Инфракрасные спектры молекул
Спектроскопия молекул в инфракрасном диапазоне. Особенности исследования щелочно-галоидных кристаллов и молекул в матричной изоляции. Специфический характер взаимодействия заряженных молекул между собой и с окружающими их ионами кристалла; спектр газа.
Рубрика | Химия |
Вид | практическая работа |
Язык | русский |
Дата добавления | 10.01.2016 |
Размер файла | 348,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Тема
Инфракрасные спектры молекул
ИСХОДНЫЕ ДАННЫЕ:
Изучить особенности спектроскопии молекул в инфракрасном диапазоне
- СОДЕРЖАНИЕ
- Введение
- 1. Особенности исследования молекул в матричной изоляции
- 2. Особенности исследования щелочно - галоидных кристаллов
- 3. Инфракрасные спектры молекул
- 4. Пример спектра газа
- Заключение
- Список использованной литературы
- ВВЕДЕНИЕ
- В последнее время в спектроскопии молекул образовался разрыв между теорией и экспериментом, который существенно тормозил развитие научных исследований. С одной стороны, современные спектральные приборы, большей частью Фурье-спектрометры, обеспечивали измерение колебательных переходов с разрешением лучше 0.01 см-1 и при этом выдавали обилие информации в широком спектральном диапазоне, с хорошими параметрами: отношением сигнал - шум, точностью измерения частоты, временным разрешением и т.д. С другой стороны, теоретические подходы затрудняли обработку экспериментальных данных. В частности, распространенный метод теории возмущений Рэлея - Шредингера требовал пересмотра.
- Интерес к молекулам, находящимся в матрице ионного кристалла, во многом определяется специфическим характером взаимодействия заряженных молекул между собой и с окружающими их ионами кристалла. Проблема взаимодействия заряженной молекулы с окружающими ее атомарными или молекулярными ионами в настоящее время недостаточно изучена, хотя она, несомненно, фундаментальна и важна для многих разделов физики. С заряженными молекулярными системами мы имеем дело, рассматривая ионизированные молекулы в верхних слоях атмосферы, химические реакции, взаимодействия между отдельными заряженными фрагментами одной сложной молекулы, примесные молекулярные ионы в ионных кристаллах.
- 1. Особенности исследования молекул в матричной изоляции
- По сравнению с другими проблемами спектроскопии, которые решаются в настоящее время в физике конденсированных сред, для молекул в окружении кристаллической матрицы (матричной изоляции) характерен ряд полезных свойств. Одно из них - маленькая полуширина колебательных полос. Например, при температуре жидкого гелия полуширина колебательной полосы иона SH- в KCl меньше 0.01 см-1. Исследования таких систем гораздо более информативно даже в сравнении с изучением свободных молекул. По сравнению с последними, молекулы в матрице имеют заторможенное вращение даже при комнатных температурах. И, как правило, при понижении температуры они переходят в состояние с фиксированной ориентацией. Что позволяет тщательнее изучить их спектральные характеристики.
- Другая особенность данных систем заключается в том, что они не являются электронейтральными. Специфику колебаний заряженных систем, можно рассмотреть на примере двухатомного иона. В процессе колебательного движения молекулярного иона его электронная плотность может перераспределяться между атомами в молекуле, что приведет к смещению центра заряда молекулы относительно ее центра масс. Т.е. центр заряда будет совершать осцилляции с частотой колебаний молекулы и, таким образом, возникнут дополнительные поляризационные эффекты окружающей среды. В силу того, что возмущение от осциллирующего заряда более дальнодействующее по сравнению с дипольным возмущением, можно ожидать существенное влияние этого эффекта на оптические свойства кристалла.
- Отличие заряженных систем от электронейтральных наиболее ярко проявляется для примесных молекул в ионных кристаллах вследствие заряженности примесной молекулы и ионного характера структуры кристалла, влияние которого существенно на типичных для кристалла небольших расстояниях между молекулярным дефектом и его кристаллическим окружением. Вероятно, такое взаимодействие и приводит к наблюдающемуся переносу энергии в ЩГК с центров окраски (ЦО) на колебательные уровни CN- или OH-, что приводит в первом случае к интенсивной люминесценции CN-, а во втором - к тушению люминесценции ЦО.
