Пищевая химия

Химический состав пищевых систем, его полноценность и безопасность. Фракционирование и модификация компонентов продуктов питания. Пищевые и биологически активные добавки. Основные медико-биологические требования к безопасности продуктов питания.

Рубрика Химия
Вид учебное пособие
Язык русский
Дата добавления 09.05.2012
Размер файла 7,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В зависимости от природы радикалов R? и R? образуются охратоксины различных типов:

R?

R?

Охратоксин А

С1

Н

Охратоксин В

Н

Н

Охратоксин С

С1

С2Н5

Продуцентами охратоксинов являются микроскопические грибы рода Aspergillus и Penicillium. Основными продуцентами являются A. ochraceus и P. viridicatum. Многочисленными исследованиями показано, что природным загрязнителем чаще всего является охратоксин А, в редких случаях охратоксин В.

Физико-химические свойства. Охратоксин А - бесцветное кристаллическое вещество, слабо растворимое в воде, умеренно растворимое в полярных органических растворителях (метанол, хлороформ), а также в водном растворе гидрокарбоната натрия. В химически чистом виде он нестабилен и очень чувствителен к воздействию света и воздуха, однако в растворе этанола может сохраняться без изменений в течение длительного времени. В ультрафиолетовом свете обладает зеленой флуоресценцией. Охратоксин В - кристаллическое вещество, аналог охратоксина А, не содержащий атом хлора. Он примерно в 50 раз менее токсичен, чем охратоксин А. В ультрафиолетом свете обладает голубой флуоресценцией. Охратоксин С - аморфное вещество, этиловый эфир охратоксина А, близок к нему по токсичности, но в качестве природного загрязнителя пищевых продуктов и кормов не обнаружен. В ультрафиолетовом свете обладает бледно-зеленой флуоресценцией.

Биологическое действие. Охратоксины входят в группу микотоксинов, преимущественно поражающих почки. При остром токсикозе, вызванном охратоксинами, патологические изменения выявляются и в печени, и в лимфоидной ткани, и в желудочно-кишечном тракте. В настоящее время уже доказано, что охратоксин А обладает сильным тератогенным действием. Вопрос о канцерогенности охратоксинов для человека остается нерешенным.

Механизм действия охратоксинов. Биохимические, молекулярные, клеточные механизмы действия охратоксинов изучены недостаточно. В исследованиях in vitro показано, что они активно связываются с различными белками: альбуминами сыворотки крови, тромбином, альдолазой, каталазой, аргиназой, карбоксипептидазой А. Некоторые моменты подтверждены и в исследованиях in vivo. Результаты изучения влияния охратоксинов на синтез макромолекул свидетельствуют о том, что охратоксин А ингибирует синтез белка и матричной РНК (токсин действует как конкурентный ингибитор), но не действует на синтез ДНК.

Загрязнение пищевых продуктов. Основными растительными субстратами, в которых обнаруживаются охратоксины, являются зерновые культуры и среди них, в первую очередь, кукуруза, пшеница, ячмень. С сожалением приходится констатировать тот факт, что уровень загрязнения кормового зерна и комбикормов выше среднего во многих странах (Канада, Польша, Югославия, Австрия), в связи с чем охратоксин А был обнаружен в животноводческой продукции (ветчина, бекон, колбасы). С практической точки зрения весьма важно, что охратоксины являются стабильными соединениями. Так, например, при длительном прогревании пшеницы, загрязненной охратоксином А, его содержание снижалось лишь на 32% (при температуре 250-300°С).

Все вышеперечисленное не оставляет сомнения в том, что охратоксины создают реальную опасность для здоровья человека.

Трихотеценовые микотоксины. В настоящее время известно более 40 трихотеценовыхмикотоксинов (ТТМТ), вторичных метаболитов различных представителей микроскопических грибов рода Fusarium.

Структура и продуценты ТТМТ. По своей структуре ТТМТ относятся к сесквитерпенам. Они содержат основное ядро из трех колец, названное трихотеканом. В зависимости от структуры трихотеценового ядра эти микотоксины подразделяются на 4 группы: А, В, С, Д. Структура различных типов трихотеценовых микотоксинонов очень сложна и имеет свои характерные особенности, что наглядно демонстрируют приведенные ниже структурные формулы ТТМТ.

В качестве природных загрязнителей пищевых продуктов и кормов к настоящему времени выявлены только четыре: Т-2 токсин и диацетоксискирпенол, относящиеся к типу А, а также ниваленол и дезоксиниваленол, относящиеся к типу В. Природа радикалов у этих четырех природных загрязнителей такова:

R1

R2

R3

R4

R5

Тип А

Т-2 токсин

Н

ОСОСН3

ОСОСН3

Н

Н

Диацетоксискирпенол

ОН

ОСОСН3

ОСОСН3

Н

ОСОСН2СН(СН3)2

Тип В

Ниваленол

ОН

ОН

ОН

ОН

Дезоксиниваленол

ОН

Н

ОН

ОН

Продуцентами ТТМТ типа А и В, обладающих высокой токсичностью, являются многие грибы рода Fusarium. Микроскопические грибы этого рода являются возбудителями так называемых гнилей корней, стеблей, листьев, семян, плодов, клубней и сеянцев сельскохозяйственных растений. Таким образом, поражаются корма и пищевые продукты, и как следствие наблюдается возникновение алиментарных токсикозов у животных и человека.

Физико-химические свойства. ТТМТ - это бесцветные кристаллические, химически стабильные соединения, плохо растворимые в воде. ТТМТ типа А растворимы в умеренно полярных растворителях (ацетон, хлороформ), типа В - в более полярных растворителях (этанол, метанол и др.). Эти токсины, за исключением некоторых, не обладают флюоресценцией. В связи с этим, для их обнаружения, после разделения методом тонкослойной хроматографии, используют различные способы (например, нагревание до 100- 150°С после обработки спиртовым раствором серной кислоты) с целью получения окрашенных или флуоресцирующих производных.

Биологическое действие ТТМТ. Алиментарные токсикозы, вызванные потреблением в пищу пищевых продуктов и кормов, пораженных микроскопическими грибами, продуцирующими ТТМТ, можно отнести к наиболее распространенным микотоксикозам человека и сельскохозяйственных животных. Первые сведения о такого рода заболеваниях появились более ста лет тому назад.

Хорошо известен токсикоз "пьяного хлеба" - заболевание человека и животных, причиной которого послужило употребление зерновых продуктов (главным образом хлеба), приготовленных из зерна, пораженного грибами Fusarium graminearum (F. roseum). Кроме того, описан целый ряд тяжелых токсикозов, таких как акабаби-токсикоз (вызывается красной плесенью и связан с поражением зерна грибами F. nivale и F. graminearum); алиментарная токсическая алейкия - АТА (токсикоз, связанный с употреблением в пищу продуктов из зерновых культур, перезимовавших в поле под снегом и пораженных микроскопическими грибами F. sporotri-chiella) и многие другие, приводящие к серьезному нарушению здоровья людей и протекающие по типу эпидемий, т. е. характеризующиеся определенной очаговостью, сезонностью, неравномерностью вспышек в разные годы и употреблением продуктов из зерна, пораженного микроскопическими грибами.

