Теория симметрии молекул

Элементы теории групп симметрии молекул. Классы смежности и классы сопряженных элементов. Групповые постулаты и факторизация групп. Векторные (линейные), эвклидовы и унитарные пространства, матрицы. Теория, характер представлений групп симметрии молекул.

Рубрика Химия
Вид дипломная работа
Язык русский
Дата добавления 27.07.2010
Размер файла 519,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Так как здесь рассматриваем конечные группы, то имеет место следующее свойство.

Свойство 4. Если Т - представление группы G над полем Р, то для каждого элемента gG значение T(g) равно сумме корней из единицы степени, равной порядку элемента g.

Свойство 5. Если Т - представление группы G, то для каждого gG справедливо равенство T(g-1)= T(g).

Свойство 6. Если и - характеры неприводимых представлений группы G, то

(17)

Равенство (17) называется соотношением ортогональности, для характеров, неприводимых представлений группы G.

Свойство 7. (второе соотношение ортогональности) Пусть T1, T2, …, Tm - все неэквивалентные представления группы G, K(a), K(b) - классы элементов группы G, сопряженных соответственно с a и b. Тогда

(18)

где |G| - число элементов в группе G; |K(b)| - число элементов в классе сопряженных элементов K(b); - характеры неприводимых представлений Ti, i=1, 2, …, m.

2. Таблицы характеров неприводимых представлений

Приведенные свойства характеров позволяют описать построение таблиц характеров неприводимых представлений. Строки таблицы будем нумеровать, как принято в теории представлений групп характерами, но одновременно будем указывать обозначения, принятые в молекулярной спектроскопии и кристаллографии: одномерные представления обозначаются A1, B1, A2, B2, …, двумерные - E1, E2, … и, наконец, трехмерные - F1, F2, … .

Так как по свойству 2 характеры постоянны на каждом классе сопряженных элементов, то столбцы таблицы нумеруются классами сопряженных элементов. Под обозначением класса сопряженных элементов указывается число элементов в классе - порядок класса. Рассмотрим в качестве примера группу C3V. Классы сопряженных элементов группы C3V имеют вид K1={I}, K2={C3, C32}, K3={, , }. Известно, что группа C3V имеет три неприводимых представления, характеры которых приведены в табл. 2.

Таблица 2.

Классы

K1={I}

K2={C3, C32}

K3={, , }

Порядок класса

1

2

3

A1

A2

E

1

1

2

1

1

-1

1

-1

0

3. Разложение характеров по неприводимым представлениям

В соответствии с рассмотренными свойствами характер приводимого представления T можно представить в виде разложения по характерам неприводимых представлений :

,

где ni - число, показывающее, сколько раз характер неприводимого представления Ti содержится в характере приводимого представления Т. На основании свойств ортогональности это число легко определяется, а именно:

. (19)

Формула (19) имеет важные применения в теории молекулярных спектров для определения числа состояний данного типа симметрии.

4. Определение характеров неприводимых представлений при применении групповых алгебр групп

Для достаточно широкого класса групп желательно иметь общий метод нахождения характеров неприводимых представлений.

Пусть дана группа G. Найдем классы сопряженных элементов Ki группы и обозначим сумму элементов группы, принадлежащих классу Ki. Здесь Сi являются элементами групповой алгебры PG группы G над полем Р. Проверим, перестановочны ли элементы Сi со всеми элементами алгебры PG. Для этого достаточно проверить, что для всех gG справедливы равенства gСiig или Сi=g-1Сig.

Действительно,

g-1 Сig=g-1(k1+k2+…)g=g-1k1g+g-1k2g+…

Так как в групповой алгебре выполним дистрибутивный закон, то очевидно, что правая часть содержит все элементы Сi и, следовательно, равна Сi.

Определение 5. Множество элементов алгебры, перестановочных со всеми элементами алгебры, называется центром алгебры.

Определение 6. Подмножество В алгебры называется подалгеброй алгебры А, если оно является подпространством векторного пространства А, и из того, что b1, b2B, следует, что .