- 2. Особенности исследования щелочно-галоидных кристаллов
- Среди заряженных систем наиболее удобной для изучения взаимодействий молекулярных ионов представляется система - примесный двухатомный ион типа XH- (где X = O, S, Se, Te) внедренный в щелочно-галоидный кристалл (ЩГК). В отличие от многоатомных примесных молекул, которые интенсивно изучались в связи с прикладными задачами, рассматриваемая система имеет ряд важных преимуществ. Одно из них обусловлено тем, что матрица ЩГК имеет простую кристаллическую структуру, которая хорошо изучена экспериментально и теоретически. Кристаллическая матрица такого типа прозрачна в широком спектральном диапазоне - от далекого ИК до ближнего УФ, что позволяет эффективно применять современную технику спектрального анализа для изучения свойств квантовых систем как в области низкоэнергетических фононных переходов, так и в области высокоэнергетических электронных переходов.
- Высокая температура плавления ЩГК дает возможность исследовать температурные зависимости физических свойств в широком интервале температур. Важно еще и то, что большая часть примесных дефектов типа XH- легко встраивается в кристаллическую решетку. Примером может служить молекула OH-, которая входит практически во все ЩГК, замещая ион галоида. Наличие атома водорода в молекуле XH- приводит к тому, что частота собственных колебаний молекулярного иона лежит значительно выше колебаний кристаллической решетки, что существенно облегчает проведение эксперимента.
- Другие важные достоинства имеют водородсодержащие примесные молекулы. Они проявляются в том, что среди всех двухатомных ионов наибольшие изменения колебательных спектральных характеристик при внедрении молекулы в кристалл отмечены именно для таких молекул. При внедрении молекулярного иона в кристалл его физические свойства изменяются в соответствии с кристаллическим окружением.
- Изменения в ближайшем кристаллическом окружении OH-, например, в результате образования радиационных дефектов при г-облучении, приводят к существенным перераспределениям интенсивностей в спектрах поглощения. Последнее отчетливо проявляется в колебательных спектрах. Легкий атом водорода служит своего рода индикатором, чутко реагирующим на изменения окружения. В этом смысле изучение молекулярных дефектов дает информацию не только о самом дефекте, но и об окружающей его кристаллической матрице. Такой метод исследования предполагает знание основных физических свойств примесного иона.
- инфракрасный спектр матричный кристалл молекула
- 3. Инфракрасные спектры молекул
- В отличие от видимого и ультрафиолетового диапазонов, которые обусловлены главным образом переходами электронов из одного стационарного состояния в другое, в инфракрасном диапазоне спектра проявляются в основном колебательные и вращательные степени свободы движения атомов. Это могут быть, к примеру, колебательные движения атомов в молекуле, вращение молекулы как целого вокруг оси проходящей через центр масс или коллективные колебания атомов кристаллической решетки, так называемые фононы, и т.д. Оказывается, что изучение данных видов движения современными теоретическими и экспериментальными средствами спектроскопии, является мощным инструментом, которые позволяют не только объяснить особенности колебательных спектров, но и выявить структуру колеблющейся системы, изучить физику протекающих в ней процессов.
- Теоретическая спектроскопия, изучающая переходы атомной системы с одного энергетического уровня на другой под действием электромагнитного излучения, начинается с изучения собственных значений энергии системы. Они находятся в результате решения уравнения Шредингера
- Hш = Еш,
- где H - гамильтониан системы,
- ш и Е - собственные функции и значения.
- Поскольку молекула состоит из ядер и электронов, ее гамильтониан можно представить как сумму двух частей:
- H = Hяд+ Hэл.
