Теория симметрии молекул

Элементы теории групп симметрии молекул. Классы смежности и классы сопряженных элементов. Групповые постулаты и факторизация групп. Векторные (линейные), эвклидовы и унитарные пространства, матрицы. Теория, характер представлений групп симметрии молекул.

Рубрика Химия
Вид дипломная работа
Язык русский
Дата добавления 27.07.2010
Размер файла 519,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство общего и профессионального образования РФ

Дипломная работа

«Теория симметрии молекул»

Содержание

Введение

Глава 1 Элементы теории групп симметрии молекул

1.1 Операции симметрии молекул

1.2 Групповые постулаты

1.3 Классы смежности и классы сопряженных элементов

1.4 Факторизация групп

Глава 2 Введение в теорию представлений групп симметрии молекул

2.1 Векторные (линейные) пространства

2.2 Эвклидовы и унитарные пространства

2.3 Матрицы

2.4 Представления групп

2.5 Характеры представлений

2.6 Операторы проектирования

Заключение

Список использованной литературы

Введение

Понятие симметрии играет важную роль во всех естественных науках. Свойствами симметрии обладают структуры многих молекул, ионов, образуемых ими реагирующих систем.

Математической основой теории симметрии является теория групп. Понятие группы - предмет теории групп.

Множество G с бинарной операцией называется группой, если:

1. Операция ассоциативна, т. е. для любых a, b, c из G.

2. Операция гарантирует единицу, т. е. в G существует такой элемент е - он называется единицей, - что для любого а из G.

3. Операция гарантирует обратные элементы, т. е. для любого а из G существует в G такой элемент а-1 - он называется обратным к а, - что .

В теории молекулярной симметрии понятие представления группы играет центральную роль. Учитывая это, дадим определение представления группы, используя различные математические объекты, представляющие группу.

Представлением группы, действующим в n-мерном векторном пространстве V, называется гомоморфизм этой группы в группу невырожденных линейных операторов пространства V.

Задача настоящей работы состояла в самостоятельном изучении основных понятий и методов данной области и рассмотрении примеров по изучаемым темам.

В процессе написания были проработаны следующие разделы: операции симметрии молекул; классы смежности и факторизация групп; векторные, эвклидовы и унитарные пространства; представления групп и характеры представлений; операторы проектирования. Материал разбит на две главы, которые в свою очередь разбиваются на параграфы. На протяжении всего теоретического материала рассматриваются примеры, которые иллюстрируют применение изучаемых вопросов. Так большинство примеров показаны на множестве операций симметрии молекул аммиака NH3 - группе C3V.

Глава 1 Элементы теории групп симметрии молекул

1.1 Операции симметрии молекулы

1. Элементы и операции симметрии молекулы

Под геометрической конфигурацией молекулы или иона будем понимать пространственное расположение ядер атомов в молекуле или ионе относительно друг друга. Геометрическую конфигурация молекулы можно охарактеризовать, построив модель молекулы. Впервые модели молекул из шаров и стержней были построены в 1810 г. Джоном Дальтоном. Современные представления о структуре молекулы являются более точными благодаря применению точных экспериментальных методов определения этой структуры (оптические и дифракционные методы). Использовав эти методы, мы можем построить геометрическую модель молекулы в виде конечной фигуры.

Важной особенностью современных представлений о строении молекул является наличие симметрии молекул.

Определение 1. Отображением множества M на множество N называется правило f, которое каждому элементу m из множества M ставит в соответствие элемент n из множества N, называемый образом элемента m, при этом каждый элемент множества N является образом хотя бы одного элемента из множества M.

Если M=N, то говорят об отображении множества М на себя.

Определение 2. Операцией симметрии конечной фигуры называется ее изомерическое (т. е. сохраняющее расстояние между точками фигуры) отображение на себя.