Можно доказать, что элементы Ci образуют базис центра Z групповой алгебры PG:

Алгебру можно записать, задав таблицу умножения базисных элементов

. (20)

Элементы Cijk называются структурными константами алгебры. Для элементов Сi, образующих базис центра групповой алгебры, формула (20) принимает вид

. (21)

Теперь, на основании выражения (21), фиксируя индекс i (что обозначим, взяв этот индекс в скобки), получим матрицу C(i) коэффициентов Cijk. Эту матрицу можно рассматривать как матрицу линейного оператора , действующего в векторном пространстве, которым является центр алгебры Z. Действие его на базисные элементы Cj состоит в умножении Ci на Cj. Для того, чтобы записать матрицу C(i), надо рассмотреть столбец, в котором записаны произведения Ci на Cj. В результате получим матричное представление центра групповой алгебры. Матричное представление центра будет центром матричного представления всей алгебры. Иначе говоря, все матрицы C(i) коммутируют со всеми элементами матричного представления алгебры и между собой.

Мы приходим к задаче, аналогичной известной квантово-механической задаче: дана система коммутирующих между собой операторов, найти собственные значения и собственные векторы этих операторов. Оказывается, решение такой задачи имеет важное значение и для нахождения характеров неприводимых представлений.

Полученные выше матрицы Ci являются образующими элементами алгебры матриц, изоморфной алгебре Бозуа-Меснера, которая определяется следующим образом.

Назовем i-ой матрицей смежности Ai матрицу порядка, равного порядку группы G, строки и столбцы которой занумерованы элементами группы G, причем элементы матрицы Ai с номером (g, h), g, hG определяются как

Матрицы Ai состоят из нулей и единиц, поэтому их называют (0, 1) - матрицами.

Определение 7. Алгеброй Боуза - Меснера называется подалгебра алгебры матриц Mn(C), порожденная (0, 1) - матрицами Ai, i=1, 2, …, d, удовлетворяющими следующим условиям:

A1=E, где Е - единичная матрица;

A1+A2+…+Ad=J, где J - матрица, все элементы которой равны единице;

, i[1, 2, …, d], где - матрица, транспонированная с матрицей Ai;

;

.

Если построить матрицы смежности для группы G по указанному выше правилу, то они образуют базис алгебры Боуза-Меснера в соответствии с определением 7.

Если А - алгебра Боуза-Меснера, то из коэффициентов в соотношении можно образовать матрицы порядка d. Рассмотрим алгебру В, порожденную матрицами C1, C2, …, Cd, являющуюся подалгеброй алгебры dd матриц Md(C). Эта алгебра изоморфна алгебре А Боуза-Меснера. В силу того, что в алгебре изоморфные объекты не различаются, будем называть ее также алгеброй Боуза-Меснера.

Если рассматривать А как векторное пространство, то в А имеется естественный базис, состоящий из матриц Ai, которые по условию 5 определения 7 попарно коммутируют. Кроме того, эти матрицы нормальны (т. е. , где - комплексно-сопряженная и транспонированная с А матрица). Все матрицы Ai можно одновременно диагонализировать с помощью унитарной матрицы S. Столбцы являются общими собственными векторами матриц Ai, образующими базис общих собственных подпространств, а ее диагональные элементы являются собственными значениями матриц Ai, соответствующими общим собственным векторам. Если

, (22)

где diag - диагональная матрица, вне главной диагонали которой стоят нули, то pi(1), pi(2), …, pi(d) - указанные собственные значения. Тогда можно записать

k, i=1, 2, …, d,

где E1+E2+…+Ed=E, Ei2=Ei, EiEj=EjEi=0, ij.

Итак, в А появился второй базис, состоящий из идемпотентов Ei, i=1, 2, …, d, который связан с общими собственными векторами матриц Ai, из которых состоят линейно независимые столбцы матриц S.

Определение 8. Квадратная матрица Р порядка d, (j, i)-м элементом которой является pi(j), называется первой собственной матрицей алгебры Боуза-Меснера А. Матрица Q=(gi(j)) такая, что PQ=QP=|G|E, называется второй собственной матрицей Боуза-Меснера.

Возвращаясь к задаче определения характеров неприводимых представлений, сформулируем в приспособленном для наших целей виде теорему, позволяющую обосновать приводимый ниже алгоритм нахождения неприводимых характеров.

Теорема 1. Если G - конечная группа, а Т - ее таблица характеров, А - алгебра Боуза-Меснера классов сопряженных элементов, изоморфная алгебре пересечений В, P=(pi(j)) и Q=(qi(j)) - соответственно первая и вторая собственная матрицы этих алгебр, то таблица характеров определяется как произведение матриц в виде

где k1, k2, …, kd - мощности классов сопряженных элементов, mi определяются по формуле mi=fi2, где fi - степени неприводимых представлений.

