Пищевая химия

Химический состав пищевых систем, его полноценность и безопасность. Фракционирование и модификация компонентов продуктов питания. Пищевые и биологически активные добавки. Основные медико-биологические требования к безопасности продуктов питания.

Рубрика Химия
Вид учебное пособие
Язык русский
Дата добавления 09.05.2012
Размер файла 7,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

-- регулирования и улучшения текстуры пищевых систем и готовых продуктов (эмульгаторы, гелеобразователи, стабилизаторы и т. д.)

-- предотвращения комкования и слеживания продукта;

-- улучшения качества сырья и готовых продуктов (отбеливатели муки, фиксаторы миоглобина и т.д.);

-- улучшения внешнего вида продуктов (полирующие средства);

-- совершенствования экстракции (новые виды экстрагирующих веществ);

-- решения самостоятельных технологических вопросов при производстве отдельных пищевых продуктов.

Выделение из общего числа пищевых добавок самостоятельной группы технологических добавок является в достаточной степени условным, так как в отдельных случаях без них невозможен сам технологический процесс. Примерами таковых являются экстрагирующие вещества и катализаторы гидрирования жиров, которые по существу являются вспомогательными материалами. Они не совершенствуют технологический процесс, а осуществляют его, делают его возможным. Некоторые технологические добавки рассматриваются в других подклассах пищевых добавок, многие из них влияют на ход технологического процесса, эффективность использования сырья и качество готовых продуктов. Необходимо напомнить, что классификация пищевых добавок (табл. 9.1) предусматривает определение функций (см. "подклассы"), и большая часть технологических добавок ими обладает.

Изучение комплексных пищевых добавок, а также вспомогательных материалов -- это задача специальных курсов и дисциплин, в которых рассматриваются вопросы конкретных технологий. В настоящей главе учебника мы остановимся только на общих подходах к подбору технологических добавок.

Общие подходы к подбору технологических добавок

Эффективность применения пищевых добавок, особенно проявляющих технологические функции, требует создания технологии их подбора и внесения с учетом особенностей химического строения, функциональных свойств и характера действия пищевых добавок, вида продукта, особенностей сырья, состава пищевой системы, технологии получения готового продукта, типа оборудования, а иногда -- специфики упаковки и хранения. В общем виде разработка технологии подбора и применения новой пищевой добавки представлена на схеме (см. рис. 9.2.)

Схема является наиболее полной и учитывает все этапы разработки технологии подбора и применения новых пищевых добавок. Совершенно естественно, что при работе с пищевыми добавками конкретного функционального назначения отдельные этапы этой работы могут не проводиться; еще в большей степени эта схема может быть упрощена при использовании известных, хорошо изученных пищевых добавок. Но во всех случаях при определении целесообразности применения пищевой добавки (как при производстве традиционных пищевых продуктов, где она ранее не использовалась, так и при создании технологии новых пищевых продуктов) необходимо учитывать особенности пищевых систем, в которые вносится пищевая добавка, правильно определить этап и способ ее внесения, оценить эффективность ее использования, в том числе и экономическую.

О безопасности пищевых добавок

Пищевые добавки, спектр применения которых непрерывно расширяется, выполняют разнообразные функции в пищевых технологиях и продуктах питания. Использование добавок возможно только после проверки их безопасности. Внесение пищевых добавок не должно увеличивать степень риска, возможного неблагоприятного действия продукта на здоровье потребителя, а также снижать его пищевую ценность (за исключением некоторых продуктов специального и диетического назначения).

Определение правильного соотношения между дозой и реакцией человека на нее, применение высокого коэффициента безопасности гарантируют, что использование пищевой добавки, при соблюдении уровня ее потребления, не представляет опасности для здоровья человека.

Важнейшим условием обеспечения безопасности пищевых продуктов является соблюдение допустимой нормы суточного потребления пищевых добавок (ДСП). Растет число комбинированных пищевых добавок, пищевых улучшителей, содержащих пищевые, биологически активные добавки (БАД) и другие компоненты. Постепенно создатели пищевых добавок становятся и разработчиками технологии их внедрения.

В Российской Федерации возможно применение только тех пищевых добавок, которые имеют разрешение Госсанэпиднадзора России в пределах, приведенных в Санитарных правилах (СанПиН).

Пищевые добавки должны вноситься в пищевые продукты в минимально необходимом для достижения технологического эффекта количестве, но не более установленных Санитарными правилами пределов.

Исследование безопасности пищевых добавок, определение ДСД, ДСП, ПДК -- сложный, длительный, очень дорогой, но крайне нужный и важный для здоровья людей процесс. Он требует непрерывного внимания и совершенствования.

Пищевые добавки, запрещенные к применению в Российской Федерации при производстве пищевых продуктов представлены в табл. 9.2.

Таблица 9.2. Пищевые добавки, запрещенные в РФ

Код

Пищевая добавка

Технологические функции

Е121

Цитрусовый красный

Краситель

Е123

Амарант

Краситель

Е240

Формальдегид

Консервант

Е940а

Бромат калия

Улучшитель муки и хлеба

Е9406

Бромат кальция

Улучшитель муки и хлеба

Сведения о химии пищевых добавок, характере их действия, а в отдельных случаях -- о получении, приведены в последующих материалах настоящей главы.

9.2 ВЕЩЕСТВА, УЛУЧШАЮЩИЕ ВНЕШНИЙ ВИД ПИЩЕВЫХ ПРОДУКТОВ

Пищевые красители

Основной группой веществ, определяющих внешний вид продуктов питания, являются пищевые красители (функциональный класс 7, табл. 9.1).

Потребитель давно привык к определенному цвету пищевых продуктов, связывая с ним их качество, поэтому красители в пищевой промышленности применяются с давних времен. В условиях современных пищевых технологий, включающих различные виды термической обработки (кипячение, стерилизацию, жарение и т. д.), а также при хранении продукты питания часто изменяют свою первоначальную, привычную для потребителя окраску, а иногда приобретают неэстетичный внешний вид, что делает их менее привлекательными, отрицательно влияет на аппетит и процесс пищеварения. Особенно сильно меняется цвет при консервировании овощей и фруктов. Как правило, это связано с превращением хлорофиллов в феофитин или с изменением цвета антоциановых красителей в результате изменения рН среды или образования комплексов с металлами. В то же время, красители иногда используются для фальсификации пищевых продуктов, например, подкрашивания их, не предусмотренного рецептурой и технологией, -- для придания продукту свойств, позволяющих имитировать его высокое качество или повышенную ценность.

Для окраски пищевых продуктов используют натуральные (природные) или синтетические (органические и неорганические) красители).

В настоящее время в Российской Федерации для применения в пищевых продуктах разрешено около 60 наименований натуральных и синтетических красителей, включая добавки, обозначенные строчными буквами и строчными римскими цифрами и входящими в одну группу соединений с единым Е-номером.