- Первое слагаемое описывает движение ядер, второе - электронов «вокруг» ядер. Ядра имеют массу более чем на три порядка превышающую массу электрона, и поэтому движутся значительно медленнее их. В первом приближении можно считать движения ядер и электронов независимыми. Приближение о независимости движений электронов и ядер называется адиабатическим, или приближением Борна-Оппенгеймера, которые ввели его в 1927 году.
- Пользуясь данным приближением, Борн и Оппенгеймер показали, что с хорошей точностью полную энергию молекулы можно представить как сумму трех независимых вкладов:
- E = Eэл + Eкол + Eвращ.
- Здесь Eэл - энергия электронов,
- Eкол - энергия колебаний ядер (подразумевается колебательное отклонение ядер от равновесного положения при неподвижном центре масс молекулы),
- Eвращ - энергия вращения молекулы как целого.
- Существенно, что Eэл>>Eкол>>Eвращ. Такое соотношение определяет своеобразную структуру энергетических уровней молекулы. Каждый электронный уровень, который мы будем обозначать квантовым числом х=0, 1, … , сопровождается своим набором колебательных уровней, квантовые числа n=0, 1, … , а те, в свою очередь, имеют вращательную структуру, квантовые числа j = 0, 1, ….
Размещено на http://www.allbest.ru/
- Рисинок 1. Схема энергетических уровней молекулы
- 4. Пример спектра газа
- Пример колебательно-вращательного спектра газа 1H35Cl в основном электронном состоянии (х=0) приведен на рисунке 2 (a). Здесь по горизонтальной оси отложено волновое число (волновое число определяется как единица, деленная на длину волны в сантиметрах). На рисунке 2 (b) изображена схема энергетических уровней и переходов, соответствующих колебательно-вращательным линиям рисунке 2 (a). Серия линий A является чисто вращательной - она возникает благодаря только переходам между вращательными уровнями основного колебательного состояния (n=0). Переходы с уровня n=0 на уровни n=1 и n=2 ответственны за линии B и C. Чисто колебательные переходы, когда вращательное квантовое число не изменяется (Дj=0), для молекул HCl запрещены правилами отбора. Поэтому в сериях B и C отсутствуют центральные линии. В случае, когда вращательная степень свободы отсутствует (например, для молекул в матрицах), отсутствует и серия A, а вместо серий B и С имеют место одиночные линии на месте «пропущенных» центральных линий, соответствующие переходам n=0>n=1 и n=0>n=2 соответственно. Переходы с нулевого на первый колебательный уровень (B) называются основным тоном или первой гармоникой, переходы с нулевого на второй (C) - первым обертоном (или второй гармоникой) и т.д. Конечно, возможны переходы n=0>n=3 - второй обертон (третья гармоника), n=0>n=4 - третий обертон (четвертая гармоника) и т.д. Однако интенсивности соответствующих им линий низки и данные линии на рисунке 2 не отображены.
- Однако заметим, что при комнатных температурах, когда размеры молекул малы по сравнению с характерными размерами матрицы, вращательные степени свободы могут проявляться в виде вибрационных спектров или даже в виде спектров почти свободного (заторможенного) вращения.
- Для наглядности высота группы линий C на рисунке увеличена в 10 раз. В верхней части рисунка показаны те же группы линий A, B и C, что и внизу, но в более удобном для визуального сопоставления масштабе. (b) Колебательно-вращательные энергетические уровни молекулы 1H35Cl.
- Рисунок 2 (a). Схема вращательно-колебательного спектра 1H35Cl
- Стрелками показаны переходы, соответствующие линиям в спектре. Переходы с нулевого колебательного уровня на первый (B) называются основным тоном, переходы с нулевого на второй (C) - первым обертоном.
- ЗАКЛЮЧЕНИЕ
- Несмотря на большое число научных публикаций, ряд важных оптических свойств иона OH- и других водородсодержащих двухатомных примесных ионов не достаточно исследованы. Так, даже данные о частотах основных колебательных переходов наиболее изученного примесного дефекта OH- были отрывочные, практически отсутствовали сведения о важнейших спектральных характеристиках двухатомных ионов - механической и электрооптической ангармоничностях.