Теорема 2. Каждый столбец таблицы характеров является общим левым собственным вектором матрицы Ci, Cj, …, Cd, а каждая строка является общим правым собственным вектором этих матриц. И наоборот, каждый стандартный общий левый собственный вектор матриц Ci и, каждый стандартный общий правый собственный вектор этих матриц с точностью до расположения строк и столбцов является строкой и соответственно столбцом матрицы характеров.

Замечание. Собственный вектор матрицы называется стандартным, если его правая координата равна единице.

5. Алгоритм нахождения характеров неприводимых представлений

Алгоритм. Для нахождения характеров неприводимых представлений группы G, надо:

1. Найти классы сопряженных элементов группы G, т. е. классы K1, K2, …, Kd.

2. Построить групповую алгебру CG группы G над полем С и алгебру классов сопряженных элементов Ci, i=1, 2, …, d необходимо определить структурные константы Cijk алгебры классов сопряженных элементов.

3. Построить алгебру Боуза-Меснера, для чего необходимо найти матрицы Ci=.

4. Найти собственные числа матриц Ci и соответствующие им правые собственные векторы.

5. Найти всевозможные линейно независимые общие правые собственные векторы.

6. Построить первую и вторую собственные матрицы Р и Q алгебры Боуза-Меснера В.

7. Исходя из выражения для матрицы Q по формуле из теоремы 1 определить таблицу характеров неприводимых представлений группы G. Для этого необходимо найти числа , где f12+f22+…+fd2=|G|=m1+m2+…+md. Числа m1, m2, …, md можно также найти по формуле Биггса

,

где ui=(p1(i)/k1, p2(i)/k2, …, pd(i)/kd); vi=( p1(i), p2(i), …, pd(i)).

Эти векторы получаются стандартизацией i-го столбца матрицы, причем 1=k1, k2, …, kd - числа элементов в классах сопряженных элементов группы G порядка |G|.

Примеры

1. На примере группы C3V покажем некоторые приемы и соображения, с помощью которых можно составить таблицу характеров неприводимых представлений. Характер тождественного представления 11) записывается сразу.

Для составления характера 22) воспользуемся перестановочным представлением S3 группы C3V. Подстановки, соответствующие элементам , , =1 - четные, остальные подстановки - нечетные. Так как произведение четных подстановок - четная подстановка, причем четные подстановки образуют подгруппу А3 группы S3, то четным подстановкам сопоставим число 1, а нечетным - число -1. Произведение нечетных подстановок - четная подстановка и (-1)(-1)=1, а произведение подстановок разной четности - нечетная подстановка и (-1)1=1(-1)=-1. Следовательно, мы получили одномерное представление группы C3V, в котором элементам 1, , сопоставляется 1 (эти элементы представляются четными подстановками), а остальным элементам , , сопоставляется -1 (или соответствуют нечетные подстановки). Так как одномерные представления совпадают с характерами, то получаем вторую строку таблицы. Третья строка таблицы получается из следующих соображений. В теории представлений группы известно, что число неприводимых представлений группы равно числу классов сопряженных элементов. Поэтому группа C3V имеет три неприводимых представления. Известно также, что сумма квадратов размерностей неприводимых представлений равна порядку группы. В рассматриваемом случае 12+12+Z2=6, т. е. Z=2. Следовательно, группа C3V имеет двумерное неприводимое представление, в котором

, т. е. (1)=2 (см. табл. 2).

Остальные элементы строки 3 получаются из соотношений ортогональности для неприводимых представлений: и , где x, y - неизвестные числа из строки 3. Отсюда 2х+3y=-2, 2x-3y=-2, т. е. х=-1, y=0. Мы построили таблицу характеров неприводимых представлений, не зная двумерного неприводимого представления группы C3V.

2. Нахождение характеров неприводимых представлений группы S3.

Проиллюстрируем алгоритм нахождения характеров на примере групп S3.

Необходимо разложить все перестановки группы в произведении циклов. Элементы одинакового циклического строения образуют классы. Выпишем все перестановки группы S3:

; ; ; ;

; .

При записи перестановок в циклах, если элемент i переходит в k, то k стоит не под i, а рядом с i; при этом цикле длины 1, кроме e=(1), не пишутся. Таким образом, в циклах e=(1); a=(1 2 3); a2=(1 3 2); b=(2 3); c=(1 3); d=(1 2).

