Производство бутадиена-1,3
Производство бутадиена. Двухстадийный процесс. Одностадийное дегидрирование н-бутана. Установление технологических и конструкционных параметров ХТС, технологических параметров режима и потоков. Изучение свойств и эффективности функционирования ХТС.
Рубрика | Химия |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 29.03.2009 |
Размер файла | 8,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство образования и науки Российской Федерации
Федеральное агентство по образованию
государственный технический университет
кафедра химической технологии
КУРСОВАЯ РАБОТА
по дисциплине «Общая химическая технология»
на тему: «Производство бутадиена-1,3»
2007 г.
1. Содержание
1. Содержание
2.Задание
3.Введение
4.Синтез ХТС
4.1 Обоснование создания эффективной ХТС
4.2 Определение технологической топологии ХТС
4.3 Установление технологических и конструкционных параметров ХТС, технологических параметров режима и потоков
4.4 Изображение графических моделей ХТС (функциональной, структурной, операторной, технологической схемы с описанием)
5 Анализ ХТС.
5.1 Представление изучаемого объекта в виде иерархической структуры ХТС
5.2 Построение математической модели ХТС
5.3 Изучение свойств и эффективности функционирования ХТС
6 Заключение
7 Список использованной литературы
2. Задание
Какое количество бутана необходимо для получения 2т бутадиена-1,3, если известно, что бутан содержит 15% примесей, а степень превращения составляет 80%?
3. Введение
Производство бутадиена-1,3 очень актуально, т.к. бутадиен является сырьём для производства каучуков.
Бутадиеновые каучуки-- продукт полимеризации бутадиена. При полимеризации молекулы бутадиена могут соединяться с участием любой из двух или обеих двойных связей, образуя полимеры с различной конфигурацией химических звеньев в макромолекуле:
Для конфигурации 1, 4 возможны 2 изомера -- цис (II) и транс (III)
В зависимости от условий полимеризации и природы катализатора получают Б. к., различающиеся содержанием в их макромолекулах звеньев конфигурации 1, 4 (как цис-, так и транс-структуры) и звеньев конфигурации 1, 2.
Бутадиен является крупнотоннажным продуктом, который очень широко используется.
Бутадиеновые каучуки - каучуки общего назначения. Основная область применения каучуков с высоким содержанием звеньев 1,4-цис- изготовление протекторных и обкладочных (каркас, боковина) шинных резин. Эти каучуки используют также в производстве РТИ (например, конвейерных лент), низа обуви, изоляции кабеля, ударопрочного полистирола и др. Каучуки с высоким содержанием звеньев 1,2 (СКВ, СКДСР) используют в производстве антифрикционных асбестотехнических изделий, линолеума, абразивного инструмента, изделий бытового назначения и др.
По объему мирового производства бутадиеновые каучуки уступают лишь бутадиен-стирольным каучукам; выпуск бутадиеновых каучуков капиталистических странах в 1985 составил приблизительно 1,5 млн. т.
4.Синтез ХТС
4.1 Обоснование эффективной ХТС
Производство бутадиена
Впервые промышленное производство бутадиена из этилового спирта было осуществлено в СССР в 1933 г. по разработанному С. В. Лебедевым методу. В основе процесса лежат превращения этанола в присутствии бифункционального катализатора, обеспечивающего одновременное протекание реакций дегидрирования (ZnO) и дегидратации (А12О3, промотированный К2О), при тем-пературе не выше 400 "С:
2С2Н5ОН > СН2=СН-СН=СН2 + 2Н2О + Н2
В настоящее время этот и другие методы практически полностью вытеснены одно- или двухстадийным дегидрированием насыщенных углеводородов.
Каталитическое дегидрирование насыщенных углеводородов стало основным источником производства не только бутадиена, но и таких крупнотоннажных продуктов как изопрен, изобутилен, стирол. На основе этих мономеров, получаемых в близких условиях, вырабатываются многочисленные виды синтетических каучуков, в том числе хлоропренового, нитрильного, бутадиено-вого, бутилкаучука, изопренового, бутадиен-стирольного, бутадиен-нитрильного и др. Спрос на бутадиен обусловлен также его использованием для производства адипонитрила и получением на его основе найлона.
