Пищевая химия

Химический состав пищевых систем, его полноценность и безопасность. Фракционирование и модификация компонентов продуктов питания. Пищевые и биологически активные добавки. Основные медико-биологические требования к безопасности продуктов питания.

Рубрика Химия
Вид учебное пособие
Язык русский
Дата добавления 09.05.2012
Размер файла 7,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Производство плодово-ягодных соков, безалкогольных напитков и вин

Применение ферментных препаратов при производстве плодово-ягодных соков, вин и безалкогольных напитков осуществляется с целью повышения выхода сока, осветления и стабилизации соков, безалкогольных напитков и вин, предотвращения окислительных процессов в соках и в изготовляемых из них продуктах, а также для инверсии сахарозы при производстве безалкогольных напитков и сиропов. При этом в одних случаях необходимо иметь набор ферментных препаратов, содержащих определенный комплекс ферментов, в других -- требуются препараты индивидуальных ферментов. Кроме того, ферментные препараты должны удовлетворять требованиям, предъявляемым технологией получения конкретного продукта, не только по типу катализируемой реакции, но и в отношении условий их протекания.

В соответствии со спецификой плодово-ягодного сырья и целями применения ферментные препараты можно разделить на шесть групп:

1) препараты, предназначенные для получения неосветленных соков, увеличивающие выход и повышающие экстрактивность;

2) препараты, предназначенные для получения осветленных соков, увеличивающие выход, повышающие экстрактивность и обеспечивающие полный гидролиз пектиновых и белковых веществ;

3) препараты, мацерирующие плодово-ягодную ткань, повышающие выход и гомогенность соков с мякотью;

4) препараты, предназначенные для получения осветленных плодово-ягодных виноматериалов, увеличивающие выход и повышающие экстрактивность виноматериалов;

5) препараты, способствующие предотвращению окислительных процессов и развитию аэробных микроорганизмов в соках, винах, безалкогольных напитках;

6) препараты, катализирующие инверсию сахарных сиропов при производстве безалкогольных напитков и товарных сиропов.

Применение пектолитических ферментов. Основной биохимический процесс, протекающий в плодово-ягодной мезге и соке при их обработке пектолитическими препаратами или при совместном применении термической и ферментативной обработки, -- гидролиз пектиновых веществ. Но наряду с этим происходят превращения белков, целлюлозы, гемицеллюлозы и других компонентов сырья.

Поэтому ферментные препараты, используемые для получения полностью осветленного сока из большинства плодов и ягод, должны содержать не только пектолитические ферменты, но и ферменты, гидролизующие другие коллоидные соединения, которые обуславливают опалесценцию соков и нестабильность изготовляемых из них вин и безалкогольных напитков.

С целью максимального извлечения сока и облегчения его осветления при гидролизе пектиновых веществ ягод и плодов необходимо учитывать свойства пектолитических ферментов самого сырья и вносимых препаратов. В зависимости от технологических требований и химического состава сырья следует применять препараты с определенным комплексом ферментов; имеется в виду как спектр ферментов (пектинэстераза, эндо-, экзополигалактуроназа и др., а также сопутствующие ферменты), так и их соотношение. Кроме того, необходимо путем подбора режима обработки сырья создать оптимальные условия для действия ферментов.

В настоящее время в мире производится достаточно широкий спектр пектолитических ферментных препаратов. Среди промышленных продуцентов пектолитических ферментов следует отметить A. niger, A. wenti, A. oryzae, A. foetidus, P. expansum, P. italicum, Rhizopus spp.

Применение протеолитических ферментов. Некоторые плодово-ягодные соки и вина трудно осветляются и часто мутнеют при хранении из-за наличия в них белковых соединений. Устранение белкового помутнения может быть осуществлено посредством применения термической обработки и различных адсорбентов с последующей фильтрацией. Все эти методы обедняют химический состав продукта, ухудшают его качество, причем не всегда достигается положительный результат. Для многих видов сырья огромную роль в процессе осветления соков играют протеиназы, в связи с чем наличие кислых протеиназ наряду с ферментами пекто-литического комплекса обязательно.

Применение мацерирующих ферментов. При производстве плодово-ягодных соков с мякотью размельчение плодовой ткани осуществляется механическим путем. Большинство видов сырья перед механическим измельчением подвергается термической обработке. Термическая обработка способствует кислотному гидролизу протопектина, в результате чего плодовая ткань размягчается и легче поддается механическому измельчению. Очевидно, что жесткие режимы обработки сырья ухудшают органолеп-тические свойства и пищевую ценность продукта. Поэтому соки с мякотью часто содержат недостаточно тонко измельченную мякоть, негомогенную и расслаивающуюся при хранении. С позиции устранения указанных выше недостатков и получения гомогенных соков с мякотью, не подвергающихся расслаиванию, целесообразным является применение мацерирующих ферментных препаратов, расщепляющих протопектин, но не снижающих вязкость сока.

Пектолитические ферментные препараты, применяемые для увеличения выхода и осветления соков, непригодны для производства соков с мякотью, т. к. основным ферментом в них является эндополигалактуроназа, резко снижающая вязкость сока. Гемицеллюлаза и целлюлаза способствуют получению однородной консистенции соков с мякотью.

Применение глюкозооксидазы и каталазы. Ферментный препарат глюкозооксидаза (в котором в качестве обязательного компонента присутствует каталаза) применяется с целью улучшения качества и стабилизации плодово-ягодных соков, вин и безалкогольных напитков за счет удаления кислорода в результате реакции окисления глюкозы (см. также разд. 8.2). Таким образом, этот препарат способствует предотвращению окислительных процессов и микробиологической порчи под действием аэробных микроорганизмов.

Препарат обладает строгой специфичностью по отношению к глюкозе, его вносят после завершения технологических процессов с целью стабилизации свойств продукта, полученного в процессе производства. Желательно, чтобы препараты были термостабильны и не инактивировались при температуре 65 -- 70°С в течение 10 -- 15 мин. Такие препараты можно было бы применять комплексно с легкими режимами пастеризации.

Ферментные препараты, применяемые в плодово-ягодном виноделии, должны сохранять активность в условиях определенного содержания алкоголя (до 10 -- 12%) и эффективно действовать при значениях рН, обусловленных химическим составом виноматериалов.

Применение инвертазы. Препараты, катализирующие гидролиз сахарозы при приготовлении сахарных сиропов, используемых при производстве безалкогольных напитков, должны содержать фермент инвертазу (?-фруктофуранозидазу), не должны иметь специфического запаха, темного цвета, окислительных или других ферментов, способных изменять цвет, аромат и вкус продукта.