- Здесь следует подчеркнуть, что знание столь важных электрооптических параметров позволяет эффективно применять физические методы для решения ряда теоретических и практических задач физики твердого тела. Хорошо известно, что исследования спектральных характеристик изолированных в кристалле двухатомных примесных ионов и проявлений их межионных взаимодействий методами спектроскопии позволяют решить не только прямую задачу спектроскопии, т.е. предсказать оптические свойства, но и обратную - определить по спектрам природу взаимодействий и построить модель центра.
- СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Казаков К. В. // Опт. и спектр. 2014. Т. 97. №5. с. 772.
2. Алексеев П.Д, Мальцев К.А. Природа ИК-спектров монокристаллов.
3. Наберухин Ю.И. Лекции по молекулярной спектроскопии/ Ю.И.
4. Пентин Ю.А. Основы молекулярной спектроскопии / Ю.А. Пентин, Г.М. Курамшина. - М.: Мир; БИНОМ. Лаборатория знаний, 2010. - 398 с.
Размещено на Allbest.ru
Подобные документы
Особенности молекулярного, конвективного и турбулентного механизмов переноса молекул, массы и энергии. Расчет средней квадратичной скорости молекул и описание характера их движения, понятие масштаба турбулентности. Процедуры осреднения скорости молекул.
реферат [4,6 M], добавлен 15.05.2011Элементы теории групп симметрии молекул. Классы смежности и классы сопряженных элементов. Групповые постулаты и факторизация групп. Векторные (линейные), эвклидовы и унитарные пространства, матрицы. Теория, характер представлений групп симметрии молекул.
дипломная работа [519,5 K], добавлен 27.07.2010Правило октета, структуры Льюиса. Особенности геометрии молекул. Адиабатическое приближение, электронные состояния молекул. Анализ метода валентных связей, гибридизация. Метод молекулярных орбиталей. Характеристики химической связи: длина и энергия.
лекция [705,2 K], добавлен 18.10.2013Современные представления о механизме активации простых молекул комплексами переходных металлов. Механизмы активации молекул различного типа кислотными катализаторами. Сущность активации. Реакционная способность. Расщепление субстрата на фрагменты.
реферат [2,8 M], добавлен 26.01.2009Геометрія молекул як напрям в просторі їх валентних зв'язків. Положення теорії направлених валентностей, що витікає з квантово-механічного методу валентних зв'язків. Залежність конфігурації молекул від числа зв'язаних та неподілених електронних пар.
реферат [1,2 M], добавлен 19.12.2010Ультрафиолетовая спектроскопия, применяемая при исследовании атомов, ионов, молекул твердых тел, для изучения их уровней энергии, вероятностей переходов. Приборы, применяемые для УФ-спектроскопии. Спектры поглощения классов органических соединений.
контрольная работа [2,9 M], добавлен 08.04.2015Полярний і неполярний типи молекул з ковалентним зв'язком. Опис терміну поляризації як зміщення електронів, атомів та орієнтація молекул у зовнішньому полі. Причини виникнення дипольних моментів у молекулах. Визначення поняття електровід'ємності атома.
реферат [365,0 K], добавлен 19.12.2010Строение молекул и цвет. Особенности твердого состояния неорганических красителей. Цвет металлов. Молекулы бесцветны, а вещество окрашено. Цвет полярных молекул. Среда воздействует на цвет. Колориметрия.
реферат [1,2 M], добавлен 22.08.2007Графическое представление молекул и их свойств - теория графов в химии. Методы расчета топологических индексов. Кодирование химической информации. Оценка реакционной способности молекул. Анализ связи между топологией молекулы и свойствами соединения.
реферат [313,2 K], добавлен 09.12.2013Метод Бенсона при расчете и прогнозировании энтропии органического вещества. Симметрия, атомарные связи углеродных молекул и их классы. Параметры аддитивных схем и проблематика точности для различных свойств молекул алканов в методе Татевского.
реферат [88,6 K], добавлен 17.01.2009