Перечень красителей, разрешенных к применению в РФ при производстве пищевых продуктов (из СанПиН 2.3.2.1078--01), приведен ниже:

Натуральные красители

Куркумины ...............

Е100

Рибофлавины .............

Е101

Алканет, Алканин .........

Е103

Кармины, Кошениль ......

Е120

Хлорофилл ...............

Е140

Медные комплексы хлорофиллов и хлорофиллинов ......

Е141

Сахарные колеры .........

Е150

Каротины ................

Е160

Каротиноиды .............

Е161

Красный свекольный ......

Е162

Антоцианы ...............

Е163

Танины пищевые ..........

Е181

Красный рисовый .........

-

Минеральные красители

Уголь ... .................

..Е152

Уголь древесный ..........

..Е153

Углекислые соли кальция . .

..Е170

Диоксид титана ...........

..Е171

Оксиды и гидроксиды железа

..Е172

Серебро ....................

Е174

Золото .....................

Е175

Ультрамарин .................

-

Синтетические красители

Тартразин ..................

Е102

Желтый хинолиновый .......

Е104

Желтый 2G .................

Е107

Желтый "солнечный закат" . . .

Е110

Азорубин, Кармуазин ........

Е122

Понсо 4R, Пунцовый 4R .....

Е124

Красный 2G ................

Е128

Красный очаровательный АС. .

Е 1 29

Синий патентованный V .....

Е131

Индигокармин ..............

Е132

Синий блестящий FCF ......

Е133

Зеленый S ..................

Е142

Зеленый прочный FCF .......

E143

Черный блестящий PN .......

Е151

Коричневый НТ ............

Е155

Орсейл, орсин ..............

Е182

Красные для карамели 1,2 ....

-

Красный 3 ...................

-

Два красителя: углекислые соли кальция Е170 (поверхностный краситель, стабилизатор, добавка, препятствующая слеживанию) и танины пищевые Е181 (краситель, эмульгатор, стабилизатор) являются пищевыми добавками комплексного действия. Запрещенные в России красители перечислены в табл. 9.2.

Правилами применения отдельных красителей оговариваются вид продукта и максимальные уровни использования красителя в конкретном продукте, если эти уровни установлены.

С гигиенической точки зрения среди красителей, применяемых для окраски продуктов, особое внимание уделяется синтетическим красителям. Оценивают их токсическое, мутагенное и канцерогенное действие. При токсикологической оценке природных красителей учитывают характер объекта, из которого он был выделен, и уровни его использования. Модифицированные природные красители, а также красители, выделенные из непищевого сырья, проходят токсикологическую оценку по той же схеме, что и синтетические.

Наиболее широко пищевые красители применяются при производстве кондитерских изделий, напитков, маргаринов, некоторых видов консервов, сухих завтраков, плавленых сыров, мороженого.

Натуральные (природные) красители

Натуральные красители обычно выделяют из природных источников в виде смеси различных по своей химической природе соединений, состав которой зависит от источника и технологии получения, в связи с чем обеспечить его постоянство часто бывает трудно. Среди натуральных красителей необходимо отметить каротиноиды, антоцианы, флавоноиды, хлорофиллы. Они, как правило, не обладают токсичностью, но для некоторых из них установлены допустимые суточные дозы. Некоторые натуральные пищевые красители или их смеси и композиции обладают биологической активностью, повышают пищевую ценность окрашиваемого продукта. Сырьем для получения натуральных пищевых красителей являются различные части дикорастущих и культурных растений, отходы их переработки на винодельческих, сокодобывающих и консервных заводах, кроме этого, некоторые из них получают химическим или микробиологическим синтезом. Природные красители, в том числе и модифицированные, чувствительны к действию кислорода воздуха (например, каротиноиды), кислот и щелочей (например, антоцианы), температуры, могут подвергаться микробиологической порче.

Каротиноиды -- углеводороды изопреноидного ряда С40Н56 (каротины) и их кислородсодержащие производные. Каротиноиды -- растительные красно-желтые пигменты, обеспечивающие окраску ряда овощей, фруктов, жиров, яичного желтка и других продуктов. Интенсивная окраска каротиноидов обусловлена наличием в их структуре сопряженных двойных л-связей, являющихся хромофорами. Они нерастворимы в воде и растворимы в жирах и органических растворителях. Примером таких соединений является ?-каротин (название происходит от лат. carota -- морковь).

?-Каротин E160a(i) получается синтетическим (в том числе микробиологическим) путем или выделяется из природных источников, в том числе из криля, в смеси с другими каротиноидами (El60a(ii) -- экстракты натуральных каротиноидов) в виде водо- или жирорастворимых форм. ?-Каротин является не только красителем, но и провитамином А, антиоксидантом, эффективным профилактическим средством против онкологических и сердечно-сосудистых заболеваний, защищает от воздействия радиации. Он применяется для окрашивания и витаминизации маргаринов, майонезов, кондитерских, хлебобулочных изделий, безалкогольных напитков.

Из пигментов этой группы следует также отметить ликопин (E160d) и желто-оранжевый краситель аннато (Е160b) -- водный экстракт из корней Bixaorellana L, разрешенный для окраски маргаринов, ароматизированных сыров, сухих завтраков из зерна, сливочного масла. Он обладает антиспастическими и гипотоническими свойствами. К этой же группе красителей относятся маслосмолы паприки (Е160с) -- экстракты из красного перца Capsicum annuum L. Они имеют характерный острый вкус и цвет от желтого до оранжевого. Основным пигментом является каротиноид капсантин, не обладающий А-витаминной активностью. Применяется при изготовлении копченостей, кулинарных изделий, соусов, сыров. Необходимо упомянуть еще ?-апокаротиналь (Е160е) -- ?-апокаротиновый альдегид, получаемый синтетическим путем, и метиловые или этиловые эфиры ?-апо-8'-каротиновой кислоты (E160f).

Большую группу составляют производные каротиноидов: флавоксантин (Е161 а), лютеин (экстракт бархатцев, Е161b), криптоксантин (Е161 с), рубиксантин (Е16Ы), виолоксантин (Е161е),родоксантин (E161f), кантак-сантин(Е160g).

Для окраски пищевых продуктов (маргарина, сливочного масла, майонеза, рыбных изделий, искусственной икры и некоторых других продуктов) применяют каротиноиды, выделенные из моркови ?-?-?-каротины), плодов шиповника, перца, а также продукты, полученные микробиологическим или синтетическим путем. Каротиноиды устойчивы к изменению рН среды, к веществам, обладающим восстановительными свойствами, но при нагревании (выше 100°С) или под действием солнечного света легко окисляются. Наибольшее значение имеет ?-каротин, экстракты натуральных каротинов и аннато.