Рассматривая эти примеры, приходим к заключению, что помимо геометрической модели, с молекулой аммиака необходимо связать геометрические образы - прямую C3 и плоскость , которые не принадлежат модели хотя бы потому, что они бесконечны

Операции симметрии пространственной фигуры, соответствующей молекуле, называются операциями симметрии молекулы.

В качестве примера рассмотрим молекулу аммиака NH3. Ее геометрическая конфигурация имеет форму правильной треугольной

Рис. 1 пирамиды.

К числу операций симметрии правильной треугольной пирамиды относятся повороты, совмещающие ее с собой. Точки N и O определяют ось поворота, которую обозначим через С3. Повернем пирамиду вокруг этой оси на 120о против часовой стрелки. Указанный поворот обозначим через . На рис. 1, б изображена фигура (результат поворота), которая совмещается с исходной (рис. 1, а) при наложении. Рассмотрим отражение в плоскости , совмещающее фигуру с собой, и обозначим его . Очевидно, что , как и , является операцией симметрии молекулы аммиака, так как операции и не изменяют расстояний между точками фигуры NH3.

Рассматривая эти примеры, приходим к заключению, что помимо геометрической модели, с молекулой аммиака необходимо связать геометрические образы - прямую C3 и плоскость , которые не принадлежат модели хотя бы потому, что они бесконечны.

Определение 3. Элементом симметрии молекулы называется вспомогательный геометрический образ (точка, прямая, плоскость), характеризующий некоторое множество операций симметрии фигуры, изображающей молекулу.

Например, ось C3 характеризует множество операций симметрии, состоящее из рассмотренного нами поворота , а также поворотов на 240о и на 360о против часовой стрелки молекулы аммиака. Поворот называется тождественной операцией симметрии. При этой операции симметрии все точки геометрической модели молекулы отображаются в себя. Плоскость характеризует множество операций симметрии, состоящее из и .

Элементы симметрии не следует путать с операциями симметрии. Элементы симметрии будем обозначать буквами, а операции симметрии - буквами «со шляпками» над ними.

Рассмотрим множество, элементами которого являются всевозможные операции симметрии молекулы, для случая молекулы аммиака. Четыре элемента , , , этого множества мы уже нашли. Кроме плоскости (рис. 1, а), молекула аммиака имеет еще две плоскости симметрии и , содержащие прямые NH(2) и NH(3) соответственно. С плоскостями и связаны операции симметрии и . Множество операций симметрии молекулы аммиака может быть обозначено следующим образом:

.

2. Классификация элементов симметрии молекулы

1. Поворотная ось Cn порядка n. Поворотной осью симметрии n-го порядка называется ось Cn, при повороте вокруг которой на угол n молекула совмещается сама с собой. Примеры: C3 - для случая молекулы аммиака; C2 (рис. 2, а) - для случая молекулы воды; C6 - для случая молекулы бензола (рис. 2, б).

2. Поворотная ось бесконечного порядка C. Это поворотная ось, при повороте вокруг которой на любой угол молекула совмещается с собой. Примером может служить любая линейная молекула, например, молекула ацетилена C2H2 (рис. 3).

Рис. 2

Рис. 3

3. Плоскость симметрии. Плоскостью симметрии молекулы называется плоскость, при отражении в которой молекула совмещается сама с собой. Пример молекулы с вертикальной плоскостью симметрии уже приведен (молекула аммиака). У бензола C6H6 (рис. 2, б) есть плоскость симметрии - плоскость, в которой лежат атомы этой молекулы. При этом следует иметь ввиду, что поворотная ось высшего порядка всегда условно принимается за вертикальную.

Диагональную плоскость симметрии имеет молекула метана (рис. 4). Геометрической моделью CH4 является тетраэдр, в вершине которого расположены атомы водорода. Диагональная плоскость симметрии d заштрихована. При отражении в плоскости d атомы водорода, находящиеся в плоскости, переходят в себя, а атомы, расположенные симметрично этой плоскости, переходят друг в друга.

4. Центр симметрии. Это точка i, при отражении в которой молекула совмещается сама с собой, например, молекула трансдихлорэтилена C2Cl2H2 (рис. 5).

