы натрия и, особенно, лития значительно более эффективны по сравнению с катионом калия в способности к образованию координационной связи с атомом кислорода.

Предполагается, что для фенолятов калия, рубидия и цезия электрофильная атака осуществляется исключительно в пара-положение без какой-либо координации катиона по атому кислорода.

Более подробное изучение указывает на то, что механизм этой внешне очень простой реакции намного более сложен, чем это принято считать.

Безводные моносалицилаты калия и рубидия при нагревании до 200-220оС дают ди-К- и ди-Rb-соли пара-гидроксибензойной кислоты и фенол.

Натриевая соль пара-гидроксибензойной кислоты при нагревании превращается в динатриевую соль салициловой кислоты:

Из этого следует, что карбоксилирование щелочных фенолятов представляет собой обратимую реакцию и направление ее зависит только от природы катиона. В отличие от одноатомных фенолов двухатомные и трехатомные фенолы карбоксилируются в более мягких условиях.

2.4.9 Азосочетание

Фенолы при взаимодействии с солями арендиазония в слабощелочной среде образуют арилазофенолы. Эта реакция получила название азосочетания. По своему механизму реакция азосочетания является реакцией электрофильного замещения, в которой соли арендиазония выступают в качестве электрофильных реагентов.

2.5 Перегруппировка Кляйзена

В 1912 году Л.Кляйзен открыл интересную и своеобразную перегруппировку аллиловых эфиров фенолов в аллилфенолы. Аллиловый эфир фенола при нагревании до 200-220оС превращается в орто-аллилфенол, т.е. аллильная группа мигрирует в орто-положение бензольного кольца.

Если оба орто-положения заняты заместителями, то аллильная группа перемещается в пара-положение:

Установлено, что и орто- и пара-перегруппировки являются внутримолекулярными реакциями первого порядка, которые сопровождаются инверсией мигрирующей аллильной группы, т.е. аллильная группа присоединяется к бензольному кольцу своим -углеродным атомом.

Из этого следует, что переходное состояние перегруппировки Кляйзена должно быть циклическим шестизвенным. Такое переходное состояние включает шесть -электронов и является ароматическим, что составляет движущую силу этой термической перегруппировки. На последней стадии происходит изомеризация циклогексадиенона в о-аллилфенол. Эта стадия полностью аналогична изомеризации кетона в енольную форму.

2.6 Окисление фенолов

Окисление пространственно незатрудненных фенолов относится к числу сложных, многостадийных процессов, механизм которых мало изучен. Очевидно лишь то, что механизм окисления может сильно меняться в зависимости от природы одно- или двухэлектронного окислителя. Сам фенол при окислении двухэлектронным окислителем - бихроматом натрия или MnO2 в серной кислоте образует с удовлетворительным выходом пара-хинон.

Универсальным одноэлектронным окислителем фенолов является соль Фреми - нитрозодисульфонат калия - редкий пример стабильного неорганического нитроксильного свободного радикала, полученного впервые еще в 1845 году. Окисление фенолов солью Фреми идет в очень мягких условиях по радикальному механизму и приводит к пара-хинонам с выходами, близкими к количественному.

Самый простой и удобный способ получения орто- и пара-бензохинонов состоит в окислении соответственно пирокатехина и гидрохинона.

Практическая часть

1. 2,2'-дигидроски-1,1'-бинафтил (в-бинафтол)

Исходные вещества: в-нафтол - 3 г

FeCl3·6H2O - 5,68 г

К кипящему раствору 1,5 г в-нафтола в 200 мл дистиллированной воды при перемешивании медленно приливают раствор 2,84 г гексагидрата хлорида железа FeCl3·6H2O в 20 мл воды. При этом образуется белый осадок бинафтола. Затем в этом же растворе растворяют ещё 1,5 г в-нафтола, а затем снова при кипении прикапывают раствор 2,84 г FeCl3·6H2O в 20 мл воды.

Реакционную смесь перемешивают еще 30 минут при температуре 100°C. Осадок бинафтола отфильтровывают и кипятят его в 200 мл воды для удаления избытка в-нафтола. После фильтрования продукт перекристаллизовывают из EtOH-H2O. Получают 2,65 г (88 %) продукта в виде бесцветных игл с Тпл=215°С.

