Химия и технология платиновых металлов

Основные физические и химические свойства платиновых металлов и их соединений, способы их вскрытия и реагентная способность. Технология проведения аффинажа различных платиновых металлов, важнейшие этапы процесса экстракции и сорбции их комплексов.

Рубрика Химия
Вид курс лекций
Язык русский
Дата добавления 02.06.2009
Размер файла 171,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таблица 4. Возможные формы нахождения хлорокомплексов иридия(III) и иридия(IV) в водных растворах

Комплекс

Среда

Ir(III)

Ir(IV)

[IrCl6]3-

[IrCl6]2-

>3.0 М HCl

[IrH2OCl5]2-

[Ir(H2O)2Cl4]-

[Ir(OH)2Cl4]3-

[IrCl6]2-

[IrH2OCl5]-

[Ir(OH)2Cl4]2-

0,1-3,0 М HCl

[Ir(H2O)2Cl4]-

[IrCl6]2-

[Ir(H2O) Cl5]-

[Ir(OH)2Cl4]2-

0.01-0.05 М HСl

[Ir(OH)2Cl4]2-

pH7

[Ir(H2O)4Cl2]+

[Ir(OH)4Cl2]3-

[Ir(H2O)4Cl2]2+

[Ir(OH)4Cl2]2-

pH 7 - 14

Ir2O3nH2O

IrO2nH2O

>0.1 М NaOH

Рутений в хлоридных комплексах находится в степенях окисления +2, +3, +4, +6. В кристаллическом состоянии выделены хлорокомплексы рутения(III): M3[RuCl6]nH2O, M2[Ru(H2O) Cl5], где M - Na+, K+, Rb+, Cs+, а также димерный комплекс с хлоридными мостиками - K4[Ru2Cl10], хлорокомплексы рутения(IV) типа M2[RuCl6], где M - K+, NH4+, Rb+, Cs+ и биядерная соль K4[Ru2OCl10]H2O с линейным мостиком Ru - O - Ru. В твердом состоянии выделены оксохлоридные комплексы рутения(VI) состава H2[RuO2Cl4]3H2O, M2[RuO2Cl4]nH2O, где M - Rb+, Cs+.

Комплексы рутения в высших степенях окисления способны восстанавливаться в солянокислых растворах хлорид-ионом и кислородом воды, в низших - окисляться кислородом воздуха и протонами. Ориентировочные значения окислительно-восстановительных потенциалов соединений рутения в растворах HCl для следующей схемы превращений составляют:

+0.45 B +0.081 B +0.96 B ([Ru2OCl10]4-) +1.75 B

Ru RuCl [Ru(H2O) Cl5]2- [RuOHCl5]2- RuO42 - +1.25 B

RuO4.

Сведения о хлорокомплексах рутения(II) немногочисленны и противоречивы. Установлено, что они легко окисляются в растворах кислородом воздуха, а при рН = 1.5 - протонами воды. Образование голубых и зеленых соединений неустановленного состава зафиксировано при длительном (в течение 602 суток) выдерживании солянокислых растворов рутения(II) при комнатной температуре.

Хлорокомплексы рутения(III) образуются при взаимодействии RuO4 с растворами HCl (0.5 - 2.0 М) на кипящей водяной бане в течение 30 - 60 мин в присутствии этанола (20 об.%). Гексахлорорутенат(III) - ион - [RuCl6]3 - является доминирующей формой в растворах 6 - 12 М HCl. Однако, даже в концентрированной HCl не исключается существование иона [Ru(H2O) Cl5]2- Эта форма преобладает в 2 - 6 М HCl, а при концентрации HCl 6 М, помимо моноаквопентахлорокомплекса, в растворе сосуществуют ионы [Ru(H2O)2Cl4]-, [Ru(H2O)3Cl3], цис- и транс - [Ru(H2O)4Cl2]+, [Ru(H2O)5Cl]2+.

Достоверные данные о термодинамической устойчивости хлорокомплексов рутения(III) отсутствуют. Общая константа устойчивости комплекса [RuCl6]3 - оценивается равной lg K = 18.7. Существует мнение, что хлорокомплексы Ru(III) менее термодинамически устойчивы, чем соответствующие комплексы Ru(IV), хотя другие авторы его опровергают. Для различных аквохлорокомплексов Ru(III) известны приближенные константы усточивости, имеются также разрозненные данные по кинетике обмена хлорид-ионов и процессов акватации, константы равновесия между цис- и транс-формами. Комплексы [RuCl6]3- и [Ru(H2O) Cl5]2 - при комнатной температуре акватируются с высокой скоростью, если CHCl 3M. Однако с уменьшением числа координированных хлорид-ионов константа скорости акватации уменьшается. Так, период полуобмена хлорид-иона на воду увеличивается от нескольких секунд для [RuCl6]3 - до года для [Ru(H2O)5Cl]2+. В среде HСlO4 хлорокомплексы Ru(III) неустойчивы. В диапазоне концентраций HCl 2.8 - 3.9 M при ионной силе, равной 4.0, в присутствии HСlO4 комплекс [Ru(H2O) Cl5]2 - (CRu = 2.510-3 моль/л) окисляется до [RuCl6]2-, даже если концентрация кислоты не превышает 510-3 М.

Информация о поведении хлорокомплексов рутения(IV) в воде и растворах HCl достаточно противоречива из-за различий в условиях выполнения экспериментов и отсутствия сведений о достижении состояния равновесия в системах. Обычно хлорокомплекс Ru(IV) получают при взаимодействии с соляной кислотой RuO4 или перхлората Ru(IV), а также при сплавлении порошка рутения с хлоратом калия или пероксидом бария с последующей обработкой HCl. В состав хлорокомплексов могут входить акво-, гидроксо- и оксогруппы, а сами соединения могут иметь мономерный и димерный характер.