Механизм действия ТТМТ. Многочисленными исследованиями in vitro и in vivo было показано, что ТТМТ являются ингибиторами синтеза белков и нуклеиновых кислот, кроме этого, вызывают нарушения стабильности лизосомных мембран и активацию ферментов лизосом, что в конечном счете приводит к гибели клетки.

Загрязнение пищевых продуктов. Как отмечалось выше, в качестве природных загрязнителей пищевых продуктов и кормов обнаружены лишь четыре из более чем четырех десятков трихотеценовых микотоксинов. Чаще всего они обнаруживаются в зерне кукурузы, пшеницы и ячменя. Микотоксины этой группы отличаются повсеместным распространением, причем в большей степени это касается многих стран Европы, Северной Америки, в меньшей - Индии, Японии, Южной Америки. Необходимо отметить, что часто в одном и том же продукте обнаруживают два или более микотоксинов.

Зеараленон и его производные. Зеараленон и его производные также продуцируются микроскопическими грибами рода Fusarium. Он впервые был выделен из заплесневелой кукурузы.

Структура и продуценты зеараленона. По своей структуре зеараленон является лактоном резорциловой кислоты. Природный зеараленон имеет транс- но" конфигурацию, его структурная формула имеет следующий вид.

Основными продуцентами зеараленона являются Fusarium graminea-rum и F. roseum.

Физико-химические свойства. Зеараленон - белое кристаллическое вещество, плохо растворимое в воде, но хорошо растворимое в этаноле, ацетоне, метаноле, бензоле. Имеет три максимума поглощения в ультрафиолете (236 нм, 274 нм, 316 нм) и обладает сине-зеленой флуоресценцией.

Биологическое действие. Зеараленон обладает выраженными гормоноподобными (экстрогенными) свойствами, что отличает его от других микотоксинов. Кроме этого, в опытах на различных лабораторных животных было доказано тератогенное действие зеараленона, хотя он и не обладает острым (летальным) токсическим эффектом даже при введении его животным в очень больших дозах. Сведения о влиянии зеараленона на организм человека отсутствуют, но, учитывая его высокую экстрогенную активность, нельзя полностью исключить негативное воздействие зеараленона на организм человека.

Загрязнение пищевых продуктов. Основным природным субстратом, в котором наиболее часто обнаруживается зеараленон, является кукуруза. Поражение кукурузы микроскопическими грибами рода Fusarium - продуцентами зеараленона - происходит как в поле, на корню, так и при ее хранении. Высока частота обнаружения зеараленона в комбикормах, а также в пшенице и ячмене, овсе. Среди пищевых продуктов этот токсин был обнаружен в кукурузной муке, хлопьях и кукурузном пиве.

С практической точки зрения интересными представляются данные по влиянию переработки зерна кукурузы на степень загрязнения зеараленоном. В крупке и муке грубого помола, без удаления отрубей, в муке, полученной при сухом помоле кукурузы, содержание зеараленона составляло примерно 20% от его количества в цельном зерне. При влажном помоле загрязненной кукурузы токсин концентрировался во фракции клейковины, где его концентрация была выше, чем в отрубях и зародыше; во фракции крахмала токсин не выявлялся.

Тепловая обработка в нейтральной или кислой среде не разрушает зеараленон, но в щелочной среде при 100°С за 60 мин разрушается около 50% токсина. К разрушению зеараленона приводит и обработка загрязненной кукурузы 0,03% раствором персульфата аммония или 0,01% раствором пероксида водорода.

Патулин и некоторые другое микотоксины. Микотоксины, продуцируемые микроскопическими грибами рода Penicillium, распространены повсеместно и представляют реальную опасность для здоровья человека. Патулин особо опасный микотоксин, обладающий канцерогенными и мутагенными свойствами.

Структура и продуценты патулина. По своей химической структуре патулин представляет 4-гидроксифуропиран. Он имеет один максимум поглощения в ультрафиолетовой области при 276 нм.

Основными продуцентами патулина являются микроскопические грибы Penicillium patulum и Penicillium expansu. Но и другие виды этого рода микроскопических грибов, а также Byssochlamys fulva и В. nivea способны синтезировать патулин. Максимальное токсинообразование отмечается при температуре 21-30°С.

Биологическое действие. Биологическое действие патулина проявляется как в виде острых токсикозов, так и в виде ярко выраженных канцерогенных и мутагенных эффектов. Биохимические механизмы действия патулина изучены недостаточно. Предполагают, что патулин блокирует синтез ДНК, РНК и белков, причем блокирование инициации транскрипции осуществляется за счет ингибирования ДНК-зависимой-РНК-полимеразы. Кроме этого, микотоксин активно взаимодействует с SH-группами белков и подавляет активность тиоловых ферментов.

Загрязнение пищевых продуктов. Продуценты патулина поражают в основном фрукты и некоторые овощи, вызывая их гниение. Патулин обнаружен в яблоках, грушах, абрикосах, персиках, вишне, винограде, бананах, клубнике, голубике, бруснике, облепихе, айве, томатах. Наиболее часто патулином поражаются яблоки, где содержание токсина может доходить до 17,5 мг/кг. Интересно, что патулин концентрируется Б основном в подгнившей части яблока, в отличие от томатов, где он распределяется равномерно по всей ткани.

Патулин в высоких концентрациях обнаруживается и в продуктах переработки фруктов и овощей: соках, компотах, пюре и джемах. Особенно часто его находят в яблочном соке (0,02-0,4 мг/л). Содержание патулина в других видах соков: грушевом, айвовом, виноградном, сливовом, манго - колеблется от 0,005 до 4,5 мг/л. Интересным представляется тот факт, что цитрусовые и некоторые овощные культуры, такие как картофель, лук, редис, редька, баклажаны, цветная капуста, тыква и хрен обладают естественной устойчивостью к заражению грибами-продуцентами патулина.

Среди микотоксинов, продуцируемых микроскопическими грибами рода Penicillium и представляющих серьезную опасность для здоровья человека, необходимо выделить лютеоскирин, циклохлоротин, цитреовиридин и цитринин.

Лютеоскирин (продуцент Penicillium islandicum) - желтое кристаллическое вещество, выделен из долго хранившегося риса, а также пшеницы, сои, арахиса, бобовых и некоторых видов перца. Механизм токсического действия связан с ингибированием ферментов дыхательной цепи (печени, почках, миокарде), а также в подавлении процессов окислительного фосфорилирования.