В такой записи наглядно видно циклическое строение группы. Поэтому сразу находим все три класса сопряженных элементов группы S3:

K1={(1)}; K2={(1 2 3), (1 3 2)}; K3={(2 3), (1 2), (1 3)}.

Групповая алгебра CS3 группы S3 состоит из элементов

=1e+2a+3a2+4b+5c+6d, (23)

где iC; e, a, a2, b, c, d - шесть перестановок, образующих группу S3. Учитывая обозначения перестановок, запишем элементы групповой алгебры, являющиеся суммами элементов классов:

C1=e1; C2=a+a2; C3=b+c+d.

При построении таблицы Кэли группы S3 воспользуемся таблицей группового умножения группы C3V и запишем

=е; =а; =a2; =b; =c; =d.

Тогда таблица примет следующий вид.

Таблица 3

Квадрат Кэли группы S3

S3

e

a

a2

b

c

d

e

e

a

a2

b

c

d

a

a

a2

e

d

b

c

a2

a2

e

a

c

d

b

b

b

c

d

e

a2

e

c

c

d

b

a

e

a2

d

d

b

c

a2

a

e

Таблица Кэли группы S3 определяет групповую алгебру CS3, в частности, позволяет умножать элементы из выражения (23).

Переходя к составлению таблицы умножения базисных элементов центра Z групповой алгебры CS3, заметим, что элемент C1 является ее единицей, так что , i=1, 2, 3.

Найдем элемент :

=(а+а2)(а+а2)=а2342+2е+а=2е+а+а2=2С12.

Далее находим :

=(b+c+d)(b+c+d)=b2+c2+d2+bc+bd+cb+cd+db+dc=3e+3a+3a2=3C1+3C2.

При этом мы воспользовались табл. 3. Заметим, что в силу принадлежности Ci центру алгебры , так что таблица будет симметричной относительно главной диагонали. Поэтому нам осталось найти C2C3:

C2C3=(a+a2)(b+c+d)=ab+a2b+ac+a2c+ad+a2d=d+c+b+d+c+b=2C3.

Используя полученные результаты, запишем таблицу умножения базисных элементов центра групповой алгебры группы S3 (см. табл. 4).

Таблица 4

Таблица умножения базисных элементов центра алгебры CS3.

Z

C1

C2

C3

C1

C1

C2

C3

C2

C2

2C1+ C2

2C3

C3

C3

2 C3

3 C1+3C2

Запишем матрицы C(i):

; ; . (24)

Эти матрицы получаются так. Например, действие элемента С(2) на остальные элементы можно представить следующим образом:

;

;

.

Записывая коэффициенты правой части в столбец, получаем С(2).

Мы построили матричное представление базисных элементов центра Z алгебры CS3, что позволяет получить и матричное представление центра этой алгебры.

Запишем характеристические уравнения для определения собственных чисел и собственных векторов матриц Ci в следующем виде (рассматриваем сначала общий случай d матриц Ci):

. (25)

Возвращаясь к случаю группы S3 получаем d=3, а коэффициенты можно найти из табл. 4 на основании выражения (24). При этом сначала зафиксируем индекс j, а индексы i и k будем менять, что позволяет разбить систему (25) на три подсистемы, соответствующие значениям j=1, 2, 3. Выпишем сначала 27 значений Cijk, разбитых на три группы, по 9 значений в каждой:

С111=1; С112=0; С113=0;

С211=0; С212=1; С213=0;

С311=0; С312=0; С313=1;

С121=0; С122=1; С123=0;

С221=2; С222=1; С223=0; (26)

С321=0; С322=0; С323=2;

С131=0; С132=0; С133=1;

С231=0; С232=0; С233=2;

С331=3; С332=3; С333=0;

Тогда находим следующие системы уравнений:

(27)

Подставляя в найденные системы уравнений (27) значения из выражений (26), получим

(1-х1) х1=0; - х2 х1+ х2=0; - х3 х1+ х3=0;

(1-х1) х2=0; (I) 2х1+(1-х2) х2=0; (II) - х2 х3+2х3=0; (III) (28)

(1-х1) х3=0; (1-х2) х3=0; 3х1+3х2-x32=0.

Обратим внимание на два обстоятельства.

1. Во всех трех системах находятся одни и те же неизвестные, стоящие вторыми сомножителями, т. е. вектор x=(x1, x2, x3) является общим собственным вектором всех матриц С(1), С(2), С(3).