Необходимо, чтобы препараты катализировали процесс инверсии сахарозы в довольно широком диапозоне рН (для чистого сахарного сиропа рН 6,0 -- 6,5; для сахарного сиропа, изготовленного на фруктовых соках, рН 2,5 -- 4,5). Кроме того, необходимо учитывать специфику биохимического состава сырья и особенности технологического процесса производства соков и виноматериалов.

Ферментные препараты, применяемые при переработке плодово-ягодного сырья, могут оказывать влияние на цвет изготовляемого продукта. В связи с этим плодово-ягодное сырье следует разделить на две группы: слабоокрашенное -- яблоки, айва, белые сорта слив и винограда и др.; окрашенные в красный цвет, т. е. содержащие вещества группы ан-тоцианов -- кизил, черника, ежевика, малина, земляника, красные сорта винограда и слив и т.п.

При производстве продуктов, относящихся к первой группе, -- слабоокрашенных -- следует применять ферментные препараты, не содержащие окислительных ферментов, вызывающих потемнение продукта, а в ряде случаев -- снижение органолептических свойств и пищевой ценности, таких как полифенолоксидаза, пероксидаза, каталаза, аскорбатоксидаза. При переработке сырья второй группы -- окрашенных в красный цвет -- недопустимо применение препаратов, содержащих ферменты, разрушающие антоцианы.

Препараты, предназначенные для переработки шиповника, черной смородины, ценность которых в значительной степени обуславливается наличием в плодах аскорбиновой кислоты, не должны содержать фермента аскорбатоксидазы, т. к. окисление аскорбиновой кислоты под действием этого фермента снижает ценность получаемого продукта.

Спиртные напитки и пивоварение

Производство спиртных напитков. Производство спиртных напитков из крахмалсодержащего сырья практикуется почти во всех странах мира. Основными видами сырья являются картофель и рожь в Европе, картофель и пшеница в России, кукуруза и рожь в США, рис и бататы на Востоке, тапиока в тропических странах.

Крахмал, как основной компонент сухих веществ сырья, из которого и образуется спирт, непосредственно дрожжами не сбраживается. Поэтому его необходимо гидролизовать до сбраживаемых сахаров, для этого требуется применение ферментов.

Применяемый издавна зерновой солод, как источник амилолитичес-ких ферментов, обеспечивает достаточно глубокое осахаривание и выбраживание только за трое суток. Необходимо отметить, что зерновой солод не только выполняет задачу гидролиза крахмала до сбраживаемых сахаров, но и является источником легкоусвояемого азотистого питания для дрожжей, т. к. в процессе солодоращения, под действием протеиназ, в нем накапливается значительное количество аминокислот (до 32% от общего азота). Активность протеиназ в процессе солодоращения возрастает примерно в 40 раз. Зерновой солод обладает и цитолитической активностью, обеспечивая определенную степень гидролиза клеточных стенок растительного сырья и тем самым улучшая контакт крахмала с амилолитическими ферментами.

Таким образом, применяемый в спиртовом производстве зерновой солод выполняет три основные функции: осуществляет гидролиз крахмала до сбраживаемых Сахаров; является источником азотистого питания для дрожжей и при осахаривании крахмалистого сырья производит частичное разрушение клеточных стенок сырья.

Однако скорость осахаривания крахмала при использовании солода остается достаточно низкой, что затрудняет интенсификацию процесса брожения. Применение ферментных препаратов микробного происхождения дает возможность значительно повысить концентрацию необходимых ферментов в среде и обеспечить глубокий гидролиз крахмала за сравнительно короткий период.

Кроме стадии осахаривания ферментные препараты, обладающие сильной разжижающей активностью (?-амилаза), применяются на стадии водно-тепловой обработки сырья с целью смягчить режим разваривания, снизить вязкость замесов и облегчить их дальнейшую транспортировку.

Применяя ферментные препараты на стадии приготовления сусла для дрожжегенерации, необходимо обеспечить интенсивный гидролиз белков с целью обогащения ценным азотистым питанием дрожжевого сусла.

Таким образом, для спиртового производства, перерабатывающего крахмалсодержащее сырье, необходимо применение ферментных препаратов с амилолитическим, протеолитическим и цитолитическим действием. При замене солода культурами микроорганизмов или препаратами ферментов необходимо, чтобы полученный спирт обладал высокими дегустационными качествами и не содержал вредных примесей.

Пивоварение. При производстве пива по обычной технологической схеме необходимые ферментные системы для подготовки зернового сырья и перевода экстрактивных веществ в растворимое состояние на стадии затирания образуются в процессе солодоращения.

Основными ферментами, образующимися в процессе солодоращения и имеющими наиболее существенное значение в технологии пивоварения, являются: амилолитические ферменты, разжижающие и осахаривающие крахмал; протеолитические ферменты, расщепляющие белки ячменя до пептидов различной молекулярной массы и свободных аминокислот; цитолитические ферменты, гидролизующие некрахмальные полисахариды, растворяющие клеточные стенки эндосперма зерна, благодаря чему облегчается доступ амилаз и протеаз к соответствующим субстратам.

Каждый из перечисленных процессов должен пройти с определенной глубиной, чтобы обеспечить нормальное протекание фильтрации затора, брожения сусла, осветление и фильтрацию пива, а также создание определенных физико-химических свойств (пенообразование, прозрачность, стойкость при хранении) и вкусовых качеств готового продукта.

Применение ферментных препаратов микробного происхождения (амилоризин ПХ, П10Х, амилосубтилин Г10Х, Г20Х, протосубтилин Г10Х, цитороземин ПХ) с целью замены солода несоложенным ячменем позволяет интенсифицировать процесс, избежать потерь ценных компонентов сырья на дыхание и образование проростка, в целом повысить рентабельность пивоваренного производства. Кроме отечественных препаратов, в настоящее время широко используются ферментные препараты различных зарубежных фирм. Предназначенные для замены ферментов солода ферментные препараты микробного происхождения должны по характеру своего действия соответствовать ферментам солода и значительно превосходить их по активности.

Ферменты, используемые для борьбы с холодной мутью. К образованию холодной мути в бутылочном пиве приводит рост микрорганизмов; такое биологическое помутнение предотвращается пастеризацией пива или стерильной фильтрацией при заполнении бутылок в асептических условиях. Небиологическое помутнение пива может происходить при его продолжительном хранении; этот процесс ускоряется при действии света, тепла, кислорода, в присутствии следов железа или меди, а также при одновременном воздействии этих факторов. Состав мути зависит от преобладающего действия того или иного из этих факторов. Основными составляющими холодной мути являются: белки -- 40 -- 76%; танин -- 17 -- 55%; углеводы -- 3 -- 13%. Холодная муть состоит из очень тонкого осадка, который образуется при выдержке пива при температурах ниже 10°С. Для борьбы с холодной мутью могут быть использованы растительные ферменты -- папаин, фицин, бромелаин, а также грибные (продуцируемая микроскопическими грибами рода Aspergillus, Penicillium, Mucor, Amylomyces) и бактериальные (продуцируемая В. subtilis) протеазы. Но наиболее широко для этой цели применяется лишь папаин или комплексные препараты, включающие папаин и другие протеазы, что объясняется относительно высокой термостабильностью препаратов папаина, сохраняющих свою активность после пастеризации.