Циклохлоротин (продуцент Penicillium islandicum) - белое кристаллическое вещество, циклический пептид, содержащий хлор. Биохимические механизмы токсического действия направлены на нарушение углеводного и белкового обмена и связаны с ингибированием целого ряда ферментов. Кроме этого, токсическое действие циклохлоротина проявляется в нарушении регуляции проницаемости биологических мембран и процессов окислительного фосфорилирования.

Цитреовиридин (продуцент Penicillium citreo-viride) - желтое кристаллическое вещество, выделен из пожелтевшего риса. Обладает нейро-токсическими свойствами.

Цитринин (продуцент Penicillium citrinum) - кристаллическое вещество желтого цвета, выделен из пожелтевшего риса. Цитринин часто обнаруживается в различных зерновых культурах: пшенице, ячмене, овсе, ржи, а также в кукурузе и арахисе. Кроме этого, незначительные количества цитринина были найдены в хлебобулочных изделиях, мясных продуктах и фруктах. Обладает выраженными нефротоксическими свойствами.

Методы определения микотоксинов и контроль за загрязнением пищевых продуктов

Методы определения микотоксинов. Современные методы обнаружения и определения содержания микотоксинов в пищевых продуктах и кормах включают скрининг-методы, количественные аналитические и биологические методы.

Скрининг-методы отличаются быстротой и удобны для проведения серийных анализов, позволяют быстро и надежно разделять загрязненные и незагрязненные образцы. К ним относятся такие широко распространенные методы, как миниколоночный метод определения афлатоксинов, охратоксина А и зеараленона; методы тонкослойной хроматографии (ТСХ-методы) для одновременного определения до 30 различных микотоксинов, флуоресцентный метод определения зерна, загрязненного афлатоксинами, и некоторые другие.

Количественные аналитические методы определения микотоксинов представлены химическими, радиоиммунологическими и иммуноферментными методами. Химические методы являются в настоящее время наиболее распространенными и состоят из двух стадий: стадии выделения и стадии количественного определения микотоксинов. Стадия выделения включает экстракцию (отделение микотоксина от субстрата) и очистку (отделение микотоксина от соединений с близкими физико-химическими характеристиками). Окончательное разделение микотоксинов проводится с помощью различных хроматографических методов, таких как газовая (ГХ) и газожидкостная хроматография (ГЖХ), тонкослойная хроматография (ТСХ), высокоэффективная жидкостная хроматография (ВЭЖХ) и масс-спектрометрия. Количественную оценку содержания микотоксинов проводят путем сравнения интенсивности флуоресценции при ТСХ в ультрафиолетовой области спектра со стандартами. Для подтверждения достоверности полученных результатов применяют различные тесты, основанные на получении производных микотоксинов с иными хроматографическими, колориметрическими или флюорометрическими характеристиками.

Высокочувствительные и высокоспецифичные радиоиммуно-химические и иммуноферментные методы обнаружения, идентификации и количественного определения микотоксинов находят все более широкое применение и пользуются повышенным вниманием со стороны исследователей. Эти методы основаны на получении антисывороток к конъюгатам микотоксинов с бычьим сывороточным альбумином. Основным преимуществом этих методов является их исключительная чувствительность.

Биологические методы обычно не отличаются высокой специфичностью и чувствительностью и применяются, главным образом, в тех случаях, когда отсутствуют химические методы выявления микотоксинов или в дополнение к ним в качестве подтверждающих тестов. В качестве тест-объектов используют различные микроорганизмы, куриные эмбрионы, различные лабораторные животные, культуры клеток и тканей.

Контроль за загрязнением микотоксинами. В настоящее время вопросы контроля за загрязнением продовольственного сырья, пищевых продуктов и кормов микотоксинами решаются не только в рамках отдельных государств, но и на международном уровне, под эгидой ВОЗ и ФАО.

В системе организации контроля за загрязнением продовольственного сырья и пищевых продуктов можно выделить два уровня: инспектирование и мониторинг, которые включают регулярные количественные анализы продовольственного сырья и пищевых продуктов.

Мониторинг позволяет установить уровень загрязнения, оценить степень реальной нагрузки и опасности, выявить пищевые продукты, являющиеся наиболее благоприятным субстратом для микроскопических грибов - продуцентов микотоксинов, а также подтвердить эффективность проводимых мероприятий по снижению загрязнения микотоксинами. Особое значение имеет контроль за загрязнением микотоксинами при характеристике качества сырья и продуктов, импортируемых из других стран.

С целью профилактики алиментарных токсикозов основное внимание следует уделять зерновым культурам. В связи с этим необходимо соблюдать следующие меры по предупреждению загрязнения зерновых культур и зернопродуктов.

1. Своевременная уборка урожая с полей, его правильная агротехническая обработка и хранение.

2. Санитарно-гигиеническая обработка помещений и емкостей для хранения.

3. Закладка на хранение только кондиционного сырья.

4. Определение степени загрязнения сырья и готовых продуктов.

5. Выбор способа технологической обработки в зависимости от вида и степени загрязнения сырья.

Основные пути загрязнения продовольственного сырья и пищевых продуктов токсичными штаммами микромицетов приведены на рис. 11.7.

11.4 АНТИАЛИМЕНТАРНЫЕ ФАКТОРЫ ПИТАНИЯ

Помимо чужеродных соединений, загрязняющих пищевые продукты, так называемых контаминантов-загрязнителей, и природных токсикантов, необходимо учитывать действие веществ, не обладающих общей токсичностью, но способных избирательно ухудшать или блокировать усвоение нутриентов. Эти соединения принято называть антиалиментарными факторами питания. Этот терминраспространяется только на вещества природного происхождения, которые являются составными частями натуральных продуктов питания.

Перечень антиалиментарных факторов питания достаточно обширен. Остановимся на рассмотрении некоторых из них.

Ингибиторы пищеварительных ферментов. К этой группе относятся вещества белковой природы, блокирующие активность пищеварительных ферментов (пепсин, трипсин, химотрипсин, а-амилаза). Белковые ингибиторы обнаружены в семенах бобовых культур (соя, фасоль и др.), злаковых (пшеница, ячмень и др.), в картофеле, яичном белке и других продуктах растительного и животного происхождения.

Механизм действия этих соединений заключается в образовании стойких комплексов "фермент-ингибитор", подавлении активности главных пищеварительных ферментов и, тем самым, снижении усвоения белковых веществ и других макронутриентов.

К настоящему времени белковые ингибиторы достаточно хорошо изучены и подробно охарактеризованы: расшифрована первичная структура, изучено строение активных центров ингибиторов, исследован механизм действия ингибиторов и т. п.

На основании структурного сходства все белки-ингибиторы растительного происхождения можно разделить на несколько групп, основными из которых являются следующие.

1. Семейство соевого ингибитора трипсина (ингибитора Кунитца).

2. Семейство соевого ингибитора Баумана-Бирка.

3. Семейство картофельного ингибитора I.

4. Семейство картофельного ингибитора II.