Хлорофиллы (магнийзамещенные производные порфирина) -- природные пигменты, придающие зеленую окраску многим овощам и плодам (салат, зеленый лук, зеленый перец, укроп и т. д.). Хлорофилл состоит из сине-зеленого "хлорофилла а" и желто-зеленого "хлорофилла Ь", находящихся в соотношении 3:1. Для извлечения хлорофилла используют петролейный эфир со спиртом. Применение их в качестве красителя (Е140) в пищевой промышленности сдерживается их нестойкостью: при повышенной температуре в кислых средах зеленый цвет переходит в оливковый, затем в грязно-желто-бурый вследствие образования феофитина. Большое практическое значение могут иметь медные хлорофиллоподобные комплексы (Е14Н), содержащие медь в качестве центрального атома и имеющие интенсивную зеленую окраску, и натриевые и калиевые соли медного комплекса хлорофиллина (EHlii). Хлорофилл и его производные с медью растворимы в масле, хлорофиллин и его медные производные -- в воде. Для окраски продуктов питания используются зеленые пигменты, выделенные из крапивы, капусты, ботвы моркови и т. д.

Антрахиноновые красители содержат в качестве основной хромофорной группы гидроксиантрахинон, обладающий стабильной окраской.

К природным пигментам этой группы относятся ализарин, кармин, алканин. Остановимся на разрешенных в России.

Кармин Е120 -- красный краситель (основной компонент карминовая кислота) -- представляют собой комплексные соли карминовой кислоты с ионами металлов. Получают экстракцией из кошениля -- высушенных и растертых женских особей насекомых -- червецов вида Dactylopius coccus (Sacta), обитающих на кактусах, которые произрастают в Южной Америке, Африке. Наиболее богаты кармином самки кошенили, содержащие до 3% красителя. Краситель устойчив к нагреванию, действию кислорода воздуха, свету. Применяется в кондитерской, безалкогольной, мясной промышленности, при производстве джемов, желе. В последнее время кармин в значительно больших количествах получают синтетическим путем.

Алканин (алканет) Е103 -- красно-бордовый краситель, производное 1,4-нафтохинона.

Известен как краситель еще с древних времен. Получают из корней растения Alkanna tinctoria, растущего на юге и в центральной части Европы. Он растворим в жирах, но не нашел широкого применения для их окраски, т. к. обладает недостаточной стабильностью и нехарактерным для жировых продуктов цветом.

Курку мин -- желтый природный краситель (ElOOi), получают из многолетних травянистых растений семейства имбирных -- Curcuma longa, L.

К этой группе относится и турмерик (Е100Н) -- порошок корневища куркумы.

Куркумины не растворяются в воде и часто используются в пищевой промышленности в виде спиртового раствора.

Антоциановые красители. Важной группой водорастворимых природных красителей являются антоцианы (E163i). Это фенольные соединения, являющиеся моно- и дигликозидами. При гидролизе они распадаются на углеводы (галактозу, глюкозу, рамнозу и др.) и агликоны, представленные антоцианидами (пеларгонидином, цианидином, дельфини-дином и др.). Характер окраски природных антоцианов зависит от многих факторов: строения, рН среды, образования комплексов с металлами, способности адсорбироваться на полисахаридах, температуры, света. Наиболее устойчивую красную окраску антоцианы имеют в кислой среде при рН 1,5--2; при рН 3,4--5 окраска становится красно-пурпурной или пурпурной. В щелочной среде происходит изменение окраски: при рН 6,7--8 она становится синей, сине-зеленой, а при рН 9 -- зеленой, переходящей в желтую при повышении рН до 10. Меняется окраска антоцианинов и при образовании комплексов с различными металлами: соли магния и кальция имеют синюю окраску, калия -- красно-пурпурную. Увеличение числа метальных групп в молекуле антоцианинов сдвигает окраску в сторону красных оттенков. Представителями этой группы красителей являются собственно антоцианы, энокраситель и экстракт из черной смородины.

Энокраситель (E163ii) получают из выжимок темных сортов винограда и ягод бузины в виде жидкости интенсивно красного цвета. Представляет собой смесь окрашенных, различных по своему строению органических соединений, в первую очередь антоцианинов и катехинов. Окраска продукта энокрасителем зависит от рН среды: красная окраска в подкисленных средах, в нейтральных и слабощелочных средах энокраситель придает продукту синий оттенок. Поэтому при использовании энокраси-теля в кондитерской промышленности одновременно применяют и органические кислоты для создания необходимой кислотности среды.

В последнее время начали использовать в качестве желтых и розово-красных красителей пигменты антоциановой природы, содержащиеся в соке черной смородины (E163iii), кизила, красной смородины, клюквы, брусники, пигменты чая, содержащие антоцианы и катехины, а также краситель темно-вишневого цвета, выделенный из свеклы -- свекольный красный (Е162). Составной частью его является бетанин.

Сахарный колер (карамель, Е150) -- темно-окрашенный продукт карамелизации (термического разложения) Сахаров, получаемый по различным технологиям. Его водные растворы представляют собой приятно пахнущую темно-коричневую жидкость. В зависимости от технологии получения различают сахарный колер I (Е150а, простой, карамель I); сахарный колер II (E150b, карамель II), полученный по "щелочно-сульфитной" технологии; сахарный колер III (El50с, карамель III), полученный по "аммиачной" технологии; сахарный колер IV (E150d, карамель IV), полученный по "аммиачно-сульфитной" технологии. В результате карамелизации Сахаров образуется сложная смесь продуктов с характерной окраской. Применяется для окраски напитков, ячменного хлеба, кондитерских изделий, желе и джемов, в кулинарии.

Рибофлавины (рибофлавин ElOli) и натриевая соль рибофлавин-5'-фосфата (ЕЮШ) используются в качестве желтого пищевого красителя для окрашивания кондитерских изделий, майонезов и т. п. Максимальный уровень внесения не установлен.

Синтетические красители

Синтетические красители обладают значительными технологическими преимуществами по сравнению с большинством натуральных красителей. Они дают яркие, легко воспроизводимые цвета и менее чувствительны к различным видам воздействия, которым подвергается материал в ходе технологического потока.

Синтетические пищевые красители -- представители нескольких классов органических соединений: азокрасители (тартразин -- Е102; желтый "солнечный закат" -- Е110; кармуазин -- Е122; пунцовый 4R-- Е124; черный блестящий -- Е151); триарилметановые красители (синий патентованный V--Е131; синий блестящий -- Е133; зеленый S -- Е142); хинолиновые (желтый хинолиновый -- Е104); индигоидные (индигокармин -- Е132). Все эти соединения хорошо растворимы в воде, большинство образует нерастворимые комплексы с ионами металлов и применяются в этой форме для окрашивания порошкообразных продуктов.