8.4 ИММОБИЛИЗОВАННЫЕ ФЕРМЕНТЫ

В различных пищевых технологиях долгое время применялись лишь препараты свободных ферментов, срок использования которых -- один производственный цикл. Однако достижения молекулярной биологии, биохимии и энзимологии привели к тому, что в настоящее время строение и функции многих ферментов изучены очень детально и это позволило создать теоретическую базу для производства ферментов пролонгированного действия или иммобилизованных ферментов, т. е. фиксированных или связанных ферментных препаратов.

Сущность иммобилизации ферментов заключается в присоединении их в активной форме тем или иным способом к инертной матрице (обычно это нерастворимый полимерный носитель).

Иммобилизацию фермента можно определить и как включение молекулы фермента в какую-либо изолированную фазу, которая отделена от фазы свободного раствора, но способна обмениваться находящимися в ней молекулами субстрата, эффектора или кофактора.

Фаза фермента обычно нерастворима в воде и часто представляет собой высокомолекулярный гидрофильный полимер, например, целлюлозу, полиакриламид, сефарозу и т. п.

Принципы и способы иммобилизации. Включение фермента в изолированную фазу осуществляют различными способами: фермент может быть ко валентно связан с этой фазой, адсорбирован на ней или физически включен в нее.

Возможны следующие способы иммобилизации фермента.

1. Ковалентное связывание. Молекула фермента ковалентно связывается с нерастворимым полимером. Полимер может быть в виде порошка или в форме пленки. Иногда молекулы фермента соединяются ковалентными связями друг с другом или с каким-либо инертным белком; при этом образуется нерастворимый, но активный полимерный фермент.

2. Электростатическое связывание. Этот способ иммобилизации основан на использовании электростатических или других нековалентных механизмов связывания.

3. Сополимеризация с помощью многофункциональных реагентов. Связывание молекул фермента с белками (например, с альбумином) или друг с другом осуществляется за счет использования определенных реагентов. В качестве такого многофункционального реагента часто используют глутаровый альдегид, гелеобразующее действие которого известно давно. В этом способе необходимо избегать взаимодействия реагента с активным центром фермента и ингибирования последнего.

4. Включение в полимер. В этом способе фермент не прикреплен к полимеру, но удерживается внутри него, поскольку последний образует вокруг фермента сетеобразную матрицу (рис. 8.14). Ячейки этой матрицы настолько малы, что молекула фермента не может освободиться из сети, но в то же время достаточно велики для проникновения низкомолекулярных субстратов. Примером такого способа иммобилизации могут служить:

а) включение в липосомы, когда фермент находится в водном растворе, окруженном фосфолипидным барьером;

б) гидрофобное взаимодействие, когда фермент "погружен" в гидрофобную часть двойного липидного слоя.

5. Инкапсулирование. Включение фермента в органическую или неорганическую капсулу, которая представляет собой полупроницаемую мембрану).

Выбор способа иммобилизации. Искусство иммобилизации ферментов заключается в правильном выборе подходящего метода. Этот выбор определяется целым рядом факторов, многие из которых невозможно выявить до тех пор, пока метод не будет опробован.

Первичный отбор осуществляется обычно эмпирическим путем. Сначала нужно решить, необходим ли для прикрепления фермента какой-либо специфический носитель, не будет ли процедура иммобилизации инактивировать фермент и сможет ли иммобилизованный фермент действительно функционировать в тех условиях, при которых его предстоит использовать.

Поэтому для успешной иммобилизации следует по возможности принять во внимание следующие факторы:

-- фермент должен быть стабильным в условиях протекания реакции;

-- реагенты, образующие поперечные сшивки, не должны взаимодействовать с химическими группировками активного центра. В связи с этим поперечно-сшивающий реагент должен быть как можно больших размеров, что будет препятствовать его проникновению в активный центр;

-- всегда, когда это осуществимо, необходимо тем или иным способом защищать активный центр фермента (например, обработка тиоловых ферментов глутатионом или цистеином);

-- процедура промывания для удаления "непришитого" фермента не должна оказывать вредного влияния на иммобилизованный фермент;

-- полимерная матрица не должна являться субстратом для иммобилизованного фермента;

-- необходимо, наконец, учитывать механические свойства носителя, особенно его механическую прочность и физическую форму.

Процесс иммобилизации фермента можно продемонстрировать на примере связывания глюкоамилазы с носителем -- ацетил этил целлюлозой.

Носитель выдерживают сутки в дистиллированной воде для набухания. Далее к набухшей ацетилэтилцеллюлозе добавляют сначала натрий-ацетатный буфер с рН 5,5, а затем раствор очищенного фермента; после перемешивания к смеси добавляют поперечно-сшивающий агент -- глутаровый альдегид. Через несколько часов полученный препарат промывают последовательно натрий-ацетатным буфером и раствором хлористого натрия для удаления несорбированного на носителе фермента. Иммобилизованный таким образом фермент хранится под слоем воды или буфера при 3 -- 5°С.

В настоящее время разработаны методы иммобилизации множества ферментов. Один и тот же фермент можно иммобилизировать несколькими методами. Например, глюкозоизомеразу из S. phaeochromogenes можно иммобилизовать на различных носителях: пористом алюминии, ДЭАЭ-целлюлозе, ДЭАЭ-крахмале и др. Лактатдегидрогеназу можно включить в гель, прикрепить к носителю поперечной сшивкой; аспарагиназу -- прикрепить к носителю сорбционным путем или химической (ковалентной) связью. В табл. 8.4 представлены некоторые методы иммобилизации для различных ферментов.

Влияние иммобилизации на ферментативную активность. Иммобилизация часто приводит к резким изменениям основных параметров ферментативной реакции: максимальной скорости (Vmax); константы Михаэлиса (Кт); оптимума рН и температуры, а также отношения к ингибиторам.