5. Семейство ингибиторов трипсина/а-амилазы.

Ингибитор Кунитца был впервые выделен из семян сои еще в 1946 г. Его молекулярная масса 20 100 Да. Молекула ингибитора состоит из 181 аминокислотного остатка и содержит две дисульфидные связи в положении цис(39) - цис(86) и цис(136) - цис(145). Трипсиносвязывающий реактивный центр включает остаток аргинина, связанный пептидной связью с остатком изолейцина: арг(63) - иле(64), поэтому ингибиторы этого семейства также называют трипсиновыми ингибиторами аргининового типа.

Ингибитор Баумана-Бирка был впервые выделен также в 1946 г. из семян сои. Ингибитор эффективно подавляет активность трипсина и химотрипсина, причем с одной молекулой ингибитора могут связываться молекулы обоих ферментов. Ингибитор Баумана-Бирка - первый описанный "двухглавый" (или двухцентровой) ингибитор сериновых проте-

Его молекулярная масса примерно 8000 дальтон. Молекула ингибитора состоит из 71 аминокислотного остатка. Особенностью аминокислотного состава является высокое содержание остатков цистеина (7 на одну молекулу) и отсутствие остатков глицина и триптофана. Обращает на себя внимание, что молекула ингибитора Баумана-Бирка состоит из двух частей, сходных по структуре (доменов), которые соединены между собой короткими полипептидными цепочками. Реактивный центр, ответственный за связывание трипсина, локализован в первом домене и содержит пептидную связь: лиз(16) - сер(17); а реактивный центр, ответственный за связывание химотрипсина, находится во втором домене и содержит пептидную связь: лей(43) - сер(44), поэтому ингибиторы этого семейства иногда называют ингибиторами лизинового типа.

В клубнях картофеля содержится целый набор ингибиторов химотрипсина и трипсина, которые отличаются по своим физико-химическим свойствам: молекулярной массе, особенностям аминокислотного состава, изоэлектрическим точкам, термо- и рН-стабильности и т. п. Кроме картофеля, белковые ингибиторы обнаружены в других пасленовых, а именно - в томатах, баклажанах, табаке. Наряду с ингибиторами сериновых протеиназ в них обнаружены и белковые ингибиторы цистеиновых, аспартильных протеиназ, а также металлоэкзопептидаз.

Заслуживает внимания и тот факт, что в семенах растений и в клубнях картофеля находятся "двухглавые" ингибиторы, способные одновременно связываться и ингибировать протеазу и а-амилазу. Такие белковые ингибиторы были выделены из риса, ячменя, пшеницы, тритикале, ржи.

Рассматриваемые белковые ингибиторы растительного присхождения характеризуются высокой термостабильностью, что в целом не характерно для веществ белковой природы. Например, полное разрушение соевого ингибитора трипсина достигается лишь 20 минутным автоклавированием при 115°С, или кипячением соевых бобов в течение 2-3 ч. Из этого следует, что употребление семян бобовых культур, особенно богатых белковыми ингибиторами пищеварительных ферментов, как для корма сельскохозяйственных животных, так и в пищевом рационе человека, возможно лишь после соответствующей тепловой обработки.

Цианогенные гликозиды. Цианогенные гликозиды - это гликозиды некоторых цианогенных альдегидов и кетонов, которые при ферментативном или кислотном гидролизе выделяют синильную кислоту - HCN, вызывающую поражение нервной системы.

Из представителей цианогенных гликозидов целесообразно отметить лимарин, содержащийся в белой фасоли, и амигдалин, который обнаруживается в косточках миндаля (до 8%), персиков, слив, абрикос (от 4 до 6%).

Амигдалин представляет собой сочетание дисахарида гентиобиозы и агликона, включающего остаток синильной кислоты и бензальдегида.

Биогенные амины. К соединениям этой группы относятся серотонин, тирамин, гистамин.

Серотонин, главным образом, содержится во фруктах и овощах. Например, содержание серотонина в томатах - 12 мг/кг; в сливе - до 10 мг/кг. Тирамин чаще всего обнаруживается в ферментированных продуктах, например в сыре до 1100 мг/кг. Содержание гистамина коррелирует с содержанием тирамина в сыре от 10 до 2500 мг/кг. В количествах более 100 мг/кг гистамин может представлять угрозу для здоровья человека.

Алкалоиды. Алкалоиды - весьма обширный класс органических соединений, оказывающих самое различное действие на организм человека. Это и сильнейшие яды, и полезные лекарственные средства. Печально известный наркотик, сильнейший галлюциноген - ЛСД - диэтил-амид лизергиловой кислоты, был выделен из спорыньи, грибка, растущего на ржи, в 1943 г. швейцарским химиком А. Гофманом.

С 1806 г. известен морфин, он выделен из сока головок мака и является очень хорошим обезболивающим средством, благодаря чему нашел применение в медицине, однако при длительном употреблении приводит к развитию наркомании.

Хорошо изучены в настоящее время так называемые пуриновые алкалоиды, к которым относятся кофеин и часто сопровождающие его теобромин и теофиллин. Структурные формулы кофеина, теобромина и теофиллина представлены ниже.

Содержание кофеина в сырье и различных продуктах колеблется в достаточно широких пределах. В зернах кофе и листьях чая, в зависимости от вида сырья, от 1 до 4%; в напитках кофе и чая, в зависимости от способа приготовления, до 1500 мг/л (кофе) и до 350 мг/л (чай). В напитках пепси-кола и кока-кола до 1000 мг/л и выше. Здесь уместно подчеркнуть, что пуриновые алкалоиды при систематическом употреблении их на уровне 1000 мг в день вызывают у человека постоянную потребность в них, напоминающую алкогольную зависимость.

К группе стероидных алкалоидов будут относится соланины и чакони-ны, содержащиеся в картофеле. Иначе их называют гликоалкалоидами, они содержат один и тот же агликон (соланидин), но различные остатки Сахаров. В картофеле обнаружены шесть гликоалкалоидов, одним из которых является ?-соланин.

Особенности состава других гликоалкалоидов картофеля видны из сопоставления их структурных компонентов:

?-соланин…соланидин + галактоза + глюкоза + рамноза;

?-соланин …соланидин + галактоза + глюкоза;

?-соланин …соланидин + галактоза;

?-чаконин .... соланидин + глюкоза + рамноза + рамноза;

?-чаконин … соланидин + глюкоза + рамноза;

?-чаконин … соланидин + глюкоза;

Таким образом, гликоалкалоиды картофеля весьма близки по составу и являются промежуточными продуктами при биосинтезе а-соланина. Это вещества средней токсичности, их накопление в клубнях картофеля (в позеленевших частях клубня их количество может увеличиваться более чем в 10 раз и достигать 500 мг/кг), придает горький вкус и вызывает типичные признаки отравления. Эти соединения обладают антихолин-эстеразной активностью.