Двухстадийный процесс
Большинство промышленных установок получения дивинила из бутана работает по двухстадийной схеме. Первая стадия дегидрирования бутана заключается в превращении его В бутилен, а вторая -- это процесс получения дивинила из бутилена-
Дегидрирование бутана в бутилен на хромооксидном промотированном катализаторе, нанесенном на оксид алюминия, протекает по реакции
С3Н10-С4Н8+Н2; ?Н= 131 кДж
В промышленных реакторах протекают и побочные реакции: обратная реакция гидрирования бутилена, крекинг бутана и бутилена, изомеризация бутана и бутилена, реакции углеобразования. На советских промышленных установках по дегидрированию бутана применяют системы с кипящим слоем мелкозернистого алюмохромового катализатора марки К.-5.
В процессе дегидрирования бутана катализатор покрывается углеродистыми отложениями и изменяет свой химический состав. Активность катализатора при этом резко снижается. С целью реактивации катализатор непрерывно отводят из реактора и обжигают в токе воздуха в регенераторе с кипящим слоем. Углеродистые соединения при этом выгорают, а низшие оксиды хрома окисляются до Сг2О3.
Дегидрирование бутилена до дивинила протекает на хром-кальций-фосфатном катализаторе по реакции
С4Н8-С4Н6 + Н2, ?Н= 119 кДж
Бутадиен при повышенных температурах разлагается, поэтому для сохранения достаточно высокой селективности по бутадиену на практике приходится прибегать к снижению парциального давления реакционных газов за счет применения перегретого водяного пара или вакуума.
Оптимальная температура сырья на входе в реактор 860--910 К. Степень конверсии регулируется объемной скоростью, которая колеблется для разных катализаторов в пределах 150--600 ч™1.
Двухстадийный процесс позволяет создать на каждой стадии оптимальные условия ее протекания, обеспечивающие максимальный выход продуктов и селективность.
Для проведения первой стадии широко используются аппараты кипящего слоя. Такие аппараты отличаются целым рядом преимуществ в сравнении с аппаратами, в которых катализатор неподвижно располагается на нескольких тарелках: 1) изотермичность слоя, которая достигается благодаря активному перемешиванию; 2) текучесть слоя, в результате которой появляется возможность транспортировки закоксованного катализатора из реактора в регенератор и обратно; 3) высокая поверхность межфазного обмена, обусловленная малым размером частиц катализатора, в результате -- высокие скорость теплообмена и массопередачи; 4) низкое гидравлическое сопротивление слоя, обеспечивающее уменьшение энергозатрат и повышающее скорость процесса.
Таким образом, в конструкции реактора КС соблюдены все закономерности проведения гетерогенно-каталитических реакций. Процессы дегидрирования и регенерации осуществляются в разных аппаратах одинаковой конструкции.
В отличие от первой, вторая стадия протекает в адиабатических реакторах с неподвижным слоем катализатора. Необходимое для реакции тепло подводится с перегретым паром, смешиваемым с сырьем. Достоинство этих аппаратов -- простота конструкции, недостатки -- неравномерность распределения температуры в слое, высокое гидравлическое сопротивление аппарата, ухудшение показателей эффективности работы реактора по мере закоксовывания катализатора, периодичность работы аппарата, попеременно работающего то в режиме дегидрирования, то в режиме регенерации.
Стадия осуществляется при более высокой температуре и пониженном парциальном давлении, которое достигается при разбавлении бутенов водяным паром. Температура для разных типов катализатора колеблется от 580 до 677 "С, разбавление паром -- в соотношении 20 : 1. Охлаждение контактного газа (закалка) осуществляется впрыскиванием водяного конденсата, дальнейшее охлаждение газа происходит в котле-утилизаторе, затем газ направляется на промывку в скруббер и далее на разделение.
Выход бутадиена от массы исходного бутена составляет 20-- 35 %. Селективность колеблется от 73 до 94 %.
Одностадийное дегидрирование н-бутана
Одностадийный процесс дегидрирования н-бутана до бутадиена-1,3 может быть описан суммарным уравнением:
С4Н10 - С4Н6 + 2Н2 + 247 кДж
и складывается из двух последовательных реакций дегидрирования н-бутана до н-бутиленов и н-бутиленов до бутадиена-1,3 . В этом процессе н-бутилены не выводятся из сферы, реакции и в реакторе создается система «н-бутан -- н-бутилены -- бутадиен-1,3 -- водород», равновесный состав которой зависит от температуры и давления.