Рис. 5

5. Зеркально-поворотная ось n-го порядка Sn. Зеркально-поворотной осью n-го порядка называется ось, при повороте вокруг которой на угол n с последующим отражением в плоскости, перпендикулярной к этой оси, молекула совмещается сама с собой.

Примером молекул, обладающих такой осью, может служить молекула метана CH4.

Рис. 6

На рис. 6 показана зеркально-поворотная ось симметрии четвертого порядка S4. Из рис. 6 можно видеть, что при повороте на угол 4 вокруг оси S4 против часовой стрелки атомы H(i) переходят в места, указанные звездочками. Совершив затем отра-

жение в заштрихованной горизонтальной плоскости, получим, что все звездочки перейдут в соответствующие атомы, т. е. в результате зеркального поворота S4 атом H(1) перейдет в H(3), H(2) - в H(4), H(3) - в H(2), H(4) - в H(1).

1.2 Групповые постулаты

1. Алгебраические операции

Определение 1. Бинарной алгебраической операцией, определенной на множестве М, называется правило, согласно которому каждые два элемента a и b множества М, взятые в определенном порядке, однозначно сопоставляются с элементом с из этого множества, называемым результатом выполнения операции.

Рассмотрим в качестве общего примера множество операций симметрии молекулы. Под произведением операций симметрии и будем понимать их последовательное выполнение. Первые два требования к алгебраической операции, очевидно, выполняются. Проверим выполнение третьего условия из определения алгебраической операции.

Операция симметрии совмещает геометрическую модель с собой, и если после выполнения операции мы выполнили операцию , модель снова совместится сама с собой. Проверим изометричность произведения . Пусть геометрическая модель молекулы изображена на рисунке в виде фигуры F. Операции симметрии этой фигуры являются операциями симметрии молекулы. Пусть x и y - любые две точки фигуры F и пусть при операции точки x и y переходят в точки x и y соответственно, что запишем в виде x=x, y=y. Аналогично, пусть x=x, y=y. Тогда при последовательном выполнении операций и , т. е. в результате выполнения операции , получаем x=x, y=y. Так как изометрично, то r(x, y)=r(x, y), где r(x, y) обозначает расстояние между точками x и y, а r(x, y) - расстояние между точками x, y. Поскольку тоже изметрично, то r(x, y)=r(x, y). Из полученных равенств следует, что r(x, y) =r(x, y), т. е. изометрично. Так как самосовмещение фигуры есть ее отображение на себя, то есть изометрическое отображение фигуры F на себя, т. е. операция симметрии фигуры. Поскольку и можно считать любыми элементами множества операций симметрии молекулы, третье условие из определения алгебраической операции выполнено.

2. Таблица Кэли

Подобно тому, как существует таблица умножения натуральных чисел, можно составить таблицу умножения в множестве операций симметрии молекулы. Эта таблица называется таблицей Кэли (или квадратом Кэли). Для того, чтобы понять общий принцип составления таких таблиц, запишем таблицу Кэли для случая множества операций симметрии молекулы аммиака NH3 (табл. 1).

Таблица 1

Квадрат Кэли группы C3V

3. Определение группы

Определение 2. Множество G называется группой, если в этом множестве определена бинарная алгебраическая операция, удовлетворяющая следующим аксиомам (в мультипликативной записи операций):

1. Для всех элементов a, b, c из множества G (аксиома ассоциативности).

2. Для всех элементов а из множества G существует элемент e из этого множества, такой, что (е называется единичным элементом группы).

3. Для каждого элемента а для множества G существует элемент а-1 из этого из этого множества, такой, что (а-1 называется обратным элементом к элементу а).

Рассмотрев таблицу Кэли для множества C3V, можно убедиться, что множество операций симметрии молекулы аммиака является группой относительно введенной нами операции умножения в этом множестве.

Определение 3. Подмножество H группы G называется подгруппой группы G, если H само является группой относительно операции, введенной в группе G.