Комплекс [RuCl6]2 - образуется при восстановлении RuO4 в растворах HCl с концентрацией 6 М (СRu = 10-3 моль/л, t = 98 oC, = 100 ч). Предполагается, что в указанных растворах ион [RuCl6]2 - устойчив. В диапазоне концентраций HCl от 1 до 6 М в растворах превалируют две равновесные формы с соотношением Ru: Cl = 1:3 и 1:4. При этом возможно образование комплексов [(RuOH)2(OH)2Cl6]2- и [(RuOH)2Cl8]2-, что не исключает существования и других ионов, например. [Ru(H2O) Cl5]-, [Ru(H2O)2Cl4]o, [Ru(OH)2Cl4]2- В 0.1 М HCl образуются анионные гидроксоформы и катионные комплексы рутения(IV).

В ряде публикаций высказывается предположение, что конечными продуктами гидролиза комплекса [RuCl6]2 - при концентрации HCl менее 5 М являются димерные комплексы [Ru2OCl10]4- и [Ru2O2Cl8]4-, и в растворах с CHCl 4 M сосуществуют комплексные ионы [Ru2O(H2O)2Cl8]2- и [Ru2O2(H2O)2Cl6]2- Есть мнение, что ион [Ru2OCl10]4 - более устойчив к реакциям акватации и гидролиза по сравнению с ионом [RuCl6]2- При концентрации HCl от 6 до 11 М в растворе, вероятно, доминирует форма [Ru2OCl10]4-, хотя другие авторы считают, что даже в 11 М HCl в растворе возможно существование продуктов ее акватации: [Ru2O(H2O) Cl9]3- и [Ru2O(H2O)2C8]2- В солянокислых растворах, содержащих ион [Ru2OCl10]4 - (CRu = 10-4 моль/л, t = 25 oC, CHCl = 2-6 M) равновесие устанавливается годами.

Комплекс [Ru2OCl10]4 - присутствует в растворах 3.4 М HCl и 3.8 М LiCl. Комплекс [Ru2O(H2O)2Cl8]2 - доминирует в растворах 1.7 - 3.4 М HCl, 2.5 - 3.8 М LiCl, 3.0 - 4.5 M NaCl. В растворах «бурой» соли рутения (CRu = 4.8510-5 моль/л), содержащих 1 М HCl и 1 М HСlO4, в зависимости от концентрации хлорид-иона образуются комплексы с соотношением Ru: Cl = 1:1 и 1:2, которым приписывают состав {[Ru2(OH)4Cl2]2+}m и [Ru2(OH)4Cl4]o.

Предложена схема акватации и гидролиза солей K2[RuCl6] и K4[Ru2OCl10] с образованием биядерных частиц, согласно которой при концентрации HCl от 0.1 до 6.0 М в растворах доминируют биядерные (а, возможно, и полиядерные) формы рутения(IV), содержащие группировки с гидроксомостиками

H

|

O

Ru Ru

O

|

H

Образование иона [(RuOH)2Cl8]2 - предполагается при CHCl 5 М, а иона [(RuOH)2(OH)2Cl6]2- в интервале концентраций 1 - 5 М HCl. Не исключается существование в растворах и других мономерных и полимерных аквогидроксохлорокомплексов Ru(IV). Важно отметить, что в солянокислых растворах [RuCl6]2- и [Ru2OCl10]4 - зафиксированы идентичные продукты гидролиза. Обратный переход в высшие хлорокомплексы идет только в сторону образования комплекса [Ru2OCl10]4-.

Спектрофотометрическим методом изучено комплексообразование в системах [RuO(H2O)4]2+ - HCl (LiCl, NaCl) - HСlO4 и показано, что время достижения равновесия в растворах изменяется от 4 ч (в 10 М HCl) до 12 мес. (в 0.1 М NaCl), а в растворах с CCl- 0,1 моль. л состояние равновесия при 20 оС не устанавливается в течение трех лет. При замене катиона фонового электролита в ряду Na+ - Li+ - H+ равновесие реакций образования хлорокомплексов рутения(IV) смещается в сторону более координационно насыщенных химических форм. Более корректно, однако, мнение, что исходной формой в растворах 1 - 4 М HСlO4 является не мономерный комплекс [RuO(H2O)4]2+, а тетрамер [Ru4(OH)4]4+. При увеличении рН таких растворов увеличивается доля нейтральных форм, начинается поликонденсация и формирование осадка RuO2nH2O. Введение Сl- - ионов в раствор вызывает разрушение полимера, внедрение Cl- - ионов во внутреннюю координационную сферу рутения с образованием нейтральных и анионных аквогидроксохлорокомплексов.

Результаты исследований «старения» растворов [Ru2OCl10]4- в 0.1 М HCl позволили сделать вывод, что с увеличением времени выдерживания растворов происходит образование катионных комплексов полимерного строения, возможно, вида {[(RuOH)2(H2O)4(OH)2]4+}. Если к таким растворам добавлять соляную кислоту, появляется фиолетовое окрашивание, однако в процессе гидролиза [Ru2OCl10]4 - «фиолетовая» форма не образуется. При добавлении соляной кислоты к гидроксиду рутения(IV) также наблюдается появление фиолетовой окраски, по-видимому, за счет образования соединения с соотношением Ru: Cl = 1:2.

Хлоридные комплексы рутения(IV) можно получить и окислением соединений с более низкой степенью окисления. Возможные продукты окисления аквохлорокомплексов Ru(III) в среде HCl - HClO4 в зависимости от концентрации HCl представлены в табл.

Хлорокомплексы рутения(IV) в солянокислых и хлоридных водных растворах подвергаются не только реакциям акватации, гидролиза, полимеризации, но и восстановлению до соединений рутения(III). Устойчивость к восстановлению определяется составом раствора, концентрацией комплекса и температурой. Так, например, в присутствии NaCl восстановление рутения(IV) в форме [RuCl6]2 - не происходит даже при кипячении раствора. Концентрированные по металлу растворы хлорокомплексов рутения(IV) также весьма устойчивы к восстановлению.