Степень и природа этих изменений зависят не только от используемого метода иммобилизации, но и от типа ферментативной реакции. Большое влияние на ферментативную активность может оказывать полимерная матрица, причем это влияние может проявляться как в виде воздействия на микроокружение фермента, так и непосредственно на саму молекулу фермента. Кроме того, сами условия иммобилизации (значение рН, присутствие свободных радикалов, окисляющих агентов и т. п.) могут приводить к частичной или полной инактивации фермента.

При рассмотрении влияния иммобилизации на ферментативную активность одним из важных является вопрос об эффективных кинетических параметрах.

Параметры Кт и Vmax, используемые для характеристики каталитических свойств ферментов в разбавленных растворах (см. разд. 8.2), не могут быть применены в их строгом математическом значении для характеристики иммобилизованных ферментов, т. к. наблюдаются существенные отклонения от гиперболической субстратной кривой, описываемой уравнением Михаэлиса -- Ментен, и искривления прямолинейных графиков в двойных обратных координатах (уравнение Лайнуивера -- Берка).

Таблица 8.4. Иммобилизация некоторых ферментов известными методами [М. Е. Бекер. Введение в биотехнологию, 1978]

Метод иммобилизации

Шифр фермента

Наименование

Адсорбция или ионный обмен

1.11.1.6

Каталаза

3.2.1.21

?-Глюкозидаза

3.2.1.26

Инвертаза

3.4.23.1

Пепсин

3.4.21.4

Трипсин

Влючение в гель (полиакриламидный)

3.5.1.1

Аспарагиназа

1.1.1.27

Лактатдегидрогеназа

1.1.3.4

Глюкозооксидаза

1.11.1.7

Пероксидаза

3.2.1.1

?-амилаза

3.2.1.2

?-Амилаза

Поперечная пришивка фермента к носителю

3.2.21.4

Трипсин

Прикрепление фермента к носителю ковалентной связью

1.1.1.27

Лактатдегидрогеназа

1.1.3.4

Глюкозооксидаза

Азидным методом

1.11.1.7

Пероксидаза

3.4.21.4

Трипсин

Карбоимидным методом

3.2.1.26

Инвертаза

3.4.21.4

Трипсин

3.5.1.1

Аспарагиназа

Бромциан-методом

1.1.3.4

Глюкозооксидаза

1.11.1.7

Пероксидаза

3.4.21.4

Трипсин

Методом диазотирования

3.1.1.7

Ацетилхолинэстераза

3.1.1.8

Холинэстераза

3.5.1.1

Аспарагиназа

1.1.3.4

Глюкозооксидаза

Изотиоциатный метод

1.11.1.6

Каталаза

1.11.1.7

Пероксидаза

3.2.1.1

?-амилаза

3.4.21.4

Трипсин

3.2.1.2

?-Амилаза

По этой причине в случае иммобилизованных ферментов лучше заново определить физический смысл данных кинетических параметров. Ранее с этой целью использовался параметр "кажущаяся" Кm, но позднее было предложено пользоваться двумя константами: Kw и Vs.

Vs -- самая высокая скорость, которую можно достичь (теоретически) в данной системе, т. е. когда фермент полностью насыщен субстратом. Следовательно, этот параметр отражает исходные свойства иммобилизованного фермента, но на него могут влиять диффузионные ограничения.

Kw -- такая концентрация субстрата, при которой скорость реакции равна Vs/2. Этот параметр отражает реальные свойства субстрата и зависит от эффекта распределения и диффузионных ограничений.

Величина Кm (кажущаяся) не может отражать истинного положения, т. к. варьирует в зависимости от выбранного диапазона концентраций субстрата. Например, ограничение диффузии субстрата сильнее проявляется при низких концентрациях субстрата, а эффект распределения более выражен при низких ионных силах. От этих двух факторов зависит видимая легкость связывания фермента с субстратом, и поэтому они оказывают существенное влияние на параметр Кm (кажущаяся).

Необходимо также учитывать и возникновение кооперативных эффектов в поведении иммобилизованных ферментов в ответ на изменение концентрации субстрата. Иммобилизованные ферменты (в отличие от аллостерических, которые проявляют или только положительную, или только отрицательную кооперативность) способны обнаруживать оба вида кооперативности в зависимости от рН и микроокружения. Кооперативные эффекты имеют важное значение, т. к. позволяют выявить как значительные изменения скорости реакций в небольшом диапазоне концентраций субстрата, так и малые изменения скорости реакции в других, очень широких диапазонах концентраций субстрата.

Применение иммобилизованных ферментов. Иммобилизованные ферменты как катализаторы многоразового действия можно использовать, в основном, для трех практических целей: аналитических, лечебных и препаративных.

При решении вопроса о целесообразности использования системы с иммобилизованным ферментом следует руководствоваться следующими критериями: эффективностью, стоимостью и возможностью осуществить процесс с помощью другой системы.

В случае препаративного (промышленного) применения основную роль играет стоимость, а также возможность автоматизации процесса. Несмотря на большие потенциальные возможности использования иммобилизованных ферментов в производстве, в настоящее время реализованы лишь немногие, например:

-- разделение D- и L-аминокислот, основанное на использовании плесневой аминоацилазы (Н. Ф. 3.5.1.14), иммобилизованной на ДЭАЭ-сефадексе;

-- получение сиропов с высоким содержанием фруктозы с использованием глюкозоизомеразы (Н.Ф.5.3.1.18), иммобилизованной на целлюлозном ионообменнике;

-- возможно использование иммобилизованных ферментов при производстве сыров, стабилизации молока и удалении лактозы из молочных продуктов.

продукт питание химический состав

8.5 ФЕРМЕНТАТИВНЫЕ МЕТОДЫ АНАЛИЗА ПИЩЕВЫХ ПРОДУКТОВ

Ферментативный анализ представляет собой один из основных аналитических инструментов в международной и отечественной практике научных исследований, современного производственного и сертификационного контроля качества продуктов питания, пищевого сырья и биологических материалов.

Ферментативный анализ является составной частью энзимологии и аналитической химии и служит для специфического определения веществ с помощью высокоочищенных препаратов ферментов.

В основе ферментативного анализа лежат природные биохимические процессы обмена веществ, которые воспроизводятся in vitro: реакция фермента с субстратом, причем в качестве субстрата выступает анализируемое вещество пробы.

Основными преимуществами применения ферментативных методов в научных исследованиях, при разработке новых пищевых технологий и биотехнологических процессов, а также при анализе качества, идентификации и установления фальсификации продуктов питания и пищевого сырья являются:

1. Высокая специфичность и достоверность результатов. Высокоспецифичные ферментативные методы анализа дают, как правило, более достоверные результаты, чем неспецифические химические методы. Специфичность действия ферментов, основанная на комплементарное™ пространственной конфигурации активного центра и субстрата является гарантом достоверности и надежности ферментативного метода при исследовании отдельных соединений в многокомпонентных смесях, имеющих сложный состав и строение, таких, какими и являются пищевые продукты. При разработке ферментативных методов и подборе реагентов, в первую очередь, выбирают ферменты с наибольшей специфичностью действия, для которых подбираются оптимальные условия проведения анализа. Кроме того, при разработке методов ферментативного анализа отдельных компонентов продуктов питания обычно используют несколько ферментов, которые последовательно функционируют в данной системе.