Отметим разрешенные к применению в РФ синтетические красители.

Индигокармин (индиготин) -- динатриевая соль индигодилсульфокис-лоты. При растворении в воде дает растворы интенсивно синего цвета. Применяется в кондитерской промышленности, в технологии напитков (обладает низкой устойчивостью к редуцирующим сахарам и свету, что необходимо учитывать при использовании для окраски напитков).

Тартразин хорошо растворим в воде, его растворы окрашены в оранжевато-желтый цвет. Используется в кондитерской промышленности, при производстве напитков, мороженого.

В качестве пищевых красителей применяются также хинолиновый желтый Е104, желтый 2G Е107, желтый "солнечный закат FCF" Е110, красные красители -- азорубин (кармуазин) Е122, понсо 4R (пунцовый 4R) Е124, красный 2G Е128, "красный очаровательный AC" E129, "орсейл" (орсин-красный для карамели) Е182; голубые красители -- "синий патентованный V" Е131, "синий блестящий FCF" E133; зеленые красители -- "зеленый S" E142, "зеленый прочный FCF" E143; темно-фиолетовый краситель -- "черный блестящий РН" (бриллиантовый черный) Е151; коричневый краситель "коричневый НТ" Е155.

Эритрозин -- Е127 не разрешен для применения в нашей стране, но используется в других странах.

Синтетические красители в пищевой технологии применяются в виде индивидуальных продуктов и соединений с содержанием основного вещества не менее 70--85%, в смеси друг с другом, а также разбавленные наполнителями (поваренной солью, сульфатом натрия, глюкозой, сахарозой, лактозой, крахмалом, пищевыми жирами и др.), что упрощает обращение с ними. Для окрашивания пищевых продуктов используют, главным образом, водные растворы пищевых красителей. Порошкообразные красители применяют обычно лишь в сухих полуфабрикатах (концентратах напитков, сухих смесях для кексов, желе и т. д.).

Смеси красителей позволяют получить цвета и оттенки, которые не удается создать с помощью индивидуальных красителей.

При выборе красителя и его дозировки необходимо учитывать не только цвет и желаемую интенсивность окраски, но и физико-химические свойства пищевых систем, в которые он вносится, а также особенности технологии.

N Широкое применение синтетических красителей, появившихся в последнее время благодаря достижениям химии, связано с их высокой устойчивостью к изменениям рН среды и действию кислот, стабильностью к нагреванию и свету, большой окрашивающей способностью, легкостью дозирования, устойчивостью окраски при хранении продукта. В большинстве случаев они дешевле натуральных красителей.

Минеральные (неорганические) красители

В качестве красителей применяют минеральные пигменты и металлы. В Российской Федерации разрешено применение 7 минеральных красителей и пигментов (табл. 9.3), включая уголь древесный.

Таблица 9.3. Минеральные красители, разрешенные для применения в РФ

Код

Наименование

Цвет водных или масляных растворов

Е152

Уголь

Черный

Е153

Уголь древесный

Черный

Е170

Углекислые соли кальция

Белый

Е171

Диоксид титана

Белый

Е172

Оксиды железа

(i) железа (+2;+3) оксид черный

Черный

(ii) железа (+3) оксид красный

Красный

(iii) железа (+3) оксид желтый

Желтый

Е174

Серебро

Е175

Золото

Цветокорректирующие материалы

В пищевой промышленности применяются соединения, изменяющие окраску продукта в результате взаимодействия с компонентами сырья и готовых продуктов. Среди них отбеливающие вещества -- добавки, предотвращающие разрушение одних природных пигментов и разрушающие другие пигменты или окрашенные соединения, образующиеся при получении пищевых продуктов и являющиеся нежелательными. Иногда эти Цветокорректирующие материалы оказывают и другое, сопутствующее (например, консервирующее) действие. Мы остановимся на диоксиде серы, нитратах, нитритах и бромате калия.

Диоксид серы -- SO2 (E220), растворы H2SO3 и ее солей -- NaHSO3, Ca(HSO3)2, Na2SO3 (E221, Е222, Е223) и другие оказывают отбеливающее и консервирующее действие, тормозят ферментативное потемнение свежих овощей, картофеля, фруктов, а также замедляют образование меланоидинов. В то же время диоксид серы разрушает витамин В,, влияет на строение белковых молекул, разрушая дисульфидные мостики в белках, что может вызвать нежелательные последствия. Поэтому целесообразно отказаться от применения диоксида серы для обработки продуктов, являющихся важным источником витамина В, для человека.

Нитрат натрия (Е251) и нитриты калия и натрия (Е249 и Е250) применяют при обработке (посоле) мяса и мясных продуктов для сохранения красного цвета. Миоглобин (красный мясной краситель) при взаимодействии с нитритами образует красный нитрозомиоглобин, который придает мясным изделиям цвет красного соленого мяса, мало изменяющегося при кипячении. Аналогичное действие оказывают и нитраты, которые с помощью фермента нитроредуктазы, выделяемого микроорганизмами, переводятся в нитриты. Для создания необходимой для их жизнедеятельности питательной среды в рассол добавляют сахарозу. Однако нитрозомиоглобин может превращаться в нитрозомиохромоген, придающий изделиям зеленоватый или коричневый оттенок. Нитраты и нитриты в смеси с поваренной солью ("посольная смесь") оказывают консервирующее действие. Добавление аскорбиновой кислоты (ЕЗОО) ускоряет образование красного пигмента и позволяет сократить использование нитратов и нитритов. В настоящее время по совокупности показаний применение нитритов и нитратов вызывает возражения медиков и требует особого внимания с позиций гигиенической регламентации.

Бромат калия -- КВrО3 (Е924а) ранее применялся в качестве окисляющего отбеливателя муки; его использование частично разрушает витамин Вр никотинамид (витамин РР) и метионин и, возможно, приводит к образованию новых соединений с нежелательными свойствами, поэтому во многих странах, в том числе в РФ, его применение запрещено.

9.3 ВЕЩЕСТВА, ИЗМЕНЯЮЩИЕ СТРУКТУРУ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ПИЩЕВЫХ ПРОДУКТОВ

К этой группе пищевых добавок могут быть отнесены вещества, используемые для создания необходимых или изменения существующих реологических свойств пищевых продуктов, т. е. добавки, регулирующие или формирующие их консистенцию. К ним принадлежат добавки различных функциональных классов -- загустители, гелеобразователи, стабилизаторы физического состояния пищевых продуктов, поверхностно-активные вещества (ПАВ), в частности, эмульгаторы и пенообразователи.

Химическая природа пищевых добавок, отнесенных к этой группе, достаточно разнообразна. Среди них имеются продукты природного происхождения и получаемые искусственным путем, в том числе химический синтезом. В пищевой технологии они используются в виде индивидуальных соединений или смесей.