Таблица. Состав продуктов окисления аквохлоридных комплексов Ru(III) в среде HCl - HClO4 ( = 4.0)

Состав комплексных форм в растворе

HCl, М

[Ru2O2(H2O)2Cl6]2--

0.1

[Ru2O2(H2O)2Cl6]2-, [Ru2O(H2O)2Cl8]2-,

0.1 - 1.2

[Ru2O2(H2O)2Cl6]2-, [Ru2O(H2O)2Cl8]2-, [RuCl6]2-

1.2 - 2.8

[RuCl6]2-

2.8 - 3.9

Предполагается, что восстановлению биядерного комплекса предшествует его превращение в мономер по реакции
Ru2O6+ + 2H+ 2Ru4+ +4H2O
Eo ([Ru2OCl10]4-/[Ru(H2O) Cl5]2-) равен 0.96 В. При уменьшении концентрации Cl- - ионов и особенно H+ - ионов потенциал пары Ru(IV)/Ru(III) увеличивается, а потенциал кислорода уменьшается и, следовательно, условия существования рутения(III) становятся термодинамически более благоприятными.
Тенденция к деполимеризации комплекса [Ru2OCl10]4 - увеличивается с ростом концентрации HCl и уменьшается с увеличением концентрации рутения. В концентрированной HCl при 20 оС восстановление [Ru2OCl10]4 - до Ru(III) сопровождается полной деполимеризацией по реакции
[Ru2OCl10]4 - +2H+ + 4Cl- 2 [RuCl6]3- + Cl2 + H2O
через 7 дней, если CRu = 6 мг/л, и через 60 дней, если CRu = 18 мг/л. Наиболее вероятно, что деполимеризация происходит одновременно с восстановлением и нагревание до 60 - 80 оС не изменяет характера процессов восстановления и деполимеризации, а только ускоряет их.
Оксохлорокомплексы рутения(VI) получают при взаимодействии хлора и соляной кислоты (или насыщенных солянокислых растворов RbCl и CsCl) c тетраоксидом рутения. Хлорокомплекс(VI) - [RuO2Cl4]2 - устойчив только в присутствии сильных окислителей и сам обладает окислительными свойствами. Спектрофотометрическим и экстракционным методами показано, что ион [RuO2Cl4]2 - доминирует в интервале концентраций 0.5 - 3 М HCl; ему сопутствует комплекс [RuO2(H2O)2Cl2]. В отсутствии окислителей комплексы Ru(VI) восстанавливаются до соединений Ru(IV) мономерного или полимерного характера в зависимости от концентрации HCl в растворе. При этом чем выше концентрация кислоты, тем быстрее идет процесс восстановления. В водных растворах хлорокомплексы Ru(VI) не устойчивы и диспропорционируют с образованием RuO2 и RuO4
Таким образом, в хлоридных и солянокислых водных растворах наиболее вероятно нахождение рутения в степенях окисления +3 и +4.

Хлоридные комплексы осмия исследованы меньше, чем хлорокомплексы других платиновых металлов. Хлорокомплексы осмия известны в степенях окисления +2, +3, +4, +6, но низкие степени окисления (+2, +3) для осмия менее характерны, чем для рутения.

В кристаллическом состоянии выделены хлорокомплексы осмия(III) - M3[OsCl6]nH2O, где M - Na+, K+, NH4+, осмия(IV) типа M2[OsCl6], где M - K+, NH4+, Cs+, Ag+, а также биядерные оксохлорокомплексы, аналоги «бурой» соли рутения(IV) - M4[Os2OCl10], где M - K+, Cs+, NH4+. Все биядерные оксокомплексы в твердом состоянии диамагнитны, их строение подтверждено рентгеноструктурными исследованиями. В твердом состоянии выделены оксохлоридные диамагнитные комплексы осмия(VI) состава M2[OsO2Cl4], где M - K+, Cs+, NH4+, содержащие линейную группировку O Os O.

Имеются указания, что в спиртовых растворах комплексa [OsCl6]3 - образуется сине-фиолетовое соединение осмия(II) - [OsCl6]4- Комплексный ион [OsCl6]3 - можно получить при длительном нагревании [OsCl6]2- c HCl. В водных растворах хлорокомплексы осмия(III) неустойчивы и разлагаются с выделением гидратированного оксида Os2O3nH2O. Комплексный ион [OsCl6]3- в разбавленной HCl также гидролизуется, причем равновесие в растворах с COs = 0.01 - 0.05 моль/л при комнатной температуре достигается в течение нескольких недель.

Термодинамические характеристики для хлорокомплексов осмия(III) неизвестны.

Наиболее устойчивыми и относительно хорошо изученными являются хлорокомплексы Os(IV) - [OsCl6]2- Чаще всего эти соединения получают взаимодействием OsO4 с концентрированной соляной кислотой при нагревании, иногда в присутствии восстановителей. Стандартный окислительно-восстановительный потенциал Eo системы [OsCl6]2-/[OsCl6]3 - равен 0.85 В.

В кинетическом отношении [OsCl6]2 - наиболее инертен по сравнению с аналогичными хлорокомплексами других платиновых металлов. Акватация [OsCl6]2 - при комнатной температуре происходит медленно и лигандный обмен незначителен.

Константа скорости акватации (k65) при 80 оС ( = 0.5 - 1.32) составляет 3.310-6 с-1, а реакции анации иона [Os(H2O) Cl5] - (k56) в 3.3 - 3.8 М HCl равна 210-5 М-1с-1. Константа скорости обмена хлорид-ионов в 8.8 М HCl при 80 - 100 оС составляет величину 3.110-6 с-1 Хлорокомплексы осмия(IV) легко разлагаются в растворах под действием света с выделением осадка OsO2nH2O. Превращения под действием света характерны для комплексов всех платиновых металлов, но в случае комплексов осмия они имеют особенно большую скорость. В растворах [OsCl6]2- в HCl во времени образуются аквохлорокомплексы состава [Os(H2O) Cl5]-, [Os(H2O)2Cl4]o, [Os2O(H2O)2Cl8]2-.

При хранении растворов K2[OsCl6] (COs = 510-5 моль/л) в HCl в темноте (t = 20 - 25 oС) последние устойчивы в интервале концентраций HCl от 0.01 до 11.04 М в течение 6-7 месяцев, а доминирующей формой существования осмия в них является комплекс [OsCl6]2- Под действием рассеянного солнечного света реакция акватации иона [OsCl6]2 - наблюдается даже в 10 М НСl. В этих условиях в растворах 3.3 - 10.9 М HCl сосуществуют комплексные ионы [OsCl6]2- и [Os(H2O) Cl5]- Последний является доминирующей формой в растворах HCl с концентрацией 1.14 - 3.36 М. В растворах 1.14 М HCl обнаруживаются комплексы [Os(H2O) Cl5]- и [Os(H2O)2Cl4]o. Если CHCl 0.12 М, то при нагревании и на свету образуется OsO2 xH2O. При нагревании [OsCl6]2- в воде при 100 оС в течение 1 ч все хлорид-ионы «уходят» из внутренней сферы комплекса, но состав продуктов гидролиза в этом случае не исследовался.