2. Простые способы подготовки проб, которые исключают потерю исследуемых компонентов. Основная задача, которую необходимо выполнить при подготовке пробы, -- по возможности наиболее полно сохранить для анализа исследуемый компонент без его количественной потери или изменения структуры. В некоторых случаях возможен прямой анализ пробы без ее предварительной подготовки (например, при абсолютной специфичности фермента к исследуемому веществу и отсутствии в пробе каких-либо мешающих факторов). Обычно же для ферментативного анализа используются простые и хорошо известные способы подготовки проб, такие как: разбавление, фильтрация (центрифугирование), нейтрализация (подкисление), экстракция, обезжиривание, осветление, обесцвечивание. Только в определенных случаях применяют специальные способы подготовки проб, например, при определении водонерастворимых соединений (холестерин, лецитин, крахмал), нестабильной L-аскорбиновой кислоты в твердых материалах и др.

3. Простая и быстрая процедура измерений, которая исключает использование дорогостоящего оборудования. В большинстве ферментативных определений используют фотометрические способы измерения результатов. Для этого все компоненты искусственной тестовой системы, например, буфер, коферменты, активаторы, вспомогательные ферменты и пробу смешивают в фотометрической кювете. После измерения начальной оптической плотности добавляют стартовый фермент, который инициирует реакцию. В конце реакции (через определенный промежуток времени) повторно измеряют оптическую плотность тестовой системы. Из разницы оптических плотностей в начале и в конце реакции по уравнению закона Ламберта -- Бера рассчитывают концентрацию С (г/л) искомого соединения.

C =

[(E 2 - E 1) опыт - (E 2 - E 1) контроль]•V•M•F

?•d•v•10000

где (E 2 - E 1) опыт -- разница конечной и начальной оптической плотности в кювете с пробой; (E 2 - E 1) контроль-- разница конечной и начальной оптической плотности в кювете без пробы; V -- общий объем реакционной смеси, мл; М -- молярная масса искомого соединения, г/моль; F -- фактор разведения пробы; ? -- молярный коэффициент экстинкции (например, кофермента НАДФ/НАД при ? = 340 нм, ? = 6,3 л/ммоль • см); d -- толщина кюветы, см; v -- объем пробы, добавляемый в кювету, мл.

В большинстве ферментативных методов прямому фотометрическому контролю доступно измерение таких вспомогательных компонентов тестовой системы, как коферментов НАД+/ПАДН или НАДФ+/НАДФН. Количество восстановленных или окисленных коферментов прямопропорционально количеству искомого соединения. Система конечных значений с фотометрическим измерением результата настолько надежна, что

Таблица 8.5. Применение ферментативных методов для анализа различных компонентов пищевых продуктов [А. Ю. Колесное. Ферментативный анализ в пищевой промышленности, 1996. № 11]

Группа продуктов

Анализируемые компоненты

Детское питание, диетические продукты

Сахароза, D-глкжоза, D-фруктоза, лактоза, мальтоза, крахмал, L-аскорбиновая кислота, лимонная кислота, D-, L-молочные кислоты, D-сорбит, ксилит, лецитин, холин

Пиво, вино, игристые вина

D-глюкоза, D-фруктоза, сахароза, глюкозный сироп, этанол, глицерин, D-сорбит, сульфит, нитраты, L-, D-молочные кислоты, D-глкжоновая кислота, уксусная кислота, лимонная кислота, янтарная кислота, L-аскорбиновая кислота

Хлеб, хлебобулочные изделия, шоколад, мороженое и конд. изделия

Сахароза, D-глкжоза, D-фруктоза, лактоза, мальтоза, крахмал, этанол, глицерин, D-сорбит, ксилит, холестерин, лецитин

Яйца и яичные продукты

Янтарная кислота, L- молочная кислота, D-3-гидроксимасляная кислота, холестерин

Соки, фруктовые продукты, безалкогольные напитки

Сахароза, D-глкжоза, D-фруктоза, лимонная кислота, D-изолимонная кислота, L-аскорбиновая кислота, D-, L-молочные кислоты, этанол, уксусная кислота, глюкозный сироп, щавелевая кислота, глицерин, D-, L-яблочные кислоты, муравьиная кислота, D-глюконовая кислота, D-сорбит, нитраты

Мясо и мясные продукты

Сахароза, лактоза, D-глюкоза, D-галактоза, крахмал, лимонная кислота, уксусная кислота, D-глюконовая кислота, L-глутаминовая кислота, D-, L-молочные кислоты, муравьиная кислота, глицерин, аммиак (мочевина), креатин/ креатинин, пирофосфаты, холестерин

Молоко и молочные продукты

Лактоза, D-глюкоза, D-галактоза, D-фруктоза, крахмал, сахароза, лимонная кислота, уксусная кислота, L-яблочная кислота, янтарная кислота, L-глутаминовая кислота, D-, L-молочные кислоты, этанол, ацетальдегид, триглицериды, мочевина, нитраты

Пищеконцентраты (например, супы)

Сахар и сахаристые изделия

Креатин, L-глутаминовая кислота, сахароза, крахмал

Сахароза, D-глюкоза, D-фруктоза, раффиноза, муравьиная кислота, лимонная кислота, D-, L-молочные кислоты, D-сорбит, этанол

служит в качестве стандарта для оценки других методик. Для проведения ферментативного анализа используется стандартное оборудование, которое имеется практически в любой производственной лаборатории: спектрофотометры или фотометры с интервалом измерений от 325 до 800 нм; кюветы для фотометрических измерений, мерные пипетки и дозаторы, весы, центрифуга, рН-метр, водяной термостат, фильтры и т. п.

4. Высокая чувствительность метода и хорошая воспроизводимость результатов. Высокая чувствительность позволяет использовать ферментативные методы для определения следовых количеств веществ. Например, в продуктах питания могут быть определены следующие концентрации компонентов (г/л): этанол -- 0,001; ацетоальдегид -- 0,001; лимонная кислота -- 0,002; глицерин -- 0,001; D-глюкоза -- 0,002; D-сорбит -- 0,001; лактоза -- 0,005; нитраты -- 0,001.