В последние годы в группе пищевых добавок, регулирующих консистенцию продукта, большое внимание стало уделяться стабилизационным системам, включающим несколько компонентов: эмульгатор, стабилизатор, загуститель. Их качественный состав, соотношение компонентов могут быть весьма разнообразными, что зависит от характера пищевого продукта, его консистенции, технологии получения, условий хранения, способа реализации.

Применение в современной пищевой технологии таких добавок позволяет создать ассортимент продуктов эмульсионной и гелевой природы (маргарины, майонезы, соусы, пастила, зефир, мармелад и др.), структурированных и текстурированных.

Стабилизационные системы широко применяются в общественном и домашнем питании, кулинарии. Они используются при производстве супов (сухие, консервированные, замороженные), соусов (майонезы, томатные соусы), бульонных продуктов, продуктов для консервированных блюд.

Загустители и гелеобразователи

Эта группа пищевых добавок включает соединения двух функциональных классов: а) загустители (функциональный класс 23) -- вещества, используемые для повышения вязкости продукта; б) гелеобразователи (функциональный класс 15) -- соединения, придающие пищевому продукту свойства геля (структурированной высокодисперсной системы с жидкой дисперсионной средой, заполняющей каркас, который образован частицами дисперсной фазы).

Загустители и гелеобразователи, введенные в жидкую пищевую систему в процессе приготовления пищевого продукта, связывают воду, в результате чего пищевая коллоидная система теряет свою подвижность и консистенция пищевого продукта изменяется. Эффект изменения консистенции (повышение вязкости или гелеобразование) будет определяться, в частности, особенностями химического строения введенной добавки.

В химическом отношении добавки этой группы являются полимерными соединениями, в макромолекулах которых равномерно распределены гидрофильные группы, взаимодействующие с водой. Они могут участвовать также в обменном взаимодействии с ионами водорода и металлов (особенно кальция), а кроме того, с органическими молекулами меньшей молекулярной массы.

Перечень загустителей и гелеобразователей, разрешенных к применению в производстве пищевых продуктов в России, включает 50 добавок.

Как уже отмечалось, главной технологической функцией добавок этой группы в пищевых системах является повышение вязкости или формирование гелевой структуры различной прочности. Одним из основных свойств, определяющих эффективность применения таких веществ в конкретной пищевой системе, является их полное растворение, которое зависит, прежде всего, от химической природы добавок. Поскольку большинство представителей этой группы относится к соединениям полисахаридной природы и содержит значительное количество гидроксильных групп, они являются гидрофильными и, в основном, растворимы в воде.

Растворимость повышается в присутствии ионизированных групп -- сульфатных и карбоксильных, увеличивающих гидрофильность (каррагинаны, альгинаты), а также при наличии в молекулах полисахаридов боковых цепей, раздвигающих главные цепи, что улучшает гидратацию (ксантаны). Растворению способствует механическое воздействие (перемешивание) и нагревание. Растворимость понижается в присутствии факторов, способствующих образованию связей между полисахаридными цепями, к которым относятся наличие неразветвленных зон и участков без ионизированных групп (камедь рожкового дерева), а также присутствие ионов кальция или других поливалентных катионов, вызывающих поперечное сшивание полисахаридных цепей (пектины).

Многие представители этой группы пищевых добавок имеют смежную технологическую функцию стабилизатора, поскольку повышение вязкости дисперсной пищевой системы при введении в нее загустителя или превращение такой системы в слабый гель при низких концентрациях гелеобразователя способствуют предотвращению ее разделения на исходные компоненты (например, выпадение в осадок твердых частиц, диспергированных в жидкой дисперсионной среде).

Подавляющее большинство загустителей и гелеобразователей со статусом пищевых добавок относится к классу полисахаридов (гликанов). Исключение составляет гелеобразователь желатин, имеющий белковую природу.

В зависимости от особенностей химического строения загустители и гелеобразователи полисахаридной природы могут быть подразделены по различным классификационным признакам (табл. 9.4).

Таблица 9.4. Классификация пищевых добавок полисахаридной природы в зависимости от структуры

Классификационный признак

Характеристика

Основные представители

Строение полимерной цепи

Линейное

Альгинаты, каррагинаны, модифицированные целлюлозы, фурцеллеран, пектины

Разветвленное

Галактоманнаны (гуаровая камедь и камедь рожкового дерева), ксантаны, гуммиарабик, камедь гхатти, камедь карайи, трагакант

Природа мономерных остатков

Гомогликаны Гетерогликаны

Модифицированные целлюлозы, модифицированные крахмалы

Альгинаты, каррагинаны, галактоманнаны, пектины

Тригетерогликаны

Ксантаны, камедь карайи, геллановая камедь

Тетрагетерогликаны

Гуммиарабик

Пентагетерогликаны

Камедь гхатти, трагакант

Заряд

Нейтральный

Производные целлюлозы, амилопектины, галактоманнаны

Анионный (кислотный)

Альгинаты, каррагинаны, пектины, ксантаны, трагакант, камедь карайи, гуммиарабик, камедь гхатти, фурцеллеран

К основным представителям относятся модифицированные крахмалы и целлюлозы, пектины, полисахариды морских водорослей и некоторые другие.

Модифицированные крахмалы

В отличие от нативных растительных крахмалов, считающихся пищевыми продуктами, модифицированные крахмалы (Е1400 -- Е1451) относятся к пищевым добавкам. В эту группу пищевых добавок объединены продукты фракционирования, деструкции и различных модификаций нативных растительных крахмалов, представляющих собой преимущественно смесь двух фракций гомоглкжанов (полимеров глюкозы) линейного и разветвленного строения -- амилозы и амилопектина:

Краткая характеристика основных фракций крахмала приведена в табл. 9.5.

Таблица 9.5. Краткая характеристика основных фракций крахмала

Основные характеристики

Амилоза

Амилопектин

Строение; тип гликозидной связи

Линейное; ?-(1,4)

Разветвленное;
?-(1,4) в линейной части;
?-(1,6) в точках ветвления

Молекулярная масса

До 500 тыс

1--6 млн

Растворимость

Растворима в горячей воде

Набухает в горячей воде с образованием клейстера

Среднее содержание в крахмале, %

15-20

80-85

Особенности химического строения и свойств этих фракций, а также их соотношение в нативном крахмале, зависящее от вида растительного источника (картофель, рис, кукуруза и т. п.), определяют основное технологическое свойство нативного крахмала -- способность растворяться при нагревании в воде с образованием вязких коллоидных растворов (клейстеров). Однако свойства таких клейстеров часто не соответствуют необходимым требованиям; например, нативные кукурузные крахмалы образуют слабые, резиноподобные клейстеры и нежелательные гели в процессе термической обработки. Типичным для клейстеров, образованных нативными крахмалами, является также процесс синерези-с а -- сокращение объема с выделением жидкой фазы в результате самопроизвольного уплотнения структурной сетки.