Наиболее детально изучены продукты акватации и гидролиза, образующиеся в растворах K2[OsCl6] в 1 - 3 М H2SO4. Хроматографией на колонке с диэтиламиноэтилцеллюлозой выделены и спектрально охарактеризованы следующие хлорокомплексы: [Os(H2O) Cl5]-, цис - [Os(H2O) OHCl4]2-, фац - [Os(H2O) (OH)2Cl3]-, мер - [Os(H2O)2(OH) Cl3]-, димер с оксомостиком фац - {[(H2O) (OH) - Cl3Os]2-O}2- и димеры с мостиковой OH_группой фац - {[(H2O) (OH) - Cl3Os] (-OH)}-, транс - {[(H2O)2(OH) Cl2Os]2(-OH)}+ и цис - {[(H2O)2(HO) - Cl2Os]2(-OH)}. Такие же комплексы образуются при осторожном восстановлении OsO4 сульфатом железа(II) в растворах HCl. Хлорной кислотой комплексы Os(IV) окисляются до OsO4.

Биядерные оксохлорокомплексы Os(IV) - [Os2ОCl10]4- в водных растворах менее устойчивы по сравнению с комплексом рутения(IV) - [Ru2OCl10]4- Связь Os - O - Os отличается меньшей прочностью, поэтому в водных растворах она легко разрушается, и продуктами гидролиза оказываются мономерные комплексы состава [Os(OH) Cl5]2-, [Os(OH)2Cl4]2-, [Os(OH)3Cl3]2-, фац- и мер - [Os(H2O) (OH)2Cl3]- и [Os(H2O)2(OH) Cl3]o.

Хлорокомплексы осмия(VI) - [OsO2Cl4]2- - получают взаимодействием OsO4 с солянокислыми растворами KCl, NH4Cl или CsCl, либо действием HCl на K2[OsO2(OH)4].

Осмий(VI) обладает особенно высоким сродством к кислороду. В отличие от [RuO2Cl4]2 - оксохлорокомплекс Os(VI) - [OsO2Cl4]2- в растворах более устойчив.

3.2 Сульфатокомплексы платиновых металлов

Сульфатокомплексы платиновых металлов образуются в процессах переработки медно-никелевых шламов сульфатизацией и имеют чрезвычайно сложное строение. Характерной особенностью сульфатокомплексов является их многоядерность. Ионы платиновых металлов в составе сульфатокомплексов провляют различные степени окисления одновременно. В качестве примера можно рассмотреть сульфатокомплексы иридия.

В течение 50 лет французский химик М. Делепин занимался исследованиями сульфатокомплексов иридия. В 1906 г. он впервые сообщил о химическом соединении темно-зеленого цвета, полученном при кипячении раствора гексахлороиридата(III) Na3[IrCl6] и (NH4)2SO4 в конц. серной кислоте, которое он первоначально считал простым комплексом иридия(III) и приписывал ему формулу K4H2NIr3(SO4)63H2O. Дальнейшее изучение данной соли показало, что ей отвечает состав K4[Ir3N(SO4)6(H2O)3], причем иридий имеет степень окисления (III, IV, IV) [17]. Если проводить синтез в отсутствие ионов NH4+, то взамен соли Делепина получится сине-зеленая соль Лекок де Буабодрана K10[Ir3O(SO4)9]3H2O, являющаяся кислородным аналогом соли Делепина и, соответственно, содержащая два атома Ir(III) и один Ir(IV).

Взаимодействие хлорокомплексов иридия с серной кислотой в водном растворе протекает через образование промежуточных продуктов гидролиза хлоридов типа IrxOyClz, которые выделяются в твердую фазу. В серной кислоте при температуре, близкой к ее температуре кипения и примерно равной 300С, эти соединения постепенно растворяются с образованием комплексных сульфатов [Ir3O(SO4)9]10- Независимо от того, в какой степени окисления находился иридий в исходном комплексе, равновесными формами оказываются термодинамически наиболее устойчивые сульфаты со смешанной степенью окисления центрального атома. Обнаружено, что если исходить из гексахлороиридата(IV), то образование сульфатокомплексов протекает с выделением стехиометрического количества элементного хлора, следовательно, в качестве восстановителя выступает Сl--ион. Если же в реакцию с H2SO4 вступает гексахлороиридат(III), то выделяется SO2, то есть окислителем является сама серная кислота:

(1)

Наибольший интерес для оценки химического состояния иридия в процессах жидкостной сульфатизации представляет система Ir(OH)4 - конц. H2SO4, так как гидроксид иридия(IV) является одной из вероятных форм нахождения иридия в анодных медно-никелевых шламах.

Взаимодействие Ir(OH)4xH2O (сIr > 110-3 М) с серной кислотой можно представить протекающим по следующей схеме:

(2)

Установлено, что в начальный момент реакции гидроксида иридия(IV) с конц. H2SO4 при нормальных условиях (поскольку данный процесс экзотермичен, то нет необходимости повышать температуру) образуется «синий» сульфат иридия(IV), который сохраняет полимерную структуру исходного гидроксида. Через 30-45 мин нагревания при температуре 260-280С наблюдается появление следующей формы: она оптически прозрачна в видимой и слабо поглощает в УФ-области, что характерно для сульфатов иридия(III) вероятного состава [Ir3(SO4)11H2O]13- Так называемый «бесцветный» сульфат Ir (III, III, III) выделен в виде Cs11H2[Ir3(SO4)11H2O]. Дальнейшее нагревание сопровождается частичным окислением Ir(III) до Ir(IV) конц. серной кислотой, более глубокой гидратацией и деполимеризацией с образованием равновесного «зеленого» оксосульфата иридия (III, III, IV) - [Ir3O(SO4)9]10- При введении ионов аммония в систему Ir(OH)4xH2O - конц. H2SO4 образуется устойчивый -нитридосульфат иридия [27].