Для проверки того, что H является подгруппой группы G, надо проверить два условия: произведение двух элементов из Н снова принадлежит Н и вместе с элементом h обратный к нему элемент из группы G (он должен существовать) также принадлежит Н. В самом деле, тогда ; ассоциативность же умножения, будучи верной во всей группе G, будет иметь место и в подгруппе Н.

Теорема 1. Множество всех операций симметрии молекулы является группой. Эта группа является подгруппой симметрической группы перестановок фигуры, изображающей геометрическую модель молекулы.

Определение 4. Группой симметрии молекулы называется множество S всех операций симметрии молекулы, на котором введена структура группы относительно умножения операций симметрии молекулы.

4. Гомоморфизмы и изоморфизмы

Определение 5. Отображение множества М в множество N - это правило f, по которому каждому элементу m из множества M ставится в соответствие однозначно определенный элемент mf=n из множества N.

Определение 6. Гомоморфизмом группы G в группу G называется отображение множества G в множество G такое, что

(1)

В качестве примера рассмотрим группу C3V и группу {-1}2, состоящую всего из двух элементов {-1}2={-1, 1}.

Построим отображение группы C3V в группу {-1}2 (записываем это в виде : C3V{-1}2) по следующему правилу: элементам , , сопоставим 1, а элементам ,, сопоставим -1. Отображение построено, причем, как видим, у элемента 1 группы {-1}2 есть три прообраза, т. е. три элемента группы C3V, образом каждого из которых является 1: у элемента -1 также три прообраза - это не запрещено определением отображения.

Покажем теперь, что есть гомоморфизм. Из таблицы Кэли группы C3V видно, что произведение любых двух элементов множества C3={, , } принадлежит этому же множеству, в то же время . Из этой таблицы видно, что , i, j=1, 2, 3 принадлежит множеству C3, но с другой стороны, . Наконец, произведения и , i, j=1, 2, 3 принадлежат множеству , с другой стороны , . Таким образом для любых двух операций симметрии и из множества C3V получаем, что , где , , есть 1 или -1, т. е. отображение , действительно есть гомоморфизм.

Определение 7. Отображение f множества М в множество N называется взаимно однозначным отображением множества М на множество N, если каждый элемент множества N является образом в точности одного элемента множества M.

Определение 8. Две группы G и G называются изоморфными (обозначение GG), если существует взаимно однозначное отображение группы G на группу G такое, что

(2)

Свойства группы или других математических объектов, сохраняющиеся при изоморфизме, называются структурными свойствами. Приведем два примера структурных свойств групп, которым предшествуют два важных определения.

Определение 9. Если группа G содержит конечное число элементов, то число n элементов группы называется порядком группы и обозначается n=|G|.

Например, |C3V|=6; |{-1}2|=2.

Определение 10. Группа называется абелевой или коммутативной, если для всех элементов a и b этой группы выполняется равенство ab=ba.

Так, группа {-1}2 является абелевой, а группа C3V не абелева.

Теорема 2. Если две конечные группы G и G изоморфны, то их порядки равны.

Теорема 3. Если G - абелева группа и GG, то и G - абелева группа.

Теорема 4. Каждая конечная группа изоморфна некоторой группе перестановок и некоторой группе матриц.

Приведем пример. Пронумеруем элементы группы C3V в виде =1; =2; =3; =4; =5; =6. Используя таблицу Кэли группы C3V, запишем

.

Далее, получим, используя правило умножения перестановок. Ясно, что

.

Аналогично получаем остальные четыре перестановки искомой группы: , , , . Мы получили другое выражение группы C3V: ее представление в виде группы перестановок.

1.3 Классы смежности и классы сопряженных элементов

Пусть G - группа, H - ее подгруппа.

Определение 1. Всякое множество Hg (т. е. совокупность всех элементов hg, где h пробегает H, g - фиксированный элемент группы G) называется правым смежным классом группы G по подгруппе H. Аналогично определение левого смежного класса gH.