2. Указанные системы можно получить, взяв матрицы (24), транспонировать их, рассмотреть разности C(1)-X1E, C(2)-X2E, C(3)-X3E и затем умножить полученные матрицы на столбец (x1, x2, x3)Т (знак Т обозначает транспонирование).

Заметим, что выше уже записаны уравнения для нахождения собственных векторов матриц C(i), однако в этих уравнениях фигурируют собственные значения этих матриц, которые необходимо найти. Для матрицы С(1) получаем трехкратное собственное значение, равное единице, поэтому находим собственные значения матриц С(2) и С(3). Запишем для них вековые уравнения:

; . (29)

Раскрывая определить третьего порядка, получаем

(2--2)(2-)=0; 1=2=2; 3=-1; -3-9=0; 1=0; 2=3; 3=-3.

4. Находим теперь собственные векторы для рассматриваемых матриц. Для матрицы С(1) - это произвольный вектор x1(1)= (x1, x2, x3). Для собственного значения =2 матрицы С(2) имеем

,

где x3 - любое. Сам вектор можно записать в виде x2(2)= (x1, x2, x3). Поскольку =2 - двукратное собственное значение, то матрица С(2) имеет два линейно независимых собственных вектора с собственными значениями, равными 2, например, (1 1 0) и (0 0 1) (фундаментальная система решений соответствующей однородной системы уравнений).

Для =-1 в случае той же матрицы находим

x2(-1)=(-2x2, x2, 0)=(2x2, -x2, 0); x2=-x2.

Для собственного значения =0 матрицы С(3) получаем х3(0)2(-1), т. е. мы уже нашли общий собственный вектор матриц С(1), С(2), С(3).

Для =3 в случае матрицы С(3) запишем x3(3)= (x1, x1, x1).

Для =-3 той же матрицы С(3) получим x3(-3)= (x1, x1, -x1).

Таким образом, выполнили пункт 4 алгоритма для нахождения характеров неприводимых представлений конечных групп. Чтобы выполнить пункт 5, необходимо найти общие собственные векторы для всех матриц C(i), i=1, 2, 3. Один из них уже найден - это вектор x3(3)=(x1, x1, x1) приравнивается вектору x2(2)= (x1, x1, x3), откуда следует, что x3=x1. Получим второй общий собственный вектор. Соответствующие собственные значения для этого вектора запишем в виде (1, 2, 3).

Приравняем теперь векторы x3(-3)= (x1, x1, -x1) и x2(2)= (x1, x1, x3). Это дает x3=-x1, т. е. третьим общим собственным вектором рассматриваемых матриц будет вектор (x1, x1, -x1). Поскольку матрица С(3) имеет все различные собственные значения, то соответствующие собственные подпространства одномерны. Но так как у матриц С(2) и С(3) должны быть общие собственные векторы, это накладывает ограничения x3=-x1 для собственных векторов матриц С(2) вида x2(2), которые образуют двумерное собственное подпространство. Чтобы получить характеры неприводимых представлений, необходимо нормировать полученные общие собственные векторы, учитывая, что порядок группы S3 равен 6 и что числа элементов в классах сопряженных элементов образуют вектор (1, 2, 3). Умножив скалярно вектор x3(3)= (x1, x1, x1) на вектор (1, 2, 3) и разделив на 6, получим

; x1+2x1+3x1=6,

т. е. х1=1.

Таким образом, получаем первый характер х1=(1, 1, 1). Для вектора (x1, x1, -x1), умножая его скалярно на (1, 2, -3) и деля на 6, также получаем x1=1, что дает характер х2=(1, 1, -1). Наконец, для вектора (2х2, -х2, 0) получаем

, (30)

откуда х2=1.

Заметим, что скалярный квадрат вектора (2х2, -х2, 0) равен 4x22+2x22=6x22, так как имеется два элемента в классе сопряженных

элементов K2={(1 2 3), (1 3 2)} - этим и вызвано появление множителя 2 в выражении (30). С другой стороны, этот множитель равен размерности неприводимого представления группы S3, так что x3=(2, -1, 0) есть характер двумерного неприводимого представления группы S3. Полученные результаты удобно записать в виде следующей таблицы.