Рис. 1. Структура комплекса [Ir3(3-N) (SO4)6(H2O)3]4-

Первое рентгеноструктурное исследование сульфатного комплекса платинового металла, выполненное в 1971 г., показало, что соединение K4[(Ir3(3-N) (-SO4)6(H2O)3] имеет трехъядерное строение [28]. Центральный атом азота, лежащий на тройной оси, координируется с тремя атомами иридия, сохраняющими октаэдрическую точечную симметрию и соединенными попарно двумя сульфатогруппами. Структура комплекса изображена на рис. 1. Октаэдрическая координация вокруг атома иридия дополнена молекулами воды в транс-положении к атому азота. Расположение атомов азота, иридия и молекул воды - фактически плоскостное (максимальное отклонение 0.01A).

Структура однотипного оксосульфата неизвестна. Можно говорить лишь о том, что оно аналогично выше приведенному.

Оксосульфатокомплекс Ir (III, III, IV) в водных растворах серной кислоты подвергается ступенчатому гидролизу, первая стадия которого протекает медленно, без разрушения трехъядерной структуры комплексного аниона [Ir3III,III,IVO(SO4)9]10- и сопровождается замещением концевых сульфатогрупп молекулами воды:

[Ir3III,III,IVO(SO4)9]10- + 3H2O (Ir3III,III,IVO) (SO4)6(H2O)3]4- + 3SO42-

3.3 Амминокомплексы платиновых металлов

В состав амминокомплексов входит в качестве лиганда молекула аммиака. Амминокомплексы образуются в процесах аффинажа, например, плоскоквдратный комплекс состава [Pd(NH3)2Cl2]. Комплекс транс-строения характеризуются крайне низкой растворимостью в воде, благодаря чему используется для количественного выделения палладия из растворов аффинажного производства (см. раздел 5).

3.4 Нитрокомплексы платиновых металлов

Образуются при нитровании путем замещения лигандов во внутренней сфере комплексов на ион NO2- В нитрокомплексах платиновые металлы проявляют более низкие характерные для них степени окисления. Известны следующие комплексы: [M(NO2)4]2-, где M = Pd(II), Pt(II); [M(NO2)6]3-, где M = Rh(III), Ir(III); [MNO(NO2)4OH]2-, где M = Ru, Os. Различие в составе и свойствах указанных соединений обусловливает возможность разделения близких по свойствам платиновых металлов. Они хорошо растворимы в водных растворах и не гидролизуются. Подробно поведение нитрокомплексов рассмотрено ниже.

4. Технологические аспекты аффинажа платиновых металлов

4.1 «Классическая» технология

Аффинаж (от французского «affiner» - очищать) - заключительная стадия переработки различных видов платиносодержащего сырья. Конечными продуктами аффинажа являются платиновые металлы в виде порошков и слитков, которые по чистоте должны отвечать требованиям ГОСТ.

На аффинаж поступают первичное сырье (концентраты, образующиеся при переработке шламов, «шлиховая платина») и вторичное сырье (электронный лом, дезактивированные катализаторы, отработанные электролиты и др.). Выбор конкретной технологической схемы и оптимальных режимов технологических операций зависит от количественного и качественного состава продуктов, подлежащих переработке. Чтобы добиться максимального извлечения ценных металлов с минимальными потерями, а также с целью сокращения незавершенного производства, необходимо рационально сочетать в технологическом цикле известные методы и приемы, которые будут изложены ниже. Варианты технологических схем переработки некоторых видов сырья даны в Приложении.

Первоначально на примере «шлиховой платины» рассмотрим аффинаж по классической схеме, предусматривающей выделение платиновых металлов в виде трудно растворимых комплексных соединений с последующим их прокаливанием и получением аффинированных порошков. Следует подчеркнуть, что в настоящее время практически повсеместно и в нашей стране, и за рубежом для вскрытия платиносодержащего сырья используется процесс гидрохлорирования, в результате которого все металлы платиновой группы, а также золото переходят в раствор в виде комплексных хлоридов (серебро остается в твердом остатке). Важно здесь обратить внимание на поведение осмия в процессе гидрохлорирования. Установлено, что в растворах гидрохлорирования металлического осмия и осмийсодержащих продуктов (температура процесса 80 оС, расход хлора - 1 л/час, СHCl = 0.5 - 6 М) присутствует Os(VIII) в виде OsO4. С ростом концентрации HCl в растворе, содержащем OsO4, его переход в газовую фазу растет. Отсюда вытекает принципиальный вывод о необходимости улавливания тетраоксида осмия на стадии вскрытия сырья во избежание потерь этого весьма редкого и дорогого платинового металла. Аналогичным образом ведет себя осмий и при «царсководочном» вскрытии. Растворение «шлиховой платины» в «царской водке» - традиционный, хотя и несколько устаревший метод растворения продуктов, содержащих платину. Остановимся подробнее на поведении платиновых металлов при растворении «шлиховой платины» и их последующем разделении и выделении.

4.1.1 Аффинаж платины

Растворение «шлиховой платины» в «царской водке» осуществляется при температуре 70-85 оС, причем сырье загружается в предварительно нагретую до указанной температуры соляную кислоту, а затем добавляется рассчитанное количество HNO3. Внешними признаками конца растворения является бурное вспенивание и выделение паров оксидов азота по реакциям:

3HCl + HNO3 = NOCl + Cl2 + 2H2O

NOCl NO + Cl

2NO + O2 NO2.

Таким образом, не исключено выделение весьма реакционноспособного атомарного хлора, взаимодействующего с благородными и неблагородными металлами. Последние переходят в хлориды (FeCl3, CuCl2 и др.), а платина, палладий и золото - в хлоридные комплексы в соответствии с реакциями:

3Pt + 18HCl + 4HNO3 = 3H2[PtCl6] + 4NO + 8H2O

3Pd + 18HCl + 4HNO3 = 3H2[PdCl6] + 4NO2 + 8H2O

Au + 4HCl + HNO3 = H[AuCl4] + NO + 2H2O.