Кроме вышеперечисленных достоинств ферментативных методов анализа можно назвать и универсальность применения, высокую надежность и устойчивость к мешающим факторам, низкие затраты на проведение анализа (время, оборудование, расходуемые материалы), а также использование безопасных реактивов.

Области применения ферментативного анализа на практике многообразны. Это и производственный контроль, и контроль качества готовой продукции, а также контроль сырья, анализ состава пищевого продукта с целью установления их свойств и соответствия законодательным нормам, оценка гигиенического статуса, идентификация и установление фальсификации.

В табл. 8.5 приведены некоторые группы продуктов питания, а также их компоненты, для анализа которых разработаны специфические ферментативные методы.

По словам одного из основоположников ферментативного анализа Г. Бергмана: " Ферментативный анализ, как принцип, свободен от недостатков и ошибок, т. к. он представляет систему для измерений, которую успешно использует живая клетка уже в течение миллионов лет".

Контрольные вопросы

1. Каковы химическая природа и особенности ферментов как биологических катализаторов?

2. Что изучает кинетика ферментативных реакций?

3. Как влияет концентрация субстрата и фермента на скорость ферментативной реакции?

4. Как определяются основные кинетические параметры ферментативной реакции: V0; Vmax; Ks; Km? Почему именно V0 (начальная скорость) является мерой количества фермента?

5. Что такое ферментные препараты и каково их отличие от ферментов?

6. Какие ферменты наиболее широко применяются в пищевой промышленности?

7. По каким критериям оцениваются ферментные препараты с точки зрения их использования в той или иной пищевой технологии?

8. В чем заключаются особенности подхода при характеристике ферментов пищевого сырья и исследовании поведения ферментов (ферментных препаратов) в режиме определенной пищевой технологии?

9. Что такое иммобилизованные ферменты?

10. Каковы основные области применения ферментативного анализа на практике? Перечислите основные преимущества ферментативных методов исследования пищевых продуктов.

ГЛАВА 9. ПИЩЕВЫЕ И БИОЛОГИЧЕСКИ АКТИВНЫЕ ДОБАВКИ

9.1 ОБЩИЕ СВЕДЕНИЯ О ПИЩЕВЫХ ДОБАВКАХ

Пищевые добавки -- природные, идентичные природным или искусственные (синтетические) вещества, сами по себе не употребляемые как пищевой продукт или обычный компонент пищи. Они преднамеренно добавляются в пищевые системы по технологическим соображениям на различных этапах производства, хранения, транспортировки готовых продуктов с целью улучшения или облегчения производственного процесса или отдельных его операций, увеличения стойкости продукта к различным видам порчи, сохранения структуры и внешнего вида продукта или намеренного изменения органолептических свойств.

Определения. Классификация

Основные цели введения пищевых добавок (рис. 9.1) предусматривают:

1. совершенствование технологии подготовки и переработки пищевого сырья, изготовления, фасовки, транспортировки и хранения продуктов питания. Применяемые при этом добавки не должны маскировать последствий использования некачественного или испорченного сырья, или проведения технологических операций в антисанитарных условиях;

2. сохранение природных качеств пищевого продукта;

3. улучшение органолептических свойств или структуры пищевых продуктов и увеличение их стабильности при хранении.

Применение пищевых добавок допустимо только в том случае, если они даже при длительном потреблении в составе продукта не угрожают здоровью человека, и при условии, если поставленные технологические задачи не могут быть решены иным путем.

Обычно пищевые добавки разделяют на несколько групп:

-- вещества, улучшающие внешний вид пищевых продуктов (красители, стабилизаторы окраски, отбеливатели);

-- вещества, регулирующие вкус продукта (ароматизаторы, вкусовые добавки, подслащивающие вещества, кислоты и регуляторы кислотности);

-- вещества, регулирующие консистенцию и формирующие текстуру (загустители, гелеобразователи, стабилизаторы, эмульгаторы и др.);

-- вещества, повышающие сохранность продуктов питания и увеличивающие сроки хранения (консерванты, антиоксиданты и др.).

К пищевым добавкам не относят соединения, повышающие пищевую ценность продуктов питания и причисляемые к группе биологически активных веществ, такие как витамины, микроэлементы, аминокислоты и др.

Эта классификация пищевых добавок основана на их технологических функциях.

Федеральный закон о качестве и безопасности пищевых продуктов предлагает следующее определение: "пищевые добавки -- природные или искусственные вещества и их соединения, специально вводимые в пищевые продукты в процессе их изготовления в целях придания пищевым продуктам определенных свойств и (или) сохранения качества пищевых продуктов".

Следовательно, пищевые добавки -- это вещества (соединения), которые сознательно вносят в пищевые продукты для выполнения ими определенных функций. Такие вещества, называемые также прямыми пищевыми добавками, не являются посторонними, как, например, разнообразные контаминанты, "случайно" попадающие в пищу на различных этапах ее изготовления.

Существует различие между пищевыми добавками и вспомогательными материалами, употребляемыми в ходе технологического потока. Вспомогательные материалы -- любые вещества или материалы, которые, не являясь пищевыми ингредиентами, преднамеренно используются при переработке сырья и получения продукции с целью улучшения технологии; в готовых пищевых продуктах вспомогательные материалы должны полностью отсутствовать, но могут также определяться в виде неудаляемых остатков.

Пищевые добавки употребляются человеком в течение многих веков (соль, перец, гвоздика, мускатный орех, корица, мед), однако широкое их использование началось в конце XIX в. и было связано с ростом населения и концентрацией его в городах, что вызвало необходимость увеличения объемов производства продуктов питания, совершенствование традиционных технологий их получения с использованием достижений химии и биотехнологии.

Сегодня можно выделить еще несколько причин широкого использования пищевых добавок производителями продуктов питания. К ним относятся:

-- современные методы торговли в условиях перевоза продуктов питания (в том числе скоропортящихся и быстро черствеющих продуктов) на большие расстояния, что определило необходимость применения добавок, увеличивающих сроки сохранения их качества;

-- быстро изменяющиеся индивидуальные представления современного потребителя о продуктах питания, включающие их вкус и привлекательный внешний вид, невысокую стоимость, удобство использования; удовлетворение таких потребностей связано с использованием, например, ароматизаторов, красителей и других пищевых добавок;

-- создание новых видов пищи, отвечающей современным требованиям науки о питании (низкокалорийные продукты, аналоги мясных, молочных и рыбных продуктов), что связано с использованием пищевых добавок, регулирующих консистенцию пищевых продуктов;

-- совершенствование технологии получения традиционных пищевых продуктов, создание новых продуктов питания, в том числе продуктов функционального назначения (см. гл. 1).