Таблица 5

Характеры неприводимых представлений группы S3=C3V

1

2 (1 2 3)

3 (1 2)

1

2

3

1

1

2

1

1

-1

1

-1

0

(1)

(2)

(3)

1

1

1

2

2

-1

3

-3

0

Таблица 5 - это известная таблица характеров неприводимых представлений группы S3 (см. табл. 2), только в нижней части ее указаны собственные значения матриц C(1), C(2), C(3), которые дают общие собственные векторы этих матриц.

Составив табл. 5, одновременно нашли первую и вторую собственную матрицу P и Q. Матрица, стоящая внизу в таблице, - это первая собственная матрица. Вторую собственную матрицу Q можно получить из соотношения PQ=QP=|G|E или найти с использованием общих правых собственных векторов-матриц Ci. Матрица Q имеет вид (рядом указана транспонированная матрица)

; .

В соответствии с теоремой 1 таблица характеров неприводимых представлений группы S3 находится по формуле

.

Здесь m1=1; m2=1; m3=4, поэтому

,

где в правой части находится таблица неприводимых характеров группы S3, приведенная в верхней части табл. 5.

2.6 Операторы проектирования

1. Операторы проектирования и идемпотенты кольца

Пусть векторное пространство V равно прямой сумме подпространств W и L: . По определению прямой суммы это означает, что каждый вектор vV однозначно представим в виде v=w+l, wW. lL.

Определение 1. Если , так что v=w+l, то отображение , сопоставляющая каждому вектору vV его компоненту (проекцию) wW, называется проектором пространства V на пространство W. называют также оператором проектирования, или проекционным оператором.

Очевидно, если wW, то (w)=w. Отсюда следует, что обладает следующим замечательным свойством 2=Р.

Определение 2. Элемент е кольца K называется идемпотентом (т. е. подобным единице), если е2=е.

В кольце целых чисел есть всего два идемпотента: 1 и 0. Иное дело в кольце матриц. Например, матрицы , , , - идемпотенты. Матрицы операторов проектирования также идемпотенты. Соответствующие им операторы называются идемпотентными операторами.

Рассмотрим теперь прямую сумму n подпространств пространства V:

.

Тогда аналогично случаю прямой суммы двух подпространств можем получить n операторов проектирования , , …, . Они обладают свойством ==0 при ij.

Определение 3. Идемпотенты ei и ej (ij) называются ортогональными, если ei ej= ej ei=0. Следовательно, и - ортогональные идемпотенты.

Из того, что IV=V, и из правила сложения линейных операторов следует, что

.

Это разложение называется разложением единицы в сумму идемпотентов.

Определение 4. Идемпотент е называется минимальным, если его нельзя представить в виде суммы идемпотентов, отличных от е и 0.

2. Каноническое разложение представления

Определение 5. Каноническим разложением представления Т(g) называется его разложение вида Т(g)=n1T1(g)+ n2T2(g)+…+ ntTt(g), в котором эквивалентные неприводимые представления Тi(g) объединены вместе, причем ni - кратность вхождения неприводимого представления Ti(g) в разложение T(g).

Теорема 1. Каноническое разложение представления определяется с помощью проекционного оператора вида

, i=1, 2, …, t, (31)

где |G| - порядок группы G; mi - степени представлений Ti(g), где i=1, 2, …, t; i(g), i=1, 2, …, t - характеры неприводимых представлений Ti(g). При этом mi определяется по формуле

. (32)

3. Проекционные операторы, связанные с матрицами неприводимых представлений групп

С помощью формул (31) можно получить только каноническое разложение представления. В общем случае, надо воспользоваться матрицами неприводимых представлений, которые позволяют построить соответствующие операторы проектирования.

Теорема 2. Пусть - матричные элементы неприводимого представления Tr(g) группы G. Оператор вида

(33)

является оператором проектирования и называется оператором Вигнера. В выражении (33) mr - размерность представления Tr(g).

4. Разложение представления в прямую сумму неприводимых представлений с помощью оператора Вигнера

Обозначим через М модуль, связанный с представлением Т. Пусть неприводимым представлениям Т1, Т2, …, Тt из канонического разложения представления согласно методу, описанному ранее (см. § 4), соответствуют неприводимые подмодули М1, М2, …, Мt. Разложение модуля М вида

(34)

называется каноническим разложением модуля М. Обозначим niMi=Li, так, что

. (35)

Неприводимые подмодули модулей Li обозначим

; i=1, 2, …, t. (36)

Эти модули нам необходимо найти.