Палладий даже при растворении в «царской водке» частично переходит в тетрахлоропалладиевую кислоту H2[PdCl4], где проявляет типичную для него степень окисления +2. Некоторое количество платины и иридия образуют соединения H2[PtCl4] и H2[IrCl6], соответственно. Небольшая часть платины может образовывать гексахлороплатинат(IV) железа по реакции:

3H2[PtCl6] + 2FeCl3 = Fe2[PtCl6]3 + 6HCl.

В присутствии азотной кислоты также образуются нитрозохлоридные соединения платиновых металлов, которые выпадают в виде желтого осадка. Образование нитрозохлоридных соединений протекает по реакциям:

H2[PdCl4] + 2NOCl = (NO)2[PdCl4] + 2HCl

H2[PtCl6] + 2NOCl = (NO)2[PtCl6] + 2HCl

H2[IrCl6] + 2NOCl = (NO)2[IrCl6] + 2HCl

Если нитрозохлоридные соединения не разрушать, то они будут оставаться в нерастворимом остатке. Разрушение их осуществляется нагреванием раствора с добавлением воды при температуре 105-110 оС в результате протекания следующих реакций:

(NO)2[PtCl6] + H2О = H2[PtCl6] + NO+ NO2.

Аналогично идут реакции для палладия и иридия. Конец разрушения определяется по прекращению выделения бурых паров оксидов азота и вскипания.

Для растворения «царской водкой» обычно применяются 33%-ная соляная и 65%-ная азотная кислоты. Расход кислот на 100 кг шлиховой платины составляет: HCl - 500 л, HNO3 - 100 л. В результате растворения «шлиховой платины» в «царской водке» в раствор переходит большая часть (90% при первом растворении) платины, почти весь палладий, около 60% родия, 15% иридия, 90% золота и 100% железа и меди. Часть иридия, родия, платины и серебро в виде AgCl остаются в нерастворившемся остатке. Процентное извлечение платиновых металлов при растворении в «царской водке» определяется составом конкретной партии перерабатываемой «шлиховой платины». В зависимости от этого выход первого нерастворимого остатка изменяется от 10 до 15%.

Растворы, полученные после вскрытия в «царской водке», обрабатывают HCl с целью удаления остатков азотной кислоты. Эта операция проводится при постоянной температуре 120-125 оС. После упаривания раствор охлаждается и отфильтровывается от первого нерастворимого остатка, который еще содержит некоторое количество платины. Поэтому, собрав достаточное количество нерастворимого остатка, производят повторное его растворение примерно по тому же режиму, что и основную «шлиховую платину». Полученный второй нерастворимый остаток содержит мало платины и богат редкими платиновыми металлами, на извлечение которых он направляется.

Растворы после растворения «шлиховой платины» и первого нерастворимого остатка и упаривания с соляной кислотой поступают на доводку, цель которой как можно полнее перевести Pd(IV) в Pd(II), Ir(IV) в Ir(III), Au(III) в золото элементарное. Необходимость доводки определяется тем, что последующая операция - это выделение (осаждение) платины в виде гексахлороплатината(IV) аммония (NH4)2[PtCl6] (ХПА), а Ir(IV) и Pd(IV) также образуют однотипные нерастворимые соли. В то же время (NH4)2[PdCl4] и (NH4)3[IrCl6] хорошо растворимы в воде. Необходимо обратить внимание на то, что в процессе доводки как можно большая часть платины должна остаться в степени окисления+4, чтобы обеспечить высокий выход первого гексахлороплатината(IV) аммония (комплексная соль (NH4)2[PtCl4] подобно (NH4)2[PdCl4] хорошо растворима). Родий в процессе доводки степень окисления не меняет. Доводка осуществляется так: раствор при температуре 120-125 оС упаривается до плотности 1.38, затем обрабатывается 15%-ным этиловым спиртом, расход которого - 250-300 мл на 200 кг шлиховой платины. Этиловый спирт расходуется на процесс восстановления по следующим реакциям:

12H2[IrCl6] + C2H5OH + 3H2O = 12H3[IrCl6] + 2CO2

6H2[PdCl6] + C2H5OH + 3H2O = 6H2[PdCl4] + 2CO2+ 12HCl

4H[AuCl4] + C2H5OH + 3H2O = 4Au + 2CO2+ 16HCl.

Этиловый спирт разрушает и возможно присутствующие в растворе остатки азотной кислоты.

Обрабатываемый раствор прогревается в течение 30 мин и опробуется на качество ХПА. Конец спиртования определяется по следующим признакам:

по прекращению вспенивания и выделения газообразных оксидов;

по запаху спирта;

по пробе на качество (NH4)2[PtCl6]: если окраска ХПА не характерна, то добавляют еще некоторый избыток этилового спирта и прогревают реакционную смесь.

Раствор разбавляют водой до плотности 1.16 - 1.18 и осаждают золото, для чего в раствор вводится щавелевая кислота H2C2O4 расчета 5 г на 1 кг «шлиховой платины», и содержимое котла прогревается в течение 3_х часов при температуре 95-100 оС. В случае избытка H2C2O4 восстанавливается не только золото, частично иридий, палладий, но и платина по реакции:

H2[PtCl6] + H2C2O4 = Pt + 2HCl + 2CO2

Раствор после нагревания с H2C2O4 вновь разбавляют до плотности 1.16-1.18 и обрабатывают 20%-ным раствором сахара (расход сахара - 2-3 г. на 1 кг шлиховой платины), прогревают в течение 50-60 мин при температуре 95-100 оС и проверяют полноту осаждения золота. Раствор после фильтрации от осадка золота поступает на осаждение ХПА, а золотосодержащий кек - на извлечение золота.

Для получения крупного кристаллического осадка ХПА раствор должен иметь плотность 1.16. Получение крупнокристаллического осадка обеспечивает лучшее качество ХПА, т. к. мелкокристаллическийо осадок имеет более развитую поверхность и сорбирует на себе различные примеси. С целью получения крупнокристаллического осадка ХПА применяют растворы хлорида аммония различной концентрации: сначала вводят 5%-ный раствор NH4Cl, затем 12,5%-ный и, наконец, 25%-ный. По данным практики, количество хлорида аммония, вводимого с растворами различной концентрации, должно быть следующим:

5%-ный раствор составляет 20% от общего расчетного количества NH4Cl;

12,5%-ный - 20% от общего количества NH4Cl;

25%-ный - 50% от общего количества NH4Cl.