Pасчет синтеза

Реактив и формула

Характеристики исходных веществ

Количества исходных вещест

Молекулярная масса

Физиологическое действие

const

Для кислот и щелочей

По методике

По ур-нию реакции

в молях

Избыток

в молях

Tпл, °С

%

D204

мл

г

моль

в-нафтол

144

обладает сильными антисептическими и паразитотропными свойствами

122

1,217

2,5

3

0,02

2

-

Гексагидрат хлорида железа

FeCl3·6H2O

270,5

является токсичным

307,5

2,9

5,68

0,02

2

-

Характеристика основного продукта

Название

Молекулярная масса

Физиологическое действие

Константы

Растворимость

Кислотно-основные свойства

Отделение продукта

Tпл, °С

Tкип, °С

D204

N20d

Бинафтол

286

215°С

Константы и выход вещества

Название и формула

Константы

Выход

Молекулярная масса

Tпл, °С

Tкип, °С

г

От теоретического, %

От указанного в методике, %

Теоретический, г

Бинафтол

286

202°С

2,5

87

95

2,86

Механизм

2. О- и п-нитрофенолы

В трехгорлую колбу емкостью 50 мл помещают 18,5 мл 20% азотной кислоты и при охлаждении колбы холодной водой и механическом перемешивании по каплям вводят раствор 2,82 фенола в 3-4 мл воды. Реакционная масса при этом становится темно-коричневой. После введения всего фенола смесь перемешивают еще в течении 1-2 часов. Затем водный раствор кислоты сливают, темное тяжелое масло несколько раз промывают водой и, перенося в круглодонную колбу, подвергают перегонке с водяным паром. Отгоняющийся при этом о-нитрофенол затвердевает в форштоссе холодильника, откуда его целесообразно время от времени извлекать, не изменяя режима перегонки, при помощи проволоки, загнутой на конце. По окончании отгонки о-нитрофенол отфильтровывают на воронке Бюхнера и высушивают. Выход около 1 г (23 % от теоретического). Тпл=45°С.

Для выделения п-нитрофенола в перегонную колбу добавляют 17 мл 10% NaOH, переносят полученный раствор в фарфоровую чашку и упаривают на водяной бане до тех пор, пока капля раствора не будет выкристаллизовываться. Раствор охлаждают, выделившийся п-нитрофенол отфильтровывают на воронке Бюхнера, тщательно отжимают на фильтре при помощи стеклянной пробки и два раза промывают небольшим количеством 40% раствора NaOH. Посветлевшую массу растворяют при нагревании в 8-10 мл 10% раствора соляной кислоты. Раствор кипятят с активированным углем до обесцвечивания. Из отфильтрованного от угля раствора при охлаждении выпадает п-нитрофенол, в виде бесцветных игл. Выход около 0,25 г. Тпл=114°С

Расчет синтеза

Реактив и формула

Характеристики исходных веществ

Количества исходных вещест

Молекулярная масса

Физиологическое действие

const

Для кислот и щелочей

По методике

По ур-нию реакции

в молях

Избыток

в молях

Tпл, °С

%

D204

мл

г

моль

Фенол

94

Фенол ядовит. Вызывает нарушение функций нервной системы. Пыль, пары и раствор фенола раздражают слизистые оболочки глаз, дыхательных путей, кожу.

40,8

1,07

2,6

2,82

0,0298

1

--

Азотная кислота HNO3

63

токсична

-41,59

20

1,115

18,5

21

0,3

1

0,2702

Гидроксид натрия NaOH

40

токсичен

323

10

1,1089

17

19

0,475

1

0,4452

Соляная кислота HCl

36,5

токсична

-18

10

1,0476

9

9,4

0,26

1

0,2302

Характеристика основного продукта

Название

Молекулярная масса

Физиологическое действие

Константы

Растворимость

Кислотно-основные свойства

Отделение продукта

Tпл, °С

Tкип, °С

D204

N20d

О-нитрофенол

139

Поражают центральную нервную систему, печень

45

214

1,29

П-нитрофенол

114

279

1,479

Константы и выход вещества

Название и формула

Константы

Выход

Молекулярная масса

Tпл, °С

Tкип, °С

г

От теоретического, %

От указанного в методике, %

Теоретический, г

О-нитрофенол

139

45

214

0,9

22

90

4,1

П-нитрофенол

114

279

0,2

5

80

4,1

Механизм

Заключение

В работе были рассмотрены основные способы получения фенолов и их химические свойства, приведены примеры важнейших реакций. Так же были синтезированы три соединения со следующими выходами (от теоретического):

- бинафтол (87 %);

- о-нитрофенол (22 %);

- п-нитрофенол (5 %).

Роль фенолов в жизни человека очень велика. В настоящее время наибольшее количество фенола используется для получения фенолформальдегидных смол, которые применяются в производстве фенопластов. Двухатомные фенолы и их производные входят в состав дубителей для кожи и меха, модификаторов и стабилизаторов резин и каучуков, применяются для обработки кино- и фотоматериалов. В медицине фенолы и их производные используют в качестве антимикробных (фенол, резорцин), противовоспалительных (салол, осарсол), спазмолитических (адреналин, папаверин), жаропонижающих (аспирин, салициловая к-та), адренолитических (мезатон), вяжущих (таннины) и других лекарственных средств, а также витаминов E и P.