Одностадийный процесс дегидрирования н-бутана осуществляется по регенеративному принципу, при котором затраты тепла на проведение эндотермической реакции дегидрирования в адиабатическом режиме возмещаются за счет тепла, уделяющегося на стадии регенерации катализатора при выжигании отложившегося на нем кокса. В этом процессе разогретый регенерированный катализатор используется как теплоноситель, а для повышения его способности аккумулировать тепло, к нему добавляется в отношении 1 : 3 инертный теплоноситель в виде гранул оксида алюминия, предварительно обожженных.
Жесткие условия чередующихся окислительно-восстановительных циклов дегидрирования и регенерации предъявляют к катализаторам повышенные требования. В одностадийном процессе используется алюмо-хромовый окисный катализатор ДВ-3М состава Сг2О3•А12Оз, активный при температуре около 6ОО°С, ускоряющий обе реакции дегидрирования, прочный и устойчивый в эксплуатации и хорошо регенерирующийся. Так как он отравляется парами воды, то понижение парциального давления углеводородного сырья в процессе достигается не введением в систему водяного пара, а проведением дегидрирования в вакууме.
Технологическая схема производства бутадиена-1,3 одностадийным дегидрированием н-бутана в вакууме включает операции:
очистка сырья (бутановой фракции, попутного газа);
каталитическое дегидрирование н-бутана;
сжатие контактного газа и выделение из него фракции С4;
выделение бутадиена-1,3 из фракции С4;
отдувка углеводородов и регенерация катализатора.
Реакторный блок установки, включает два (или больше) аппаратов, работающих попеременно на дегидрирование сырья и регенерацию катализатора.
Сырьем для производства бутадиена методом дегидрирования служит бутановая фракция попутного газа или бутан-бутиленовая фракция газов каталитического крекинга или пиролиза.
Реакция дегидрирования бутана относится к классу сложных последовательных сильно эндотермических реакций, протекающих с увеличением объема:
Кроме целевой реакции в этой системе протекает большое количество побочных процессов: реакции циклизации, крекинга, изомеризации, ароматизации, коксообразования и др. Вследствие этого в результате дегидрирования образуется сложная смесь углеводородов, разделение которой связано с существенными затратами энергии и вспомогательных материалов.
Процесс дегидрирования осуществляется в присутствии катализатора. Высокие температуры синтеза и повышенная реакционная способность продуктов приводят к его быстрому закоксовыванию. В результате катализатор работает на дегидрирование только 15--20 мин, затем реактор переключается на регенерацию. Регенерация осуществляется с помощью выжигания кокса воздухом и длится 30 мин.
Сравнительная характеристика
Сопоставление технико-экономических данных показывает, что одностадийный процесс экономичнее двухстадийного ввиду отсутствия в нем промежуточной подсистемы разделения контактного газа после первой ступени и меньшей величины расход-ных коэффициентов по сырью и энергии.
Таблица 1. ТЭП производства бутадиена-1,3
Методы производства |
Капитальные затраты |
Энергоёмкость |
Себестоимость |
|
Одностадийное дегидрирование |
47 |
34 |
39 |
|
Двухстадийное дегидрирование |
72 |
77 |
53 |
Достоинствами одностадийного процесса дегидрирования н-бутана до бутадиена-1,3 являются:
значительное сокращение расхода технологического пара;
использование теплоты регенерации катализатора и проведение реакции дегидрирования в адиабатическом режиме и, как следствие, простота конструкции реактора и отсутствие сложного теплообменного оборудования;
исключение второй стадии дегидрирования и операций разделения бутан-бутиленой фракции.
За счет этого относительно невысокие выход бутадиена-1,3 (12--14%) и степень конверсии н-бутана (не превышающая 0,2) компенсируются меньшими капитальными затратами и энергоемкостью производства и, как следствие, более низкой, чем в двухстадийном методе, себестоимостью бутадиена-1,3.
4.2 Определение технологической топологии ХТС
При рассмотрении технологической схемы производства бутадиена-1,3 можно сказать, что между технологическими операторами данной ХТС существует последовательная (связь, когда поток, выходящий из одного элемента является входящим для следующего и все технологические потоки проходят через каждый элемент системы не более одного раза), параллельная (когда выходящий из элемента ХТС поток разбивается на несколько параллельных подпотоков) и обратная (характеризуется наличием рециркуляционного потока, связывающего выход последующего элемента ХТС с входом предыдущего) технологические связи.