Каждый элемент смежного класса называется его представлением. Так, элемент g - представитель класса Hg, поскольку из-за наличия в группе Н единицы е группы G элемент g=egHg.

Будем считать подгруппу H первым правым смежным классом. В результате группу G можно представить в виде объединения правых смежных классов:

Hg1+Hg2+…+Hgm=G (3)

Выражение (3) называется правосторонним разложением группы G по подгруппе H.

Рассмотрим пример. В группе C3V выберем подгруппу {, }={}2, считая ее первым правым смежным классом. Возьмем элемент и по таблице Кэли группы C3V найдем второй правый смежный класс {, }={, }. Элемент не входит в оба класса, и с помощью его получаем третий правый смежный класс {, }={, }. Таким образом, правостороннее разложение группы C3V по подгруппе {}2 имеет вид

C3V={, }+{, }+{, }. (4)

Аналогично левостороннее разложение группы C3V по подгруппе {}2 имеет вид

C3V={, }+{, }+{,}. (5)

Существенно, что левостороннее разложение (5) не совпадает с правосторонним разложением (4).

Теорема Лагранжа. Порядок подгруппы H конечной группы G является делителем порядка группы G.

Теорема Лагранжа облегчает нахождение подгруппы группы G. Надо искать подгруппы группы G не любых порядков, а порядков, равных делителям порядка группы G. Например, группа C3V имеет порядок 6, а у числа 6 делителями являются числа 1, 2, 3, 6. Мы уже нашли подгруппы группы C3V, имеющие приведенные порядки - это подгруппы {}, {}, {}3={, , } и сама C3V. Подчеркнем, что если число m является делителем порядка группы G, то отсюда не следует, что в группе G есть подгруппа порядка m, т. е. теорема, обратная теореме Лагранжа, не имеет места.

Определение 2. Элементы а и b группы G называются сопряженными, если существует элемент х из группы G такой, что выполняется равенство

a=x-1bx (6)

Например, в группе C3V согласно таблице Кэли этой группы, имеем =-1=, поэтом элементы и сопряжены с помощью элемента .

С помощью понятия сопряженности можно дать классификацию элементов группы G. Обозначим через Kg1, Kg2, …, Kgt все классы сопряженных элементов. Всю группу G можно представить в виде

Kg1+ Kg2+ …+ Kgt=K1+K2+…+Kt=G, (7)

где Kgi=Ki; i=1, 2, …, t - непересекающиеся классы сопряженных элементов.

Найдем эти классы для группы C3V. Очевидно, что единица сама является классом сопряженных элементов, ибо всегда =. Обозначим этот класс R1. Второй класс сопряженных элементов - это {, }, поскольку не сопряжено с и , а других возможностей нет. С помощью таблицы Кэли проверяется, что третий класс сопряженных элементов есть {, , }, в итоге

C3V= K1+K2+K3={}+{, }+{, , } (8)

1.4 Факторизация групп

Пусть дана группа G и два подмножества M и N множества G.

Определение 1. Произведением подмножеств М и N группы G называется множество MN, состоящее из всевозможных произведений mn, где m пробегает множество M, а n - множество N.

Теорема 1. Произведение АВ двух подгрупп А и В группы G будет подгруппой группы G, если А и В перестановочны, т. е. если АВ=ВА.

Рассмотрим примеры. В группе C3V перемножим подгруппы {}3 и {}2. Используя таблицу Кэли для C3V, получаем, что C3V факторизуема: C3V={}3 {}2. По таблице Кэли группы C3V находим {}2{}2={, , , }. Но это не подгруппа группы C3V. Следовательно, согласно теореме должно выполняться неравенство {}2{}2{}2{}2. Действительно, перемножая, получим

{}2{}2={, , , }.

Определение 2. Группа G называется прямым произведением подгруппы А и В, если элементы подгрупп А и В перестановочны: ab=ba, aA, bB и каждый элемент gАВ однозначно представляется в виде произведения g=ab. Обозначается прямое произведение подгруппы как G=AB.