Число пищевых добавок, применяемых в производстве пищевых продуктов в разных странах, достигает сегодня 500 наименований (не считая комбинированных добавок, индивидуальных душистых веществ, ароматизаторов), в Европейском Сообществе классифицировано около 300. Для гармонизации их использования производителями разных стран Европейским Советом разработана рациональная система цифровой кодификации пищевых добавок с литерой "Е". Она включена в кодекс для пищевых продуктов (Codex Alimentarius, Ed.2, V.I) ФАО/ВОЗ (ФАО -- Всемирная продовольственная и сельскохозяйственная организация ООН; ВОЗ -- Всемирная организация здравоохранения) как международная цифровая система кодификации пищевых добавок (International Numbering System -- INS). Каждой пищевой добавке присвоен цифровой трех- или четырехзначный номер (в Европе с предшествующей ему литерой Е). Они используются в сочетании с названиями функциональных классов, отражающих группировку пищевых добавок по технологическим функциям (подклассам).

Индекс Е специалисты отождествляют как со словом Европа, так и с аббревиатурами EG/EV, которые в русском языке тоже начинаются с буквы Е, а также со словами ebsbar/edible, что в переводе на русский (соответственно с немецкого и английского) означает "съедобный". Индекс Е в сочетании с трех- или четырехзначным номером -- синоним и часть сложного наименования конкретного химического вещества, являющегося пищевой добавкой. Присвоение конкретному веществу статуса пищевой добавки и идентификационного номера с индексом "Е" имеет четкое толкование, подразумевающее, что:

а) данное конкретное вещество проверено на безопасность;

б) вещество может быть применено (рекомендовано) в рамках его установленной безопасности и технологической необходимости при условии, что применение этого вещества не введет потребителя в заблуждение относительно типа и состава пищевого продукта, в который оно внесено;

в) для данного вещества установлены критерии чистоты, необходимые для достижения определенного уровня качества продуктов питания.

Следовательно, разрешенные пищевые добавки, имеющие индекс Е и идентификационный номер, обладают определенным качеством. Качество пищевых добавок -- совокупность характеристик, которые обусловливают технологические свойства и безопасность пищевых добавок.

Наличие пищевой добавки в продукте должно указываться на этикетке, при этом она может обозначаться как индивидуальное вещество или как представитель конкретного функционального класса (с конкретной технологической функцией) в сочетании с кодом Е. Например: бензоат натрия или консервант Е211.

Согласно предложенной системе цифровой кодификации пищевых добавок, их классификация, в соответствии с назначением, выглядит следующим образом (основные группы):

-- Е100--Е182 -- красители;

-- Е200 и далее -- консерванты;

-- ЕЗОО и далее -- антиокислители (антиоксиданты);

-- Е400 и далее -- стабилизаторы консистенции;

-- Е450 и далее, Е1000 -- эмульгаторы;

-- Е500 и далее -- регуляторы кислотности, разрыхлители;

-- Е600 и далее -- усилители вкуса и аромата;

-- Е700--Е800 -- запасные индексы для другой возможной информации;

-- Е900 и далее -- глазирующие агенты, улучшители хлеба.

Многие пищевые добавки имеют комплексные технологические функции, которые проявляются в зависимости от особенностей пищевой системы. Например, добавка Е339 (фосфаты натрия) может проявлять свойства регулятора кислотности, эмульгатора, стабилизатора, комплексообразователя и водоудерживающего агента.

Основные функциональные классы пищевых добавок (ПД) представлены в табл. 9.1.

Применение ПД, естественно, ставит вопрос об их безопасности. При этом учитываются ПДК (мг/кг) -- предельно допустимая концентрация чужеродных веществ (в том числе добавок) в продуктах питания, ДСД (мг/кг массы тела) -- допустимая суточная доза и ДСП (мг/сут) -- допустимое суточное потребление -- величина, рассчитываемая как произведение ДСД на среднюю величину массы тела -- 60 кг (см. гл. 12).

Большинство пищевых добавок не имеет, как правило, пищевого значения, т. е. не является пластическим материалом для организма человека, хотя некоторые пищевые добавки являются биологически активными веществами. Применение пищевых добавок, как всяких чужеродных (обычно несъедобных) ингредиентов пищевых продуктов, требует строгой регламентации и специального контроля.

Международный опыт организации и проведения системных токсиколого-гигиенических исследований пищевых добавок обобщен в специальном документе ВОЗ (1987/1991) "Принципы оценки безопасности пищевых добавок и контаминантов в продуктах питания".

Согласно Закону Российской Федерации (РФ) "О санитарно-эпидемиологическом благополучии населения" государственный предупредительный и текущий санитарный надзор осуществляется органами санитарно-эпидемиологической службы. Безопасность применения пищевых добавок в производстве пищевых продуктов регламентируется документами Министерства здравоохранения РФ.

Допустимое суточное потребление (ДСП) является центральным вопросом обеспечения безопасности пищевых добавок в течение последних 30 лет.

Необходимо отметить, что в последнее время появилось большое число комплексных пищевых добавок. Под комплексными пищевыми добавками понимают изготовленные промышленным способом смеси

Таблица 9.1. Функциональные классы пищевых добавок

Функциональные классы
(для маркировки)

Подклассы
(технологические функции)

Дефиниции

Кислоты

Кислотообразователи

Повышают кислотность и/или придают кислый вкус пище

Регуляторы кислотности

Кислоты, щелочи, основания, буферы, регуляторы рН

Изменяют или регулируют кислотность или щелочность пищевого продукта

Вещества, препятствующие слеживанию и комкованию

Добавки, препятствующие затвердению; вещества, уменьшающие липкость; высушивающие добавки, присыпки, разделяющие вещества

Снижают тенденцию частиц пищевого продукта прилипать друг к другу

Пеногасители

Пеногасители

Предупреждают или снижают образование пены

Антиокислители

Антиокислители, синергисты антиокислителей, комплексообразователи

Повышают срок хранения пищевых продуктов, защищая от порчи, вызванной окислением, например, прогорканием жиров или изменением цвета

Наполнители

Наполнители

Вещества, иные чем вода или воздух, которые увеличивают объем продукта, не влияя заметно на его энергетическую ценность

Красители

Красители

Усиливают или восстанавливают цвет продукта

Вещества, способствующие сохранению окраски

Фиксаторы окраски, стабилизаторы окраски

Стабилизируют, сохраняют или усиливают окраску продукта

Эмульгаторы

Эмульгаторы, мягчители, рассеивающие добавки, поверхностно-активные добавки, смачивающие вещества

Образуют или поддерживают однородную смесь двух или более несмешиваемых фаз, таких как масло и вода в пищевых продуктах