4.3 Установление технологических и конструкционных параметров ХТС, технологических параметров режима и потоков
Бутадиен-1,3 (дивинил) C4H6 представляет собой при обычных условиях бесцветный газ, конденсирующийся в жидкость при 268,7 К (-4,3°С), с температурой кипения -4,4°С, температурой плавления - 108,9°С и плотностью в жидком состоянии 0, 645 т/м3 (при 0°С). Не растворим в воде, плохо растворим в спиртах, хорошо -- в бензоле, диэтиловом эфире, хлороформе; с некоторыми растворителями образует азеотропные смеси. Критическая температура бутадиена 152°С. С воздухом бутадиен образует взрывчатые смеси с пределами воспламеняемости 2,0 и 11,5% об. Температура вспышки бутадиена составляет -40°С, температура са-мовоспламенения 420"С.
Бутадиен легко полимеризуется. Полимеризация инициируется пероксидами, образующимися при контакте бутадиена с воздухом. Тепловой эффект полимеризации зависит температуры и составляет от 72, 8 до 125,6 кДж/моль. Вследствие этого бутадиен хранится в присутствии ингибиторов, на-пример, п-оксидифениламина или п-трет-бутилпирокатехина, которые удаляются промывкой гидроксидом натрия перед полимеризацией. При радикально-цепной сополимеризации бутадиена со стиролом, а-метилстиролом или акрилонитрилом образуются сополимеры, в макромолекуле которых беспорядочно чередуются звенья исходных веществ
-СН2-СН=СН-СН2 -СН2-СН- -СН2--СН -СН2-СН
СН-СН2 С6Н5 CN
причем бутадиен связывается в 1,4- или 1,2-положениях.
Бутадиен в высоких концентрациях обладает наркотическим действием; в малых концентрациях раздражает дыхательные пути и слизистую оболочку глаз. ПДК составляет 100 мг/м3.
4.4 Модель рассматриваемой ХТС
Функциональная схема
Структурная схема
1 - нагреватель сырья;
2 - печь;
3 - реакторы;
4- “закалочный” аппарат;
5- скруббер;
6,11- холодильники;
7- турбокомпрессор;
8- абсорбер;
9- десорбер;
10- стабилизирующая колонна (депропанизатор);
12- топка;
13-.котёл-утилизатор
Операторная схема
Технологическая схема
1 - нагреватель сырья;
2 - печь;
3 - реакторы;
4- “закалочный” аппарат;
5- скруббер;
6,11- холодильники;
7- турбокомпрессор;
8- абсорбер;
9- десорбер;
10- стабилизирующая колонна (депропанизатор);
12- топка;
13-.котёл-утилизатор
Описание технологической схемы
Через подогреватель 1 н-бутан поступает в печь 2, где нагревается до 600--620?С и направляется в один из реакторов 3, который работает на дегидрирование. Из реактора контактный газ, пройдя для «закалки» аппарат 4, подается в скруббер 5, в котором охлаждается холодным маслом, циркулирующим через холодильник 6. Охлажденный в скруббере газ сжимается в турбокомпрессоре 7 до давления 1,3 МПа и направляется в абсорбер 8. Из верхней части абсорбера выходит водородсодержащий топливный газ, а раствор углеводородов в абсорбенте подается в десорбер 9. Ио верхней части десорбера отгоняется фракция С3 -- С4, а абсорбент через холодильник 11 возвращается на орошение абсорбера 8. В качестве абсорбента используется высококипящая углеводородная фракция С5. Фракция С3 -- C4 из верхней части десорбера 9 поступает в колонну 10 (депропанизатор), где из нее отгоняется пропан. Оставшаяся фракция С4 с содержанием бутадиена-1,3 от 11 до 13% массовых направляется на выделение бутадиена, а бутан-бутиленовая фракция возвращается в виде рецикла на дегидрирование, присоединяясь к свежему н-бутану. По окончании цикла дегидрирования поток углеводородного сырья переключается на другой реактор, а первый продувается сначала водяным паром для удаления сорбированных катализатором углеводородов, а затем для регенерации катализа-хора топочными газами с небольшим содержанием кислорода из топки 12. Теплота газообразных продуктов регенерации катализатора используется для выработки технологического пара в котлеутилизаторе 13.
Основной аппарат технологической схемы -- реактор дегидрирования (контактный аппарат). Это стальной цилиндр диаметром 6 м и длиной 12--14 м расположенный горизонтально и футерованный внутри огнеупорным материалом. Внутри реактора расположены решетки из керамических плит, на которых размещены слои катализатора.