Предположим, что задача решена. Следовательно, в каждом из модмодулей Mi(s) (s=1, 2, …, ni) найдена ортонормированная база , в которой оператор представлен матрицей Тi(g) неприводимого представления Т, полученного в результате действия (по правилу из § 3) оператора на базу по формуле

, j=1, 2, …, mi. (37)

В этом выражении можно считать, что mi - размерность неприводимого представления Ti (i=1, 2, …, t), причем - элементы базы с номером g из неприводимого подмодуля Mi. Разместим теперь элементы базы Li при фиксированном i следующим образом:

(38)

Справа в выражении (38) расположены базы модулей Mi(1), Mi(2), …, . Если же i изменять от 1 до t, то получим искомую базу всего модуля М, состоящего из m1n1+ m2n2+…+ mtnt элементов.

Рассмотрим теперь оператор

, (39)

действующий в модуле М (j фиксировано). Согласно теореме 2, - оператор проектирования. Поэтому этот оператор оставляет без изменения все базисные элементы (s=1, 2, …, ni), расположенные в j-м столбце выражения (38), и обращает в нуль все остальные векторы базы. Обозначим через Mij векторное пространство, натянутое на ортогональную систему векторов , стоящие в j-м столбце выражения (38). Тогда можно сказать, что является оператором проектирования на пространство Mij. Оператор известен, так как известны диагональные элементы матриц неприводимых представлений групп, а также оператор T(g).

Теперь можно решить нашу задачу.

Выберем ni произвольных базисных векторов в M: и подействуем на них оператором проектирования . Полученные векторы лежат в пространстве Mij и являются линейно независимыми. Они не обязательно ортогональны и нормированы. Ортонормируем полученную систему векторов согласно правилу из § 2. Полученную систему векторов обозначим eij(s) в соответствии с обозначениями, принятыми в предположении, что задача решена. Как уже обозначалось, здесь j фиксировано, а s=1, 2, …, ni. Обозначим eif(s) (f=1, 2, …, j-1, j+1, …, mi), остальные элементы базы модуля Mi размерности nimi. Обозначим через следующий оператор:

. (40)

Из соотношений ортогональности для матриц неприводимых представлений следует, что этот оператор дает возможность получить eigs по формуле

, i=1, 2, …, t. (41)

Все сказанное можно выразить в виде следующего алгоритма.

Для того, чтобы найти базу модуля М из элементов, преобразующихся по неприводимым представлениям Тi, содержащихся в представлении Т, связанном с модулем М, необходимо:

По формуле (32) найти размерности подпространств Мij, соответствующих j-компоненте неприводимого представления Ti.

Найти с помощью оператора проектирования (39) все подпространства Mij.

В каждом подпространстве Mij выбрать произвольную ортонормированную базу.

Используя формулу (41), найти все элементы базы, преобразующихся по остальным компонентам неприводимого представления Тi.

Заключение

Группы - один из основных типов алгебраических систем, а теория групп - один из основных разделов современной алгебры. Понадобилась работа нескольких поколений математиков прежде чем идея групп выкристаллизовалась с ее сегодняшней ясностью. От Лагранжа через работы Руффини и Абеля к Эваристу Галуа, в работах которого уже достаточно сознательно используется идея группы (им же впервые введен и сам термин), - вот путь, по которому развивалась эта идея в рамках теории алгебраических уравнений. В настоящее время теория групп является одной из самых развитых областей алгебры, имеющей многочисленные применения в как в самой математике, так и за ее пределами - в топологии, теории функций, кристаллографии, квантовой механике и других областях математики и естествознания. Конечной целью собственно теории групп является описание всех групповых композиций.

Понятие группы позволяет в точных терминах охарактеризовать симметричность той или иной геометрической фигуры. Именно с таких позиций Е.С. Федоров решил задачу классификации правильных пространственных систем точек, являющуюся одной из основных задач кристаллографии.

Независимо и по другим причинам идея группы возникла в геометрии, когда в середине XIX в. на смену единой античной геометрии пришли многочисленные «геометрии» и остро встал вопрос об установлении связей и родства между ними. Выход был указан «Эрлангенской программой» Клейна, положившей в основу классификации геометрий понятие группы преобразований.

Лежащее в фундаменте современной математики понятие группы является весьма разносторонним орудием самой математики. Вместе с тем группы - это мощный инструмент познания одной из наиболее глубоких закономерностей реального мира - симметрии.