Определение 3. Подгруппа Н группы G называется циклической, порожденной элементом h, если все ее элементы являются степенями элемента h. Если же сама группа G совпадает со своей циклической подгруппой, то она называется циклической группой.

Элементом симметрии называется вспомогательный геометрический образ, характеризующий циклическую группу преобразования симметрии.

Теорема 2. Каждая конечная абелева группа G является прямым произведением конечных циклических групп, порядки которых являются степенями простых чисел.

Определение 4. Множество элементов a, b, c… группы G называется системой образующих групп G, если каждый элемент группы может быть представлен в виде произведения степеней элементов указанного множества

akblcm…=g.

Например, для циклической группы {}3 образующим элементом или генератором группы является элемент . У группы C3V два образующих элемента: и , в чем можно убедиться, рассматривая факторизацию C3V={}3{}2.

Определение 5. Соотношения вида

apbqcr…=e,

связывающие образующие элементы группы G, называются ее определяющими соотношениями.

Совокупность всех образующих элементов и определяющих соотношений, полностью описывающих группу, называется генетическим кодом группы.

Например, группа {}3 задается одним образующим элементом и одним определяющим соотношением =. Группа C3V задается двумя образующими и и определяющими соотношениями между ними вида

=, =, = (9)

Последнее соотношение после умножения его на можно записать в стандартном виде =. Именно способом задания группы объясняется обозначение группы C3V, так как операции симметрии и при определенных соотношениях между ними определяют группу C3V. Чтобы получить таблицу Кэли группы C3V, надо было пользоваться геометрической моделью молекулы NH3. Зная же систему (9) определяющих соотношений, можно, например, найти, чему равно , если известно произведение . В самом деле, так как =, то умножая справа на , имеем =. Факторизация группы также значительно облегчается при задании группы с помощью генетического кода. Например, в полупрямом произведении C3V={}3{}2 соотношение = задает автоморфизм группы {}3, так как является ее образующим элементом. Поэтому, пользуясь тем, что автоморфизм переводит произведение элементов в произведение их образов, получаем уже автоматически

=====.

Знание автоморфизма нормального делителя и элементов групп H и F определяет полупрямое произведение, т. е. факторизацию группы.

Глава 2 Введение в теорию представлений групп симметрии молекул

2.1 Векторные (линейные) пространства

1. Модуль и векторное пространство

Определение 1. Кольцом называется множество K, в котором определены операции сложения и умножения и выполняются аксиомы:

1. Относительно сложения кольцо является абелевой группой, т. е. в аддитивной записи операций имеют место условия (для всех a, b, c K):

a+b=b+a - коммутативность (абелевость) сложения;

(a+b)+c=a+(b+c) - ассоциативность сложения;

a+0=0+a=a - существование нулевого элемента;

a+(-a)=(-a)+a=0 - существование противоположного элемента.

2. Умножение связано со сложением аксиомами дистрибутивности:

(a+b)c=ac+bc; c(a+b)=ca+cb.

3. Умножение ассоциативно:

(ab)c=a(bc).

Определение 2. Полем называем коммутативное по умножению кольцо, в котором каждый ненулевой элемент а имеет обратный элемент, т. е. такой элемент a-1, что , где е - единица кольца.

Определение 3. Левым модулем над кольцом K называется абелева группа по сложению М, для которой определены произведения kmM для всех kK и mM, причем выполняются аксиомы:

k(m1+m2)=km1+km2;

(k1+k2)m=k1m+k2m;

(k1k2)m=k1(k2m)

для любых m, m1, m2M и k, k1, k2K.

Если в кольце K есть единицы (что мы предполагаем), то выполняется еще аксиома

em=m

для любого mM.

Аналогично определяются правые модули, в которых произведение записывается в виде mk. Модуль одновременно левый и правый называется двусторонним модулем, будем называть его просто «модулем».