Осаждение ведется на холоду по реакции:

Н2[PtCl6] + 2NH4Cl = (NH4)2[PtCl6] + 2HCl.

Гексахлороплатинат(IV) железа также взаимодействует с NH4Cl с образованием ХПА:

Fe2[(PtCl6)]3 + 6NH4Cl > 3 (NH4)2[PtCl6] + 2FeСl3.

После проверки на полноту осаждения раствор с осадком переносится на фильтр и фильтруется. Желательно очень быстро отделить раствор от осадка, в том числе и потому, что при продолжительном соприкосновении раствора с осадком последний очень плохо отмывается от примесей и, в особенности, от солей железа и палладия. Несмотря на эти меры предосторожности, ХПА сорбирует небольшое количество солей, поэтому необходимо проводить промывку осадка, которая производится 5%-ным раствором хлорида аммония, причем о полноте отмывки от железа судят по реакции с тиоцианатом аммония:

FeСl3 + 3NH4CNS = Fe(CNS)3 + 3NH4Cl.

О полноте отмывки от палладия судят по реакции с диметилглиоксимом, при этом палладий с диметилглиоксимом образует внутрикомплексное соединение [(CH3)2C2N2O2H]2Pd. Отмытый ХПА подсушивается и направляется на прокаливание.

Получение губчатой платины производится в электрических печах сопротивления. ХПА начинает разрушаться при температуре 300 оС по реакции:

3 (NH4)2[PtCl6] > 3Pt + 2NH4Cl + 16HCl + 2N2.

Во избежание большого пылеуноса температура должна подниматься по строго разработанному режиму. Операция длится 10 часов. К концу операции температура поднимается до 1100 оС. Полученная платиновая губка не должна содержать непрокаленный ХПА. Цвет губки - светло-серый, и при ударе она должна мяться, не рассыпаясь в порошок. Если губка отвечает кондиции, то поступает на плавку, но большей частью она не отвечает требованию ТУ и направляется на переаффинаж - растворение в «царской водке» и все последующие операции аффинажа. Платиновая губка 2, как правило, отвечает требованиям кондиции.

Растворы и промывные воды после осаждения I_го ХПА направляются на упаривание с целью концентрирования солей в растворе, дополнительного выделения гексахлороплатината, а также осаждения солей иридия(IV) и палладия(IV). Это достигается добавлением азотной кислоты, при этом обеспечивается переход Ir(III) > Ir(IV); Pd(II) > Pd(IV); остатки Pt(II) > Pt(IV). Поскольку в растворе имеется избыток NH4Cl, то выпадают соответствующие соли, а именно: (NH4)2[PdCl6], (NH4)2[PtCl6], (NH4)2[IrCl6]. Раствор отфильтровывают от осадка солей, и осадок прокаливается. После прокаливания получается губка так называемой «иридистой» платины, которая содержит в среднем платины - 50-55%, иридия до 30%, палладия 17-18%, родия - 0,05 - 0,07%. В этом продукте еще много платины и поэтому производят переаффинаж с целью ее выделения. Переаффинаж производится по схеме основного аффинажа с небольшим изменением, которое касается в первую очередь дозировки различных реагентов.

Нерастворимый остаток от растворения в «царской водке» «иридистой» платины содержит большое количество иридия и родия и направляется на их извлечение, а растворы после осаждения ХПА содержат много палладия и поступают на аффинаж палладия.

4.1.2 Аффинаж палладия

Палладиевый раствор упаривается в котлах при температуре 110-120 оС. В раствор постепенно вводится аммиак. Перед введением аммиака палладий в растворе находится в виде тетрахлоропалладата(II) аммония (NH4)2[PdCl4]. В том случае, если аммиак вводится в избытке, то должна протекать конечная реакция:

(NH4)2[PdCl4] + 4NH3 = [Pd(NH3)4] Cl2 + 2NH4Cl.

В действительности аммиак прибавляется постепенно, и поэтому первоначально часть палладия переходит в тетраамминпалладий(II), а другая часть палладия - остается в форме тетрахлоропалладат(II) - иона. Эти комплексы взаимодействуют друг с другом с образованием нерастворимой соли Вокелена состава [Pd(NH3)4] [PdCl4] по реакции:

(NH4)2[PdCl4] + [Pd(NH3)4] Cl2 = [Pd(NH3)4] [PdCl4] + 2NH4Cl.

При дальнейшем добавлении аммиака соль Вокелена растворяется с образованием тетраамминпалладий(II) дихлорида:

[Pd(NH3)4] [PdCl4] + 4NH3 = 2 [Pd(NH3)4] Cl2.

К полученному раствору постепенно прибавляется соляная кислота: при этом выпадает светло-желтый кристаллический осадок транс-дихлородиамминопалладия(II), или палладозоамин:

[Pd(NH3)4] Cl2+ 2HCl = [Pd(NH3)2Cl2] + 2NH4Cl.

Соль мало растворима в воде и в отличие от цис-изомера более светлого цвета.

Кроме этих реакций, при добавлении аммиака протекает взаимодействие комплексов родия(III) и хлорида железа(III) с аммиаком по реакциям:

(NH4)3[RhCl6] + 3NH4OH = Rh(OH)3 + 6NH4Cl

FeCl3 + 3NH4OH = Fe(OH)3 + 3NH4Cl

Гидраты выпадают в осадок, а медь остается в растворе в виде комплекса:

CuCl2 + 4NH4OH = [Cu(NH3)4] Cl2 + 2H2O

Обработка аммиаком производится в котлах при температуре 75-85оС, осаждение палладозоамина - на холоду. В процессе осаждения палладозоамина соляной кислотой гидраты растворяются, а комплексы разрушаются и не мешают осаждению содержащего аффинируемый металл вещества. Количество соляной кислоты не должно быть очень большим, т. к. палладозоамин может снова перейти [Pd(NH3)2Cl2]+ 2HCl = (NH4)2[PdCl4].