Эмульгирующие соли

Соли-плавители, комплексообразователи

Взаимодействуют с белками сыров с целью предупреждения отделения жира при изготовлении плавленых сыров

Уплотнители (растительных тканей)

Уплотнители (растительных тканей)

Делают или сохраняют ткани фруктов и овощей плотными и свежими, взаимодействуют с агентами желирования -- для образования геля или укрепления геля

Усилители вкуса и запаха

Усилители вкуса; модификаторы вкуса; добавки, способствующие развариванию

Усиливают природный вкус и (или) запах пищевых продуктов

Вещества для обработки муки

Отбеливающие добавки, улучшители теста, улучшители муки

Вещества, добавляемые к муке для улучшения ее хлебопекарных качеств или цвета

Пенообразователи

Взбивающие добавки, аэрирующие добавки

Создают условия для равномерной диффузии газообразной фазы в жидкие и твердые пищевые продукты

Гелеобразователи

Гелеобразователи

Текстурируют пищу путем образования геля

Глазирователи

Пленкообразователи, полирующие вещества

Вещества, которые при смазывании ими наружной поверхности продукта придают блестящий вид или образуют защитный слой

Влагоудерживающие агенты

Добавки, удерживающие влагу/воду; смачивающие добавки

Предохраняют пищу от высыхания нейтрализацией влияния атмосферного воздуха с низкой влажностью

Консерванты

Противомикробные и противогрибковые добавки, добавки для борьбы с бактериофагами, химические стерилизующие добавки при созревании вин, дезинфектанты

Повышают срок хранения продуктов, защищая от порчи, вызванной микроорганизмами

Пропелленты

Пропелленты

Газы, иные чем воздух, выталкивающий продукт из контейнера

Разрыхлители

Разрыхлители; вещества, способствующие жизнедеятельности дрожжей

Вещества или смеси веществ, которые освобождают газ и увеличивают, таким образом, объем теста

Стабилизаторы

Связующие вещества, уплотнители, влаго- и водоудерживающие вещества, стабилизаторы пены

Позволяют сохранять однородную смесь двух или более несмешиваемых веществ в пищевом продукте или готовой пище

Подсластители

Подсластители, искусственные подсластители

Вещества несахарной природы, которые придают пищевым продуктам и готовой пище сладкий вкус

Загустители

Загустители, текстураторы

Повышают вязкость пищевых продуктов

пищевых добавок одинакового или различного технологического назначения, в состав которых могут входить, кроме пищевых добавок, и биологически активные добавки, и некоторые виды пищевого сырья (макроингредиенты): мука, сахар, крахмал, белок, специи и т. д. Такие смеси не являются, строго говоря, пищевыми добавками, а представляют собой технологические добавки комплексного действия. Особенно широкое распространение они получили в технологии хлебопечения, при производстве мучных кондитерских изделий, в мясной промышленности. Иногда в эту группу включают вспомогательные материалы технологического характера.

За последние десятилетия в мире технологий и ассортимента пищевых продуктов произошли громадные изменения. Они не только отразились на традиционных, апробированных временем технологиях и привычных продуктах (хлеб, мучные кондитерские изделия, напитки и т. д.), но также привели к появлению новых групп продуктов питания с новым составом и свойствами (функциональных продуктов для массового потребителя, продуктов лечебного и детского питания и др.), к упрощению технологии и сокращению производственного цикла, выразились в принципиально новых технологических и аппаратурных решениях.

Использование большой группы пищевых добавок, получивших условное название "технологические добавки", позволило получить ответы на многие из актуальных вопросов. Они нашли широкое применение для решения ряда технологических проблем:

-- ускорения технологических процессов (ферментные препараты, химические катализаторы отдельных технологических процессов и т. д.);


Подобные документы

  • Изучение химического состава пищевых продуктов, его полноценности и безопасности. Изменения основных пищевых веществ при технологической обработке. Концепция рационального и здорового питания. Применение полимерных материалов в пищевой промышленности.

    курс лекций [1,8 M], добавлен 19.09.2014

  • Общие сведения о пищевых добавках. Классификация веществ, добавляемых к продуктам. Технологические функции добавок. Причины их использования. Цифровая кодификация пищевых добавок. Генетически модифицированные источники. Биологически активные добавки.

    реферат [37,4 K], добавлен 05.06.2008

  • Особенности применения и классификация биологически активных добавок: способствующие снижению аппетита, содержащие пищевые волокна, снижающие аппетит, обладающие тонизирующим действием, витаминно-минеральные комплексы, мочегонные и послабляющие БАДы.

    реферат [1,3 M], добавлен 11.10.2011

  • Загрязнение пищевых продуктов тяжелыми металлами. Токсическое действие соединений мышьяка. Методы идентификации и количественного определения йода в продуктах, продовольственном сырье и биологически активных добавках. Определение кислотности молока.

    курсовая работа [160,7 K], добавлен 04.01.2013

  • Органическая химия и медицина. Какие бывают лекарства и почему они лечат. Полимеры в медицине. Применение различных полимерных материалов в сельском хозяйстве. Органическая химия и ее применение в пищевой промышленности. Добавки в продукты питания.

    доклад [19,4 K], добавлен 13.01.2010

  • Основные химические вещества: белки, липиды, углеводы, витамины, минеральные вещества и пищевые добавки. Основные химические процессы, происходящие при тепловой кулинарной обработке. Потери при тушении, запекании, припускании и пассеровании продуктов.

    курсовая работа [119,9 K], добавлен 07.12.2010

  • Содержание пищевых кислот в продуктах питания и методы их определения. Характеристика некоторых из пищевых кислот. Обоснование титрования, определения и расчета количества аскорбиновой кислоты, динамика изменения её содержания при термообработке.

    дипломная работа [1,3 M], добавлен 03.07.2015

  • Знакомство с основными химическими элементами, представленными в периодической системе Д. Менделеева. Рассмотрение классификации биогенных элементов. Микроэлементы как биологически активные атомы центров ферментов. Характеристика свойств s-элементов.

    презентация [4,5 M], добавлен 00.00.0000

  • Рассмотрение ртути как химического элемента. Механизм попадания ртути в пищевые продукты. Предельно допустимые концентрации ртути в продуктах питания. Характеристика инверсионно-вольтамперометрического метода. Определение концентрации ртути в рыбе.

    курсовая работа [64,0 K], добавлен 06.05.2019

  • Физические и химические свойства диацетила, его влияние на организм человека, причины образования в продуктах питания. Химический состав вина, анализ его качества. Метрологическая оценка показателей качества разработанной методики определение диацетила.

    дипломная работа [831,0 K], добавлен 25.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.