Список используемой литературы

1. Физер Л., Физер М. Органическая химия. Углубленный курс. В 2-х т. - М.: Химия, 1966.

2. Гауптман З., Грефе Ю., Ремане Х. Органическая химия. Пер. с нем. Терентьевой П.Б., Чурановой С.С./Под ред. В.М. Потапова - М.: Химия, 1979.

3. Реутов О.А., Курц А.Л., Бутин К.П. Органическая химия. - М.: Бином, 1999.

4. Грандберг И.И. Органическая химия. - М.: Дрофа, 2001.

5. Храмкина М.Н. Практикум по органической синтезу. - Л.: Химия, 1997.

6. Агрономов А.Е. Избранные главы органической химии. - М.: Химия, 1990.

7. Шабаров Ю.С. Органическая химия в 2-х т. - М.: Химия, 1994.

8. Кери Ф., Стандберг Р. Углубленный курс органической химии. Реакции и синтезы. - М.: Химия, 1981.

9. Агрономов А.Е., Шабаров Ю.С. Лабораторные работы в органическом практикуме. - М.: Химия, 1974.

10. Гиттис С.С., Глаз А.И., Иванов А.В. Практикум по органической химии. - М.: Высшая школа, 1991.

Размещено на Allbest.ru


Подобные документы

  • Химические свойства: реакции электрофильного замещения, присоединения, гидрирование и галогенирования. Алкилирование по Фриделю-Крафтсу. Правила ориентации в бензольном кольце. Влияние заместителей в ядре на и распределение изомеров при нитровании.

    реферат [290,9 K], добавлен 21.02.2009

  • Основные, химические и кислотные свойства аминов. Взаимодействие их с азотистой кислотой. Ацилирование и алкилирование по Фриделю-Крафтсу. Восстановление азотсодержащих органических соединений. Акридон: номенклатура, получение, свойства и применение.

    курсовая работа [694,1 K], добавлен 29.10.2014

  • Понятие фенолов, их номенклатура и изомерия. Способы получения фенола, его физические и химические свойства. Образование солей (фенолятов), реакции гидрирования, сульфирования и электрофильного замещения. Определение нафтолов, их свойства и получение.

    лекция [169,5 K], добавлен 27.11.2010

  • Понятие фенолов, их сущность и особенности, общая формула, характеристика и химические свойства. Распространенность в природе производных фенолов и их использование в медицине и парфюмерии. Реакции нуклеофильного замещения ароматических соединений.

    реферат [114,0 K], добавлен 04.02.2009

  • Характеристика, электронное строение и свойства фенолов. Механизм нуклеофильного и электрофильного замещения. Щелочное плавление бензосульфокислоты. Реакция гидрокси-де-диазонирования. Гидролиз сложных эфиров. Электролитическое восстановление хионов.

    курсовая работа [135,7 K], добавлен 28.02.2012

  • Понятие и номенклатура фенолов, их основные физические и химические свойства, характерные реакции. Способы получения фенолов и сферы их практического применения. Токсические свойства фенола и характер его негативного воздействия на организм человека.

    курсовая работа [292,0 K], добавлен 16.03.2011

  • Номенклатура, классификация, химические свойства аминов. Основные и кислотные свойства, реакции ацилирования и алкилирования. Взаимодействие аминов с азотистой кислотой. Восстановление азотсодержащих органических соединений, перегруппировка Гофмана.

    курсовая работа [608,4 K], добавлен 25.10.2014

  • Реакции электрофильного замещения: их условия и предъявляемые требования, механизм и основные этапы. Правила ориентации электрофильного замещения под влиянием заместителей в кольце. Реакции боковых цепей аренов, присоединения к ароматическому кольцу.

    контрольная работа [314,9 K], добавлен 05.08.2013

  • Фенолы, реакции по гидроксильной группе. Замещение в кольцо. Нитрование. Сульфирование. Галогенирование. Реакция Кольбе. Конденсация с карбонилсожержащими соединениями. Перегруппировка Кляйзена. Аллилвиниловый эфир 4-Пентеналь. Перициклические реакции.

    реферат [167,1 K], добавлен 04.02.2009

  • Основные механизмы замещения протона в ароматической молекуле на электрофильный реагент. Синхронный процесс изменения заряда на субстрате в процессе реакции. Нитрование, галогенирование, сульфирование. Алкилирование и ацилирование по Фриделю-Крафтсу.

    реферат [290,0 K], добавлен 16.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.