Различные способы обработки (физические, химические, биологические) нативных крахмалов позволяют существенно изменить их строение, что отражается на растворимости и свойствах клейстеров, например, их устойчивости к нагреванию, воздействию кислот и т. п.

Реакционноспособными центрами в полимерных молекулах крахмалов являются: а) гидроксильные группы глюкозных структурных единиц, активность которых по отношению к химическим реагентам изменяется в ряду: ОН при С6> ОН при С2 > ОН при С3; б) а-гликозидные связи,

Таблица 9.6. Основные виды модифицированных крахмалов

Тип модификации

Основные группы

Основные подгруппы

Набухание

Набухающие крахмалы

Растворимые в холодной воде (инстант-крахмалы), полученные: -- вальцовой сушкой; -- экструзией

Набухающие в холодной воде

Деполимеризация

Расщепленные крахмалы

Декстрины

Гидролизованные кислотами

Гидролизованные ферментами

Окисленные

Стабилизация

Стабилизированные крахмалы

Со сложной эфирной связью:

-- ацетилированные;

-- фосфатные

С простой эфирной связью

-- оксиалкильные

Поперечное сшивание полимерных цепей

Сшитые крахмалы

Сшитые:

-- хлорокисью фосфора;

-- эпихлоргидрином;

-- адипиновой кислотой

соединяющие глюкозные структурные единицы в полимерные цепи; в) концевые остатки D-глюкопираноз, обладающие восстанавливающей способностью.

По изменениям, происходящим в нативных крахмалах, можно выделить четыре основных типа модификаций, позволяющих путем физических или химических воздействий получить различные виды модифицированных крахмалов (табл. 9.6).

Набухающие крахмалы. Инстант-крахмалы, т. е. крахмалы, способные растворяться в холодной воде, получают путем физических превращений, не вызывающих существенной деструкции крахмальных молекул. В общем случае их получают нагреванием крахмальной суспензии в условиях, обеспечивающих быструю клейстеризацию и последующее высушивание клейстера, в связи с чем эти крахмалы называют также преклейстерными. Такие условия достигаются при вальцовой сушке или экструзии.

Инстант-крахмалы используются, например, в пудингах быстрого приготовления.

Крахмалы, набухающие в холодной воде, получают термообработкой нативного кукурузного крахмала в 75--90%-м этаноле при температуре 150--175°С в течение 1,5--2,0 ч, или высушиванием крахмальной суспензии в распылительной сушилке.

Основой для получения растворимых и набухающих крахмалов могут служить как нативные, так и химически модифицированные. В последнем случае получаемые набухающие крахмалы сохраняют свойства, достигнутые при химической модификации, например, проявляют устойчивость в кислой среде, стабильность в циклах замерзания и оттаивания.

Способность крахмалов набухать в холодной воде без дополнительного нагревания используют в технологии различных десертов, желейного мармелада, сдобного теста, содержащего ягоды, которые в отсутствие стабилизатора оседают на дно до начала выпечки.

Расщепленные крахмалы. Они представляют собой продукты, имеющие, вследствие физических или химических воздействий, более короткие (по сравнению с нативными крахмалами) молекулярные цепи. К этой группе относятся декстрины, продукты кислотного или ферментативного гидролиза, а также окисленные крахмалы.

Декстрины (Е1400) получают при сухом нагревании нативных крахмалов в присутствии кислотных катализаторов или без них. В зависимости от условий термообработки образуются белые или желтые декстрины.

Гидролизованные крахмалы получают обработкой крахмальных суспензий растворами кислот или гидролитических ферментов амилаз. Состав и свойства таких крахмалов зависят от условий гидролиза.

Основная область использования этих крахмалов -- кондитерские изделия: пастила и желе, жевательные резинки.

Состав и свойства окисленных крахмалов определяются выбором окислителей, в качестве которых могут использоваться Н2О2, КМnО4, НСlО3, КЮ4 и некоторые другие. Как и кислоты, окисляющие агенты приводят к образованию крахмалов с более короткими молекулярными цепями.

В зависимости от условий, окислению могут подвергаться как первичные, так и вторичные группы глюкопиранозных структурных единиц:

Их используют для стабилизации мороженого, при производстве мармеладов, лукума, а также в хлебопечении. Разбавленные растворы высокоокисленных крахмалов сохраняют прозрачность в течение длительного хранения, что делает их ценными добавками при приготовлении прозрачных супов.

Стабилизированные крахмалы. Они представляют собой продукты химической модификации монофункциональными реагентами с образованием по гидроксильным группам производных с простой или сложной эфирной связью. Такие производные, несмотря на невысокую степень замещения гидроксильных групп (0,002--0,2), отличаются отнативных крахмалов значительно меньшей склонностью к межмолекулярным ассоциациям и получили название стабилизированных.

Основные виды модифицированных крахмалов этой группы, а также их отличительные свойства представлены в табл. 9.7.

Таблица 9.7. Этерифицированные пищевые крахмалы

Этерифицированные крахмалы

Эфирные группы

Главные характеристики

Сложные эфиры

Ацетилированные

Повышенная прозрачность и стабильность клейстера при низких температурах, облегченная тепловая обработка

Фосфорилированные

Повышенная прозрачность и стабильность клейстера, устойчивость к замораживанию-оттаиванию

Этерифицированные октенил-янтарной кислотой

Эмульгирующая и стабилизирующая способность

Простые эфиры

Гидроксипропилированные

Повышенная прозрачность и стабильность клейстера, устойчивость к замораживанию-оттаиванию, облегченная тепловая обработка

Сложные эфиры крахмалов получают реакцией этерификации между спиртовыми группами молекул крахмала и ацилирующими или фосфорилирующими агентами. В качестве ацилирующих агентов обычно используют ангидриды карбоновых кислот.

При получении эфира крахмала и натриевой соли октенилянтарной кислоты процесс осуществляют в две стадии. Первоначально в молекулу янтарной кислоты вводят углеводородный радикал с образованием 1-октенилпроизводного, которое затем взаимодействует с молекулой крахмала, что приводит к образованию моноэфира с низкой степенью замещения гидроксильных групп.

Введение в молекулу крахмала углеводородных (алкенильных) фрагментов сопровождается возникновением разделенных между собой гидрофобных участков. Вследствие этого такие молекулы становятся поверхностно-активными и приобретают способность, концентрируясь на границах раздела фаз, образовывать, а также стабилизировать (благодаря полимерному строению) различные дисперсные системы, в частности эмульсии.