Соланины и чаконины могут содержаться в баклажанах, томатах, табаке.

Антивитамины. Согласно современным представлениям, к антивитаминам относят две группы соединений.

1-я группа - соединения, являющиеся химическими аналогами витаминов, с замещением какой-либо функционально важной группы на неактивный радикал, т. е. это частный случай классических антиметаболитов.

2-я группа - соединения, тем или иным образом специфически инактивирующие витамины, например с помощью их модификации, или ограничивающие их биологическую активность.

Если классифицировать антивитамины по характеру действия, как это принято в биохимии, то первая (антиметаболитная) группа может рассматриваться в качестве конкурентных ингибиторов, а вторая - неконкурентных, причем во вторую группу попадают весьма разнообразные по своей химической природе соединения и даже сами витамины, способные в ряде случаев ограничивать действие друг друга.

Рассмотрим некоторые конкретные примеры соединений, имеющих ярко выраженную антивитаминную активность.

Лейцин - нарушает обмен триптофана, в результате чего блокируется образование из триптофана ниацина - одного из важнейших водорастворимых витаминов - витамина PP.

Индолилуксусная кислота и ацетилпиридин - также являются антивитаминами по отношению к витамину РР; содержатся в кукурузе. Чрезмерное употребление продуктов, содержащих вышеуказанные соединения, может усиливать развитие пеллагры, обусловленной дефицитом витамина PP.

Аскорбатоксидаза и некоторые другие окислительные ферменты проявляют антивитаминную активность по отношению к витамину С. Аскобатоксидаза (Н. Ф. 1.10.3.3) катализирует реакцию окисления аскорбиновой кислоты в дегидроаскорбиновую кислоту:

Содержание аскорбатоксидазы и ее активность в различных продуктах неодинакова: наиболее активна аскорбатоксидаза в огурцах, кабачках, наименее - в моркови, свекле, помидорах. При измельчении овощей за 6 часов хранения теряется более половины витамина С, т. к. измельчение способствует взаимодействию фермента и субстрата.

Тиаминаза (Н. Ф. 3.5.99.2) - антивитаминный фактор для витамина В1 - тиамина. Она содержится в продуктах растительного и животного происхождения, наибольшее содержание этого фермента отмечено у пресноводных и морских рыб, кроме того, тиаминаза продуцируется бактериями кишечного тракта - Вас. thiaminolytic и Вас. anekrinolytieny, что может являться причиной дефицита тиамина. Ортодифенолы и биофлавоноиды (вещества с Р-витаминной активностью), содержащиеся в кофе и чае, а также окситиамин, который образуется при длительном кипячении кислых ягод и фруктов, проявляют антивитаминную активность по отношению к тиамину.

Все это необходимо учитывать при употреблении, приготовлении и хранении пищевых продуктов.

Линатин - антагонист витамина В6, содержится в семенах льна. Кроме этого, ингибиторы пиродоксалевых ферментов обнаружены в съедобных грибах и некоторых видах семян бобовых.

Авидин - белковая фракция, содержащаяся в яичном белке, приводящая к дефициту биотина (витамина Н), за счет связывания и перевода его в неактивное состояние.

Гидрогенизированные жиры - являются факторами, снижающими сохранность витамина А (ретинола).

Говоря об антиалиментарных факторах питания, нельзя не сказать о гипервитаминозах. Известны два типа: гипервитаминоз А и гипервитаминоз

D. Например, печень северных морских животных несъедобна из-за большого содержания витамина А.

Приведенные выше данные свидетельствуют о необходимости дальнейшего тщательного изучения вопросов, связанных с взаимодействием различных природных компонентов пищевого сырья и продуктов питания, влияния на них различных способов технологической и кулинарной обработки, а также режимов и сроков хранения с целью снижения потерь ценных макро- и микронутриентов, и обеспечения рациональности и адекватности питания.

Факторы, снижающие усвоение минеральных веществ. К факторам, снижающим усвоение минеральных веществ, в первую очередь следует отнести щавелевую кислоту и ее соли (оксалаты), фитин (инозитолгекса-фосфорная кислота) и танины.

Наиболее изучена в этом плане щавелевая кислота:

НООС-СООН

Продукты с высоким содержанием щавелевой кислоты способны приводить к серьезным нарушениям солевого обмена, необратимо связывать ионы кальция. Установлено, что интоксикация щавелевой кислотой проявляется в большей степени на фоне дефицита витамина D.

Известны случаи отравлений с летальным исходом, как от самой щавелевой кислоты (при фальсификации продуктов, в частности вин, когда подкисление проводили дешевой щавелевой кислотой), так и от избыточного потребления продуктов, содержащих ее в больших количествах. Смертельная доза для взрослых людей колеблется от 5 до 150 г и зависит от целого ряда факторов. Содержание щавелевой кислоты в среднем в некоторых растениях таково (в мг/100 г): шпинат - 1000, ревень - 800, щавель - 500, красная свекла - 250.

Фитин, благодаря своему химическому строению, легко образует труднорастворимые комплексы с ионами Са, Mg, Fe, Zn, и Си. Этим объясняется его деминерализующий эффект.

Достаточно большое количество , фитина содержится в злаковых и бобовых культурах: в пшенице, горохе, кукурузе его содержание примерно 400 мг/100 г продукта, причем основная часть сосредоточена в наружном слое зерна. Хлеб, выпеченный из муки высшего сорта, практически не содержит фитина. В хлебе из ржаной муки его мало, благодаря высокой активности фитазы, способной расщеплять фитин.

Дубильные вещества, кофеин, балластные соединения могут рассматриваться как факторы, снижающие усвоение минеральных веществ.

Яды пептидной природы. Интересным и важным является тот факт, что многие биологически активные вещества являются циклопептидами, т. е. имеют циклическое строение. К таким циклопептидам относятся антибиотики, гормоны и токсины. Было показано, что ядовитый гриб бледная поганка (Amanita phalloides) содержит не менее десяти токсичных циклопептидов. Их молекулярная масса около 1000; они содержат атом серы, принадлежащий к остатку цистеина, связанному с индольным кольцом триптофана. Ниже представлена структура особенно ядовитого циклопептида бледной поганки ?-аманитина:

Из приведенной структуры видно, что сера цистеина, связываясь с остатком триптофана, разделяет циклопептид на два кольца. Подобная бициклическая структура свойственна всем циклопептидам бледной поганки.

Лектины. Лектины - группа веществ гликопротеидной природы с молекулярной массой от 60 до 120 тысяч дальтон. Они широко распространены в семенах и других частях растений. Лектины обнаружены в бобовых, арахисе, проростках растений, а также в икре рыб.

Лектины обладают способностью повышать проницаемость стенок кишечника для чужеродных веществ; нарушать всасывание нутриентов; вызывать агглютинацию (склеивание) эритроцитов крови. С этим связано их негативное действие при высоких концентрациях (см. также раздел Белки). Некоторые лектины токсичны, например, лектин из семян клещевины (Ricinus communis) - рицин, а также лектины некоторых животных и микроорганизмов, в частности холерный токсин.