После фильтрации и сушки палладозоамина его направляют на прокаливание:

[Pd(NH3)2Cl2] = Pd + 2HCl + NH4Cl.

4.1.3 Аффинаж иридия

На аффинаж иридия, как отмечалось выше поступают растворы и промывные воды от иридистого хлороплатината аммония. Они заливаются в резервуар, нагреваются до 95-100 оС, подкисляются азотной кислотой до прекращения бурной реакции и вскипания (расход азотной кислоты 1.0-1.5 объема на 100 объемов раствора). В результате выпадает осадок гексахлороиридата(IV) аммония:

2 (NH4)3[IrCl6] + 2Cl = 2 (NH4)2[IrCl6] + 2NH4Cl

Раствор прогревается до полного осаждения соли иридия (по пробе), отстаивается, декантируется и фильтруется, осадок хлорида промывается на фильтре 8%-ным раствором аммония несколько раз. Осадок подсушивается - это технический гексахлороиридат(IV) аммония (ХИА) и вновь идет на растворение. На 100 кг (NH4)2[IrCl6] берется 100 л технической соляной кислоты плотностью 1.17 и 100 л воды. Раствор нагревается до температуры 90-95 оС, и в него вводится технический ХИА и затем небольшими порциями - азотная кислота. После растворения ХИА раствор охлаждается и фильтруется. Осадок промывается, просушивается и направляется на плавку на штейн, а раствор - на упаривание с серной кислотой до сиропообразного состояния при температуре не менее 110 оС с целью удаления удаление азотной кислоты. После этого раствор разбавляется, охлаждается и направляется на электролиз.

Необходимо подчеркнуть, что «шлиховая платина», как правило, содержит крайне малые количества родия и рутения в отличие, например, от платиновых концентратов (норильский концентрат КП_2). Поэтому далее мы рассмотрим аффинаж металлов-спутников безотносительно к виду перерабатываемого сырья.

4.1.4 Аффинаж родия

Растворы, содержащие родий, обычно упаривают для понижения кислотности и разрушения органических восстановителей, если таковые ранее использовались, при температуре 85-90 оС и в них вводится азотная кислота - примерно 1% от общего количества раствора - для разрушения избытка органических восстановителей и щавелевой кислоты, концентрация которой в исходном растворе может достигать около 8 г/л. После этого растворы упаривают до плотности 1.6-1.7 и анализируют на содержание соляной кислоты (не более 230 г./л). Далее растворы охлаждают до 45 оС, добавляют воду и вновь упаривают до плотности 1.6-1.7. Упаривание с водой ведут до тех пор, пока не получат оптимальную кислотность. Далее растворы идут на нитрование, цель которого перевести хлорокомплексы платиновых металлов в нитрокомплексы. Кроме того, операция нитрования производится для очистки растворов от неблагородных металлов: меди, железа, никеля, селена, теллура, сурьмы, свинца, которые выделяются в форме гидратов. Золото при этом восстанавливается до металла.

При нитровании реализуются следующие реакции:

NaNO2 + HCl = NaCl + HNO2

2HNO2 > NO2 + NO + H2O

2HCl + 2NaNO2 = 2NaCl + NO2 + 8NO + H2O

H3[RhCl6] + 6NaNO2 = Na3[Rh(NO2)6] + 3HCl + 3NaCl


Подобные документы

  • Электролиз расплавленных хлоридов как способ очистки платиновых металлов от металлических и неметаллических примесей. Электролиз в водных электролитах. Схема переработки палладиевых катализаторов. Пирометаллургическое рафинирование платиновых сплавов.

    контрольная работа [163,9 K], добавлен 11.10.2010

  • Строение атомов металлов. Положение металлов в периодической системе. Группы металлов. Физические свойства металлов. Химические свойства металлов. Коррозия металлов. Понятие о сплавах. Способы получения металлов.

    реферат [19,2 K], добавлен 05.12.2003

  • Физико-химические свойства платины, родия, иридия, их хлоридные и нитритные комплексы. Аспекты аффинажа платиновых металлов. Оптимизация условий инверсионно-вольтамперометрического определения элементов, анализ по электронному спектру поглощения.

    дипломная работа [1,0 M], добавлен 02.12.2013

  • Общая характеристика металлов. Определение, строение. Общие физические свойства. Способы получения металлов. Химические свойства металлов. Сплавы металлов. Характеристика элементов главных подгрупп. Характеристика переходных металлов.

    реферат [76,2 K], добавлен 18.05.2006

  • Кислотно-основные свойства оксидов и гидроксидов и их изменение. Восстановительные и окислительные свойства d-элементов. Ряд напряжения металлов. Химические свойства металлов. Общая характеристика d-элементов. Образование комплексных соединений.

    презентация [541,6 K], добавлен 11.08.2013

  • Технологические аспекты аффинажа платиновых металлов. Возможность прямого определения микроколичеств платины, родия и иридия в растворах их хлоридных и нитритных комплексов методом инверсионной вольтамперометрии. Влияние природы фонового электролита.

    курсовая работа [1,3 M], добавлен 15.11.2013

  • Положение металлов в периодической системе Д.И. Менделеева. Строение атомов металлов и их кристаллических решеток. Физические свойства металлов и общие химические свойства. Электрохимический ряд напряжения и коррозия металлов. Реакции с другими веществами

    презентация [1,8 M], добавлен 29.04.2011

  • Положение металлов в периодической системе Д.И. Менделеева. Строение атомов металлов, кристаллических решеток. Металлы в природе, общие способы их получения. Физические свойства металлов. Общие химические свойства. Электрохимический ряд напряжения.

    презентация [2,3 M], добавлен 09.02.2012

  • Общая характеристика щелочных металлов и их соединений, применение в промышленности. Формы металлов, встречающиеся в природе, и способы их получения. Химические свойства щелочных металлов и их взаимодействие с водой, с кислородом, с другими веществами.

    презентация [3,9 M], добавлен 22.09.2015

  • История развития производства благородных металлов. Свойства и методы получения благородных металлов. Химические свойства. Физические свойства. Использование благородных металлов.

    реферат [384,3 K], добавлен 10.11.2002

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.