Простые эфиры крахмалов для пищевых целей получают взаимодействием нативного крахмала с окисью пропилена до степени замещения гидроксильных групп, соответствующей 0,02--0,2. По своим свойствам гидроксипропилкрахмалы (Е1440) аналогичны ацетилированным модификациям, имеют пониженную температуру гелеобразования, повышенную прозрачность клейстеров, такую же устойчивость к ретроградации.

Сшитые крахмалы. Большинство модифицированных пищевых крахмалов относится к подгруппе сшитых. Поперечное сшивание отдельных крахмальных молекул между собой происходит в результате взаимодействия их гидроксильных групп с бифункциональными реагентами.

Для пищевых целей используют, главным образом, три вида межмолекулярно-сшитых крахмалов -- дикрахмальные эфиры фосфорной и адипиновой кислот, а также дикрахмалглицерины:

В большинстве сшитых пищевых крахмалов содержится не более одной поперечной связи на каждую тысячу глюкопиранозных остатков, что оказывается достаточным для значительного изменения свойств модифицированных крахмалов по сравнению с исходными. Крахмалы этой подгруппы имеют пониженную скорость набухания и клейстеризации, что создает эффект пролонгированного действия. Клейстеры поперечно-сшитых крахмалов являются более вязкими, имеют "короткую" текстуру, устойчивы к различным внешним воздействиям -- высоким температурам, длительному нагреванию, низким рН, механическим нагрузкам.

Устойчивость к подкислению и физическим воздействиям пропорциональны количеству поперечных связей.

Благодаря таким свойствам, сшитые крахмалы особенно эффективны в пищевых технологиях, включающих продолжительную термическую обработку, интенсивные механические воздействия, а также в технологиях, где требуется пролонгирование процессов набухания крахмальных гранул, повышения вязкости и формирования текстуры. К таким технологиям относятся: получение экструдированных продуктов, консервирование методом стерилизации, различные выпечки (например, выпечка открытых пирогов с фруктовыми начинками), производство консервированных супов и т.п.

Целлюлоза и ее производные

В группу пищевых добавок целлюлозной природы (Е460--Е467) входят продукты механической и химической модификации и деполимеризации натуральной целлюлозы, представляющей собой линейный полимер, который состоит из соединенных ?-1,4-гликозидными связями остатков D-глюкопиранозы.

Наличие ?-гликозидной связи приводит на уровне вторичных и третичных структур (конформации полимерных цепей, упаковки цепей в фибриллы) к формированию линейных молекул с зонами кристалличности (высокоориентированными участками), включающими отдельные аморфные (неориентированные) участки. Такое строение обусловливает большую механическую прочность волокон целлюлозы и их инертность по отношению к большинству растворителей и реагентов.

Собственно целлюлоза используется в качестве пищевой добавки Е460 в двух модификациях:

-- Е4601 -- микрокристаллическая целлюлоза (частично гидролизованная кислотой по аморфным участкам, наиболее доступным для атаки реагентами, и затем измельченная; отличается укороченными молекулами);

-- Е460Н -- порошкообразная целлюлоза, выделенная из растительного сырья (древесины, хлопка и т. п.) удалением сопутствующих веществ (гемицеллюлоз и лигнина) и затем измельченная.

Основные технологические функции целлюлозы -- эмульгатор и текстуратор, добавка, препятствующая слеживанию и комкованию.

Химическая модификация молекул целлюлозы приводит к изменению свойств и, как следствие, к изменению функций в пищевых системах. В образовании производных целлюлозы большую роль играет доступность и реакционная способность гидроксильных групп ?-О-глюкопиранозных остатков. По реакционной способности гидроксильные группы располагаются в последовательности: ОН при С6 > ОН при С2 > ОН при С3.

Статус пищевых добавок имеют семь химических модификаций целлюлозы, представляющих собой моно- или дипроизводные с простой эфирной связью (простые эфиры). В общем виде модифицированные целлюлозы могут быть описаны следующей формулой (строение и технологические функции пищевых эфиров целлюлозы представлены в табл. 9.8):

Таблица 9.8. Модифицированные целлюлозы и их технологические функции

Код

Название

X

Y

Технологические функции

Е461

Метилцеллюлоза

-СН3

-H

Загуститель, стабилизатор, эмульгатор

Е462

Этилцеллюлоза

-СН2СН3

-H

Наполнитель, связующий агент

Е463

Гидроксипропилцеллюлоза

-СН2СН(ОН)СН3

-H

Загуститель, стабилизатор, эмульгатор

Е464

Гидроксипропилметилцеллюлоза

-СН2СН(ОН)СН3

-СН3

Загуститель, стабилизатор, эмульгатор

Е465

Метилэтилцеллюлоза

-СН3

-СН2СН3

Загуститель, стабилизатор, эмульгатор, пенообразователь

Е466

Карбоксиметил-целлюлоза (натриевая соль)

-CH2COONa

-H

Загуститель, стабилизатор

Е467

Этилгидрокси-этилцеллюлоза

-СН2СН3

-СН2СН2ОН

Эмульгатор, стабилизатор, загуститель

Получение простых эфиров целлюлозы включает стадию повышения ее реакционной способности, поскольку плотная упаковка целлюлозных волокон, в целом, препятствует взаимодействию гидроксильных групп с молекулами реагента. С этой целью целлюлозу подвергают набуханию или переводят в растворимое состояние. В промышленных условиях процесс ведут в гетерофазной среде (дисперсия целлюлозы в ацетоне или изопропиловом спирте), обрабатывая целлюлозу раствором едкого натра при температуре 50-- 140°С с образованием алкалицел-люлозы (процесс мерсеризации). Получение пищевых производных целлюлозы осуществляют взаимодействием полученной алкалимодифика-ции с галогеналкилами (получение метилированных и этилированных производных) или соответствующими эпоксидами (эпоксид этилена, эпоксид пропилена) для получения гидроксиэтил- и гидроксипропилпроизводных:

где R: -- CH3, --CH2--CH3; R': --H, -- CH3; Cell: макромолекула целлюлозы; ОН: реагирующий гидроксил (при С6 или при С2).

Комбинируя исходные реагенты, получают смешанные производные целлюлозы, например, метилэтилцеллюлозу, метилгидроксипропилцеллюлозу и др.

Пищевые добавки целлюлозной природы являются безвредными, поскольку не подвергаются в желудочно-кишечном тракте деструкции и выделяются без изменений. Дневной суммарный прием с пищей всех производных целлюлозы может составлять 0--25 мг на килограмм массы тела человека. Их дозировки в пищевых продуктах определяются конкретными технологическими задачами.

Традиционно эти добавки используются при изготовлении хлебобулочных и кондитерских изделий, молочных и низкожирных эмульсионных продуктов, а также безалкогольных напитков, где выступают в качестве эмульгаторов и стабилизаторов многокомпонентных дисперсных систем, суспензий и эмульсий, обеспечивают необходимые консистенцию и вкусовые свойства.