Алкоголь. Алкоголь можно рассматривать как рафинированный продукт питания, который имеет только энергетическую ценность. При окислении 1 г этанола выделяется 7 ккал энергии; данная величина лежит между калорийностью углеводов и жиров. Алкоголь не является источником каких-либо пищевых веществ, поэтому его часто называют источником "холостых" калорий.

Попадая в организм человека, этанол под воздействием фермента - алкогольдегидрогеназы окисляется до ацетальдегида, согласно уравнению:

Далее ацетоальдегид под воздействием другого фермента - альдегид-дегидрогеназы окисляется до ацетата:

В результате этих двух реакций образуются две молекулы НАДН, которые служат донорами водорода в дыхательной цепи митохондрий. В ходе последующего переноса электронов к кислороду из АДФ и остатка фосфорной кислоты образуется 6 молекул АТФ. Образовавшийся из этанола ацетат в дальнейшем активируется и переходит в ацетил-кофермент А:

Образовавшийся ацетил-КоА, в свою очередь, может окисляться в цикле лимонной кислоты.

Алкоголь синтезируется ферментными системами организма для собственных нужд и в течение дня организм человека способен синтезировать от 1 до 9 г этилового спирта. Эндогенный алкоголь является естественным метаболитом, и ферментных мощностей организма вполне хватает для его окисления в энергетических целях. При потреблении алкоголя в больших количествах ферменты не справляются, происходит накопление этилового спирта и уксусного альдегида, что вызывает симптомы обширной интоксикации (головная боль, тошнота, аритмия сердечных сокращений). Таким образом, алкоголь можно рассматривать как антиалиментарный фактор питания, приводящий к специфическим нарушениям обмена веществ.

Таблица 11.1. Антиалиментарные вещества [Павлоцкая Л. Ф. и др., 1989]

№ п/п

Ингибируемое вещество

Природный антипищевой фактор

Источники и условия действия

Пути устранения влияния

1

Ферменты
Трипсин, химотрипсин, ?-амилаза

Соответст-вующие белковые ингибиторы

Бобовые злаковые, белок куриного яйца в сыром виде

Тепловая обработка

2

Аминокислоты
Лизин, триптофан и др.

Редуцирующие сахара

Продукты, содержащие оба вида нутриентов

Рациональное сочетание продуктов, легкая тепловая обработка

Триптофан

Лейцин

Пшено при его избыточном потреблении

Умеренное потребление пшена

3

Витамины
Аскорбиновая кислота

Аскорбато-ксидаза, полифено-локсидаза, пероксидазы, хлорофилл

Фрукты и овощи при их нарезании и хранении

Использование в целом виде, бланшировка

Биофлавоноиды, ортодифенолы

Чай, кофе при избыточном потреблении

Ограниченное потребление

Ниацин

Индолилуксусная кислота, ацетилпиридин

Кукуруза при одностороннем питании

Рациональное питание

Биотин

Авидин

Яичный белок в сыром виде

Тепловая обработка

Ретинол

Длительно нагревавшиеся жиры, гидрогени-зированные жиры

Пищевые жиры

Легкая тепловая обработка, дозированное потребление маргарина

Кальциферол

Недостаточно идентифи-цированные вещества

Соя при недостаточной тепловой обработке

Тепловая обработка

Токоферол

Полинена-сыщенные жирные кислоты

Растительные масла при избыточном потреблении

Потребление в пределах рекомендуемых норм

4

Минеральные вещества
Са, Mg и некоторые другие катионы

Щавелевая кислота

Щавель, шпинат, ревень, инжир, черника при избыточном потреблении

Увеличение потребления кальция

Фитин

Бобовые, некоторые крупы, отруби при недостаточной тепловой обработке

Тепловая обработка

Черный хлеб при избыточном потреблении

Потребление в пределах нормы

Са, Mg, Na

Кофеин

Кофеинсодержащие напитки

Умеренное потребление

Са

Избыток фосфора

Зерновые продукты

Продукты, содержащие кальций - молоко, творог, сыр

Fe

Баластные вещества

Отруби, хлеб грубого помола, многие крупы, овощи, фрукты при избыточном потреблении

Увеличение потребления источников железа, витамина С, кальция и фосфора

Дубильные вещества

Чай при избыточном потреблении

Умеренное потребление

I

Серосодержащие соединения

Капуста белокочанная, цветная, кольраби, турнепс, редис, некоторые бобовые, арахис при избыточном потреблении

Ограниченное потребление в условиях недостатка иода в пище

У людей, потребляющих большие количества алкоголя, обнаруживается дефицит незаменимых веществ. Примером могут служить тяжелые формы недостаточности витаминов у алкоголиков: алкогольные формы полиневрита, пеллагры, бери-бери и т. п., а также гипогликемия, т. к. этанол блокирует синтез глюкозы из лактата и аминокислот.

Хроническое потребление алкогольных напитков приводит не только к авитаминозам, но и к нарушению углеводного, жирового и белкового обмена и заканчивается, как правило, биохимической катастрофой с тяжелыми патологиями. Кроме того, совершенно очевидно, что алкоголь обладает наркотическим действием, вызывая устойчивую зависимость, которая приводит к негативным изменениям психики и, в конечном счете, к деградации личности.

В этом разделе приведены сведения о компонентах пищи, способных оказывать неблагоприятное воздействие на организм человека. Эти данные свидетельствуют о необходимости их учета при составлении рационов питания, при решении ряда технологических вопросов в производстве продуктов питания, а также при их кулинарной обработке.

В табл. 11.1 приведены антиалиментарные факторы питания и их основные источники, а также возможные пути устранения их негативного влияния.

11.5 МЕТАБОЛИЗМ ЧУЖЕРОДНЫХ СОЕДИНЕНИЙ

Механизм детоксикации ксенобиотиков - две фазы. Изучение метаболизма чужеродных соединений, превращений, которые они претерпевают, попадая в организм человека, важны, в первую очередь, с точки зрения выяснения химических и биохимических механизмов детоксикации, а также с точки зрения оценки возможностей защитной системы организма по детоксикации чужеродных веществ.

Метаболизм чужеродных соединений в организме будет зависеть от множества различных факторов. Путь ксенобиотика, его воздействие и ответную реакцию организма можно представить в виде схемы (см. рис. 11.8).

Попадая в организм, определенная доза вещества всасывается в месте контакта, разносится и распределяется в крови и органах. Вследствие метаболистических изменений и ритмического протекания процессов детоксикации уровень его содержания падает. В тканях и клетках ксенобиотик проходит через одну или несколько мембран, взаимодействуя с рецепторами. В результате возникает ответная реакция, включаются механизмы противодействия с целью поддержания постоянства внутренней среды - гомеостаза.