Список использованной литературы

Морозов В.П., Дышлис А.А. Лекции по теории симметрии молекулы: Учеб. пособие. - Днепропетровск: Изд-во ДГУ, 1991. - 180 с.

Александров П.С. Введение в теорию групп. - М.: Наука. Главная редакция физико-математической лит-ры, 1980 - 144 с.

Каргаполов М.И., Мерзляков Ю.И. Основы теории групп - 4-е изд., перераб. - М.: Наука. Физматлит, 1996 - 288 с.

Минкин В.И., Симкин Б.Я., Миняев Р.М. Теория строения молекул./ Серия «Учебники и учебные пособия». Ростов-на-Дону: «Феникс», 1997 - 560 с.

Дей К., Селби Д. Теоретическая неорганическая химия. Пер. с англ.; под ред. д-ра хим. наук К.В. Астахова. Изд. 3-е, испр. и доп. М., «Химия», 1976 - 568 с.

Виленкин Н.Я. Специальные функции и теория представлений групп. - М.: Наука, 1965 - 588 с.

Глинка Н.Л. Общая химия: Учеб. пособие для ВУЗов, - 23-е изд., испр./ Под ред. В.А. Рабиновича. - Л.: Химия, 1983 - 704 с.

Курош А.Г. Курс высшей алгебры - М.: Наука, 1971 - 432 с.


Подобные документы

  • Сопоставление молекулы с группой симметрии. Установление полной симметрии молекулы и классификация атомов на эквивалентные. Матричное произведение исходных представлений. Соответствие преобразованию симметрии некоторой матрицы. Примеры набора матриц.

    реферат [41,1 K], добавлен 13.07.2009

  • Электронная модель молекулы. Теория отталкивания электронных пар валентной оболочки. Реакционная способность молекул. Классификация химических реакций. Степени свободы молекулы, их вращательное движение. Описание симметрии колебаний, их взаимодействие.

    презентация [230,6 K], добавлен 15.10.2013

  • Спектроскопия молекул в инфракрасном диапазоне. Особенности исследования щелочно-галоидных кристаллов и молекул в матричной изоляции. Специфический характер взаимодействия заряженных молекул между собой и с окружающими их ионами кристалла; спектр газа.

    практическая работа [348,7 K], добавлен 10.01.2016

  • Метод Бенсона при расчете и прогнозировании энтропии органического вещества. Симметрия, атомарные связи углеродных молекул и их классы. Параметры аддитивных схем и проблематика точности для различных свойств молекул алканов в методе Татевского.

    реферат [88,6 K], добавлен 17.01.2009

  • Способы расчетов молекулярной геометрии. Теория отталкивания локализованных электронных пар в валентной оболочке центрального атома. Объекты описания в теории ЛЭП. Примеры, иллюстрирующие прогнозы теории ЛЭП. Связь теории ЛЭП с теорией гибридизации.

    реферат [232,8 K], добавлен 01.02.2009

  • Современные представления о механизме активации простых молекул комплексами переходных металлов. Механизмы активации молекул различного типа кислотными катализаторами. Сущность активации. Реакционная способность. Расщепление субстрата на фрагменты.

    реферат [2,8 M], добавлен 26.01.2009

  • Особенности молекулярного, конвективного и турбулентного механизмов переноса молекул, массы и энергии. Расчет средней квадратичной скорости молекул и описание характера их движения, понятие масштаба турбулентности. Процедуры осреднения скорости молекул.

    реферат [4,6 M], добавлен 15.05.2011

  • Геометрія молекул як напрям в просторі їх валентних зв'язків. Положення теорії направлених валентностей, що витікає з квантово-механічного методу валентних зв'язків. Залежність конфігурації молекул від числа зв'язаних та неподілених електронних пар.

    реферат [1,2 M], добавлен 19.12.2010

  • Графическое представление молекул и их свойств - теория графов в химии. Методы расчета топологических индексов. Кодирование химической информации. Оценка реакционной способности молекул. Анализ связи между топологией молекулы и свойствами соединения.

    реферат [313,2 K], добавлен 09.12.2013

  • Правило октета, структуры Льюиса. Особенности геометрии молекул. Адиабатическое приближение, электронные состояния молекул. Анализ метода валентных связей, гибридизация. Метод молекулярных орбиталей. Характеристики химической связи: длина и энергия.

    лекция [705,2 K], добавлен 18.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.