Пектины

Пектины, наряду с галактоманнанами (гуаровой камедью и камедью рожкового дерева), являются основными представителями группы гетерогликанов высших растений.

Пектинами (Е440) называется группа высокомолекулярных гете-рогликанов (pektos -- греч. свернувшийся, замерзший), которые входят в состав клеточных стенок и межклеточных образований высших растений, и через боковые цепочки соединены с гемицеллюлозами, например, галактаном, а затем волокнами целлюлозы. В такой связанной форме, имеющей название "протопектины", они не растворимы в воде. По химической природе пектины представляют собой гетеро-полисахариды, основу которых составляют рамногалактуронаны. Главную цепь полимерной молекулы образуют производные полигалактуроновой (пектовой) кислоты (полиурониды), в которой остатки D-ra-лактуроновой кислоты связаны 1,4-?-гликозидной связью. Основная цепочка полигалактуроновой кислоты в растворе имеет вид спирали, содержащей три молекулы галактуроновой кислоты в одном витке. В цепь полигалактуроновой кислоты неравномерно через 1,2-?-гликозидные связи включаются молекулы L-рамнозы (6-дезокси-L-маннопиранозы), что придает полимерной молекуле зигзагообразный характер.

Часть карбоксильных групп полигалактуроновой кислоты обычно этерифицирована метанолом (пектиновая кислота), а часть вторичных спиртовых групп (С2 и С3) в отдельных случаях ацетилирована. Молекулы пектинов содержат обычно от нескольких сотен до тысячи мономерных остатков, что соответствует средней молекулярной массе от 50 до 150 тыс. Путем химических модификаций часть свободных карбоксильных групп может быть переведена в амидированную форму (амидированные пектины).

Фрагменты молекул пектовой и пектиновой кислот представлены на рис. 9.4. Соли пектовой кислоты получили название пектаты, соли пектиновой -- пектинаты.

В промышленности пектины получают кислотным или ферментативным гидролизом (обменной реакцией между веществом, в данном случае пектинсодержащим материалом, и водой) в условиях, обеспечивающих расщепление гликозидных связей, соединяющих пектиновые молекулы с нейтральными полисахаридами и не затрагивающих более прочные гликозидные связи в полимерной пектиновой молекуле, а также сложноэфирные связи в молекулах высокоэтерифицированных пектинов.

В классических способах гидролиз осуществляют растворами минеральных кислот (НС1, H2SO4, HNO3, H3PO4) при рН около 2 и температуре около 85°С в течение 2--2,5 ч. При этом молекулырамногалактурона-нов переходят в раствор, откуда, после очистки и концентрирования, их извлекают различными технологическими приемами, например, осаждением из этанола. Осажденный пектин сушат, измельчают и стандартизуют добавлением глюкозы (декстрозы) или ретардатора -- соли одновалентного катиона и пищевой кислоты (молочной, винной, лимонной), замедляющей процесс гелеобразования.

В некоторых случаях степень этерификации выделенных пектинов специально понижают, для чего концентрированный жидкий экстракт подвергают контролируемой деэтерификации кислотным, щелочным или ферментативным (с помощью фермента пектинэстеразы) способами. Наиболее быстрым является способ щелочной деэтерификации под действием гидроксида натрия или аммиака (процесс аммонолиза).

В зависимости от степени этерификации пектины условно подразделяют на две подгруппы: высокоэтерифицированные (степень этерификации более 50%) и низкоэтерифицированные (степень этерификации менее 50%).

В настоящее время выпускается несколько видов пектинов, выделяемых из различных источников сырья и различающихся по составу и функциональным свойствам: высокоэтерифицированные (яблочный, цитрусовый), низкоэтерифицированные (свекловичный, из корзинок подсолнечника), а также комбинированные пектины из смешанного сырья различной степени этерификации.


Подобные документы

  • Изучение химического состава пищевых продуктов, его полноценности и безопасности. Изменения основных пищевых веществ при технологической обработке. Концепция рационального и здорового питания. Применение полимерных материалов в пищевой промышленности.

    курс лекций [1,8 M], добавлен 19.09.2014

  • Общие сведения о пищевых добавках. Классификация веществ, добавляемых к продуктам. Технологические функции добавок. Причины их использования. Цифровая кодификация пищевых добавок. Генетически модифицированные источники. Биологически активные добавки.

    реферат [37,4 K], добавлен 05.06.2008

  • Особенности применения и классификация биологически активных добавок: способствующие снижению аппетита, содержащие пищевые волокна, снижающие аппетит, обладающие тонизирующим действием, витаминно-минеральные комплексы, мочегонные и послабляющие БАДы.

    реферат [1,3 M], добавлен 11.10.2011

  • Загрязнение пищевых продуктов тяжелыми металлами. Токсическое действие соединений мышьяка. Методы идентификации и количественного определения йода в продуктах, продовольственном сырье и биологически активных добавках. Определение кислотности молока.

    курсовая работа [160,7 K], добавлен 04.01.2013

  • Органическая химия и медицина. Какие бывают лекарства и почему они лечат. Полимеры в медицине. Применение различных полимерных материалов в сельском хозяйстве. Органическая химия и ее применение в пищевой промышленности. Добавки в продукты питания.

    доклад [19,4 K], добавлен 13.01.2010

  • Основные химические вещества: белки, липиды, углеводы, витамины, минеральные вещества и пищевые добавки. Основные химические процессы, происходящие при тепловой кулинарной обработке. Потери при тушении, запекании, припускании и пассеровании продуктов.

    курсовая работа [119,9 K], добавлен 07.12.2010

  • Содержание пищевых кислот в продуктах питания и методы их определения. Характеристика некоторых из пищевых кислот. Обоснование титрования, определения и расчета количества аскорбиновой кислоты, динамика изменения её содержания при термообработке.

    дипломная работа [1,3 M], добавлен 03.07.2015

  • Знакомство с основными химическими элементами, представленными в периодической системе Д. Менделеева. Рассмотрение классификации биогенных элементов. Микроэлементы как биологически активные атомы центров ферментов. Характеристика свойств s-элементов.

    презентация [4,5 M], добавлен 00.00.0000

  • Рассмотрение ртути как химического элемента. Механизм попадания ртути в пищевые продукты. Предельно допустимые концентрации ртути в продуктах питания. Характеристика инверсионно-вольтамперометрического метода. Определение концентрации ртути в рыбе.

    курсовая работа [64,0 K], добавлен 06.05.2019

  • Физические и химические свойства диацетила, его влияние на организм человека, причины образования в продуктах питания. Химический состав вина, анализ его качества. Метрологическая оценка показателей качества разработанной методики определение диацетила.

    дипломная работа [831,0 K], добавлен 25.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.