Метаболизм ксенобиотиков протекает в виде двухфазного процесса: 1-я фаза - метаболистические превращения; 2-я фаза - реакции конъюгации.

1-я фаза (метаболистические превращения) - связана с реакциями окисления, восстановления, гидролиза и протекает при участии ферментов, главным образом, в эндоплазматическом ретикулуме печени и реже - других органов (надпочечниках, почках, кишечнике, легких и т. д.).

Окисление. В осуществлении реакций окисления решающее значение имеют микросомальные ферменты печени. Окислительная система состоит из системы цитохрома Р-450, а также НАДФН- и НАДН-зависимых редуктаз. Система цитохрома Р-450 представляет электрон-транспортную цепь, организованную в белково-липидный комплекс, катализирующий окислительно-восстановительную реакцию включения атома кислорода в молекулу гидрофобных соединений R-H. Эта реакция протекает с использованием электронов, поступающих от доноров НАДФН и НАДН к цитохромам Р-450 и b5 при участии редуктаз.

НАДФ > НАДФ-цитохром Р-450 редуктаза > цитохром Р-450 >

НАДФ > НАДФ-цитохром b5 редуктаза > цитохром b5 >
образование реакционноспособных функциональных групп

Микросомальные ферменты катализируют не только окисление жирных кислот, гидроксилирование стероидов, окисление терпенов и алкалоидов, но и окисление различных лекарств, пестицидов, канцерогенных ПАУ и других ксенобиотиков.

Такое многообразие субстратов, на которое воздействует цитохром Р-450, является следствием множественных форм фермента, число которых достигает сотни. В ответ на воздействие различных ксенобиотиков в печени и других органах происходит индукция синтеза тех изоформ цитохрома Р-450, которые метаболизируют данные токсиканты, что эквивалентно реакции иммунной системы организма на воздействие чужеродных белков. Поэтому весь спектр этих ферментов обозначают как генное суперсемейство цитохрома Р-450, для которого была предложена специальная номенклатура. Например: цитохромы Р-450 1А1 и 1А2 - метаболизируют полиароматические углеводороды (1-я арабская цифра обозначает генное семейство, латинская буква - генное подсемейство, 2-я цифра - конкретный фермент); цитохром Р-450 ЗА4 - афлатоксин В, цитохром Р-450 2Е1 - метаболизирует нитрозоамины и т. п.

Восстановление. Чаще всего имеют место реакции восстановления нитро- и азосоединений в амины, восстановление кетонов во вторичные спирты.

Гидролиз. Речь идет, главным образом, о гидролизе сложных эфиров и амидов, с последующей деэтерификацией и дезаминированием.

2-я фаза (реакции конъюгации) - это реакции, приводящие к детоксикации. Наиболее важные из них - это реакции связывания активных -ОН, -NH2, -СООН и -SH-групп и метаболита первичного ксенобиотика. Интересно, что некоторые ксенобиотики, в частности лекарственные средства, могут стимулировать активность ферментов, участвующих в метаболизме различных веществ (не только собственном). Такая ферментативная индукция может считаться выгодной, т. к. метаболизм и выведение токсических веществ ускоряется, если только промежуточные метаболиты не окажутся более токсичными, чем исходные вещества.

Наиболее широка и многообразна активность ферментов семейства глутатионтрансфераз. Они участвуют в реакциях конъюгации с восстановленным глутатионом, которые могут протекать по следующей схеме:

R + Г-SH > HR-S-Г

RX-F-SH > R-SF + HX

Кроме того, глутатионтрансферазы восстанавливают органические гидроперекиси в спирты.

Уридиндифосфат (УДФ) - глюкуронилтрансферазы присоединяют остаток глюкуроновой кислоты к фенолам, спиртам, аминам. Эти ферменты метаболизируют, например, анилин, фенол, морфин, левомецитин, парацетомол и др.

Ацетилтрансферазы присоединяют ацетил к N- или О-атомам, а метил трансферазы метилируют ОН-, NH2- и SH-группы различных ксенобиотиков и лекарственных средств.

К ферментам второй фазы относятся и некоторые другие ферменты, такие как: сульфотрансфераза и метилтрансфераза.

Функционирование всех ферментов 2-ой фазы ограничивается тем, что они метаболизируют только те вещества, которые имеют функциональные группы, поэтому эти ферменты включаются после высвобождения или образования функциональных групп ферментами первой фазы метаболизма ксенобиотиков. Однако трансферазы имеют и важные достоинства: они присутствуют во всех клетках; функционируют при любых путях поступления ксенобиотиков в организм; завершают детоксикацию, а иногда исправляют ошибки первой фазы.

Факторы, влияющие на метаболизм чужеродных соединений. Чужеродные соединения обычно метаболизируются различными путями, образуя множество метаболитов. Скорость и направление этих реакций зависят от многих факторов, результатом действия которых могут быть изменения в картине метаболизма и, как следствие, возникают различия в токсичности.

Эти факторы по своему происхождению можно разделить на: а) генетические (генетически обусловленные дефекты ферментов, участвующие в метаболизме чужеродных соединений); б) физиологические (возраст, пол, состояние питания, наличие различных заболеваний); в) факторы окружающей среды (облучение ионизирующей радиацией, стресс из-за неблагоприятных условий, наличие других ксенобиотиков).

Очень важно для процессов детоксикации, чтобы обе фазы детоксикации функционировали согласованно, с некоторым доминированием реакций конъюгации, особенно, если на первой стадии в результате метаболистических превращений из первоначальных ксенобиотиков образуются вещества с выраженной токсичностью.

Принципиально важное значение для нормального функционирования обеих фаз детоксикации имеет и соответствующий уровень эффективности антиоксидантной системы клетки, что определяется активностью антиоксидазных ферментов и уровнем низкомолекулярных анти-оксидантов: токоферолов, биофлавоноидов, витамина С и других; поскольку хорошо известно, что функционирование системы цитохрома Р-450 связано с образованием активных форм кислорода: оксидрадикала, Н2О2, которые вызывают деструкцию мембран, в том числе мембран эндоплазматического ретикулума, и, тем самым, способны подавлять активность цитохром Р-450-зависимых ферментов и частично ферментов конъюгации, которые встроены в мембраны и активность которых связана с мембранным окружением.

Таким образом, антиоксидазная система функционирует как еще одна важная система детоксикации, обеспечивающая защиту организма от агрессивных органических свободных радикалов, перекисных производных, которые так же являются опасными факторами онкогенности, как и рассматриваемые экзогенные токсиканты.

11.6 ФАЛЬСИФИКАЦИЯ ПИЩЕВЫХ ПРОДУКТОВ

Фальсификация: аспект безопасности

С точки зрения безопасности продуктов питания значительную опасность могут представлять и некоторые виды фальсификации пищевых продуктов. Как правило, это виды ассортиментной фальсификации, которые могут привести к использованию опасных заменителей. Виды таких фальсификаций крайне разнообразны (рис. 11.9).