5 Анализ ХТС
5.1 Представление изучаемого объекта в виде иерархической структуры ХТС
5.3 Изучение свойств и эффективности функционирования ХТС
Какое количество бутана необходимо для получения 2т бутадиена-1,3, если известно, что бутан содержит 15% примесей, а степень превращения составляет 80%?
Решение
Для решения поставленной задачи нам необходимо написать уравнение реакции получения бутадиена-1,3 из бутана.
С4Н10> С4Н6 +2Н2
m(С4Н10)=x т
Mr(С4Н10)=58 г/моль
m(С4Н6)=2 т
Mr(С4Н6)=54 г/моль
Составим пропорцию, чтобы найти массу бутадиена.
х/58=2/54 откуда х = 2,14 т.
Найдём массу бутана с учётом степени превращения (80%)
2,14 т - 80 %
y - 100%
Степень превращения - отношение количества превращённого исходного сырья в целевой продукт к общему количеству исходного сырья.
Составим пропорцию, чтобы найти массу бутадиена с учётом степени превращения.
2,14/y=80/100 откуда y = 2,675 т
Найдём массу бутана с учётом примесей (15%)
2,675 т - 85 %
z - 15%
z - масса примесей
Составим пропорцию, чтобы найти массу примесей.
2,675/z=85/15 откуда z = 0,472 т
Тогда масса бутана с примесями = 2,675+0,472=3,147 т
Подобные документы
Физико-химические свойства бутадиена-1,3, основные промышленные способы производства. Технологическая схема одностадийного дегидрирования н-бутана до бутадиена-1,3. Устройство реактора дегидрирования. Предложения по улучшению качества бутадиена.
курсовая работа [1,9 M], добавлен 24.10.2011Промышленное производство бутадиена из этилового спирта в присутствии бифункционального катализатора. Характеристика бутадиена и область его применения. Подготовка алюмохромового катализатора к работе. Продукт термохимической активации гидраргиллита.
контрольная работа [20,9 K], добавлен 13.01.2014Характеристика бутадиена, его свойства. Области применения каучуков. Каталитическое дегидрирование н-бутилена в промышленности в присутствии водяного пара. Описание работы установки дегидрирования бутилена в дивинил и решений по ее автоматизации.
реферат [192,4 K], добавлен 25.12.2016Характеристика и применение н-бутилена, н—С4Н8. Технологическая схема получения бутилена дегидрированием н-бутана на шариковом катализаторе, на взвешенном катализаторе, основные параметры производства. Производство дивинила дегидрированием из бутиленов.
реферат [7,0 M], добавлен 05.02.2011Применение, физические и химические свойства концентрированной и разбавленной серной кислоты. Производство серной кислоты из серы, серного колчедана и сероводорода. Расчет технологических параметров производства серной кислоты, средства автоматизации.
дипломная работа [1,1 M], добавлен 24.10.2011Производство хромового ангидрида (с бисульфатной травкой монохроматных растворов). Описание вариантов технологических процессов. Теоретические основы процесса получения хромового ангидрида и бисульфатной травки. Характеристика применяемого оборудования.
реферат [1,6 M], добавлен 24.10.2011Исходное сырье для производства этилового спирта и способы его получения. Физико-химическое обоснование основных процессов производства этилового спирта. Описание технологической схемы процесса производства, расчет основных технологических показателей.
курсовая работа [543,6 K], добавлен 04.01.2009Физико-химические свойства нефти. Методы осуществления перегонки, их достоинства и недостатки. Влияние технологических параметров на данный процесс. Характеристика и применение нефтепродуктов, полученных на установке атмосферно-вакуумной перегонки.
курсовая работа [129,3 K], добавлен 05.03.2015Технология производства азотных удобрений – нитрата аммония и карбамида. Физико-химические основы процесса синтеза. Объединение производства карбамида, аммиака, нитрата аммония. Внедрение упрощенных экономичных технологических схем со стриппинг-процессом.
реферат [1,8 M], добавлен 21.02.2010Производство ацетона брожением крахмала. Производство ацетона из изопропилового спирта. Обоснование создания эффективной ХТС. Определение технологической топологии ХТС. Построение математической модели ХТС. Свойства и эффективность функционирования.
курсовая работа [1,0 M], добавлен 12.02.2009