Примерами могут служить: фальсификация алкогольных напитков путем частичной или полной замены пищевого этилового спирта техническим спиртом, содержащим вредные примеси; приготовление "искусственных" вин; использование запрещенных пищевых добавок или применение их в повышенных количествах; недостаточное отделение примесей в крупяных продуктах, использование загрязненного растительного сырья, больных животных, испорченных полуфабрикатов и т.д.

В каждом конкретном случае требуется специальная гигиеническая оценка, основанная на современной нормативно-методической базе и осуществляемая государственными органами надзора за качеством и безопасностью пищевых продуктов.

Последствия изготовления, реализации и потребления фальсифицированных товаров связаны с риском и потерями, в первую очередь, со стороны потребителя. При широком распространении фальсифицированной продукции возникает риск утраты здоровья, снижается продолжительность жизни, увеличивается смертность от болезней и пищевых отравлений, ухудшается структура питания, т. к. повышается удельный вес низкокачественных и малоценных продуктов. Существенные потери, как моральные, так и материальные несут и добросовестные производители.

Все это, в конечном счете, влияет на ухудшение качества жизни общества в целом.

Генетически модифицированные продукты питания

Генетически модифицированные (трансгенные) продукты питания представляют особый интерес. Сообщения о генетически модифицированных растениях и полученных из них продуктах питания появились в начале 90-х гг. В настоящее время генетическому изменению подвергается важнейшее растительное сырье, а без использования растительного сырья получают лишь очень немногие продукты.

Успехи в области генной инженерии позволяют получать новые сорта растений (причем в течение всего 2-3 лет) с заданными свойствами. За счет встраивания генов, выделенных из одних организмов и несущих определенную генетическую информацию (например, устойчивость к заморозкам, гербицидам, болезням и паразитам, высокая урожайность, неполегаемость и др.) в ДНК других, были получены растения, которые называют трансгенными, т. е. с перемещенными генами.

В США в настоящее время насчитывается более 150 наименований генетически измененных продуктов, а площади в разных странах, на которых произрастают трансгенные растения, составляют по разным оценкам от 10 до 25 млн га. Трансгенные растения выращивают в США, Канаде, Японии, Китае, Бразилии, Аргентине и многих других странах. Европейские государства занимают в этом отношении более жесткую позицию. По прогнозам мировой рынок трансгенных культур достигнет приблизительно 8 млрд долларов США к 2005 г. и 25 млрд долларов США к 2010 г.

В настоящее время среди промышленно выращиваемых трансгенных растений доля устойчивых к гербицидам составляет 71%, устойчивых к вредителям - 22%, устойчивых одновременно и к гербицидам, и к вредителям - 7%, устойчивых к вирусным, бактериальным и грибным болезням - менее 1%.

К трансгенным продуктам можно отнести генетически измененную сою, устойчивую к гербицидам. Как известно, соя используется для приготовления 30 000 пищевых продуктов: супов, детского питания, картофельных чипсов, маргарина, салатных соусов, рыбных консервов и др. Кроме сои, наибольшее распространение получили трансгенные помидоры, кукуруза, рис, картофель, клубника, а также генетически модифицированные дрожжи и ферментные препараты, полученные из трансгенных микроорганизмов.

Известны ферментные препараты, полученные из генетически модифицированных микроорганизмов. Основными ферментными препаратами, полученными методами генной инженерии, являются: а-амилаза из В. stearothermophilus, экстрессированная в В. subtilis; а-амилаза В. megaterium, экстрессированная в В. subtilis; химозин А, полученный их штамма Е. coli К-12, содержащего ген телячьего прохимозина А. Кроме того, при производстве глюкозного сиропа из кукурузного крахмала применяются ферменты из генетически измененных бактерий. В Германии получены трансгенные пектиназы, используемые при производстве соков и вин. Генная инженерия находит применение и в животноводстве, влияя на рост и продуктивность сельскохозяйственных животных.


Подобные документы

  • Изучение химического состава пищевых продуктов, его полноценности и безопасности. Изменения основных пищевых веществ при технологической обработке. Концепция рационального и здорового питания. Применение полимерных материалов в пищевой промышленности.

    курс лекций [1,8 M], добавлен 19.09.2014

  • Общие сведения о пищевых добавках. Классификация веществ, добавляемых к продуктам. Технологические функции добавок. Причины их использования. Цифровая кодификация пищевых добавок. Генетически модифицированные источники. Биологически активные добавки.

    реферат [37,4 K], добавлен 05.06.2008

  • Особенности применения и классификация биологически активных добавок: способствующие снижению аппетита, содержащие пищевые волокна, снижающие аппетит, обладающие тонизирующим действием, витаминно-минеральные комплексы, мочегонные и послабляющие БАДы.

    реферат [1,3 M], добавлен 11.10.2011

  • Загрязнение пищевых продуктов тяжелыми металлами. Токсическое действие соединений мышьяка. Методы идентификации и количественного определения йода в продуктах, продовольственном сырье и биологически активных добавках. Определение кислотности молока.

    курсовая работа [160,7 K], добавлен 04.01.2013

  • Органическая химия и медицина. Какие бывают лекарства и почему они лечат. Полимеры в медицине. Применение различных полимерных материалов в сельском хозяйстве. Органическая химия и ее применение в пищевой промышленности. Добавки в продукты питания.

    доклад [19,4 K], добавлен 13.01.2010

  • Основные химические вещества: белки, липиды, углеводы, витамины, минеральные вещества и пищевые добавки. Основные химические процессы, происходящие при тепловой кулинарной обработке. Потери при тушении, запекании, припускании и пассеровании продуктов.

    курсовая работа [119,9 K], добавлен 07.12.2010

  • Содержание пищевых кислот в продуктах питания и методы их определения. Характеристика некоторых из пищевых кислот. Обоснование титрования, определения и расчета количества аскорбиновой кислоты, динамика изменения её содержания при термообработке.

    дипломная работа [1,3 M], добавлен 03.07.2015

  • Знакомство с основными химическими элементами, представленными в периодической системе Д. Менделеева. Рассмотрение классификации биогенных элементов. Микроэлементы как биологически активные атомы центров ферментов. Характеристика свойств s-элементов.

    презентация [4,5 M], добавлен 00.00.0000

  • Рассмотрение ртути как химического элемента. Механизм попадания ртути в пищевые продукты. Предельно допустимые концентрации ртути в продуктах питания. Характеристика инверсионно-вольтамперометрического метода. Определение концентрации ртути в рыбе.

    курсовая работа [64,0 K], добавлен 06.05.2019

  • Физические и химические свойства диацетила, его влияние на организм человека, причины образования в продуктах питания. Химический состав вина, анализ его качества. Метрологическая оценка показателей качества разработанной методики определение диацетила.

    дипломная работа [831,0 K], добавлен 25.04.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.