Определение 4. Модуль над полем P называется векторным, или линейным пространством над полем Р.

Определение 5. Подмножество M1 левого модуля М над кольцом K называется подмодулем модуля М, если (m1+m2)M1 для всех m1, m2M1 и kmM1 для всех kK и mM1.

Определение 6. Подмодуль векторного пространства называется подпространством векторного пространства.

2. База (базис) и размерность векторного пространства

Пусть М - левый модуль над кольцом K. Выражение вида k1v1+k2v2+…+knvn, где kiK, viM, называется линейной комбинацией векторов v1, v2, …, vn. Если все ki=0, то линейная комбинация называется тривиальной. Если вектор v является линейной комбинацией векторов v1, v2, …, vn, то говорят, что он выражается через систему S=<v1, v2, …, vn>.

Определение 7. Конечная система векторов v1, v2, …, vn векторного пространства называется линейно зависимой, если существует нетривиальная линейная комбинация этих векторов равная нулю. Система, не являющаяся линейно зависимой, называется линейно независимой.

Бесконечная система векторов векторного пространства называется линейно независимой, если любая ее конечная подсистема линейно независима.

Определение 8. Векторное пространство V называется конечномерным, имеющим разность n, если в нем найдется n линейно независимых векторов, а любые n+1 векторов линейно зависимы. Если в векторном пространстве можно указать систему из n линейно независимых векторов для любого конечного числа n, то это пространство называется бесконечномерным.

Размерность пространства обозначается в виде dim V.

Определение 9. Базисом или базой, в n-мерном векторном пространстве V называется любая ее система из n линейно независимых векторов.

Если e1, e2, …, en - база пространства V и v=x1e1+x2e2+…+xnen, то числа x1, x2, …, xn определяются однозначно и называются координатами вектора v в базе e1, e2, …, en. Вектор v в этом случае можно записать в виде v=( x1, x2, …, xn).

2.2 Эвклидовы и унитарные пространства

1. Билинейные и квадратичные формы

Определение 1. Линейной функцией, или линейной формой, в векторном пространстве V над полем вещественных (комплексных) чисел Р называется отображение f векторного пространства V в поле Р, ставящее в соответствие каждому вектору вещественное (комплексное) число, если это отображение удовлетворяет следующим условиям:

1) f(x+y)=f(x)+f(y);

2) f(x)=f(x),

где x, y - произвольные векторы из пространства V, а P.

Если dimV=n, e1, e2, …, en - базис пространства V и x= x1e1+x2e2+…+xnen - произвольный вектор из этого пространства, то

f(x)=f(x1e1+x2e2+…+xnen)= x1f(e1)+x2f(e2)+…+xnf(en) или

f(x)= a1x1+a2x2+…+anxn, где ai=f(ei), i=1, 2, …, n.

Таким образом, при фиксированном базисе линейная функция представляется линейной формой (формой называется однородный многочлен).

Определение 2. Полулинейной формой или линейной функцией второго рода называется функция f, удовлетворяющая следующим условиям:

1) f(x+y)=f(x)+f(y)

2)

где - число, комплексно-сопряженное с .

Определение 3. Функция A(x, y) векторов x и y векторного пространства V над полем вещественных чисел называется билинейной функцией или билинейной формой, если при фиксированном x она является линейной функцией от y, а при фиксированном y - линейной функцией от x.

По аналогии с линейной функцией можно показать, что билинейная функция представляется билинейной формой, т. е. выражением вида

, где aik=A(ei, ek).

Поэтому билинейную функцию часто тоже называют билинейной формой.

Если A(x, y)=A(y, x) при любых x и y, билинейная форма A(x, y) называется симметрической.

Определение 4. Функция A(x, x), которая получена из симметрической билинейной формы, если наложить y=x, называется квадратичной формой.

Определение 5. Функция A(x, y) называется полуторалинейной формой векторов x и y комплексного пространства или билинейной формой в комплексном векторном пространстве, если при фиксированном y форма A(x, y) есть линейная форма от x, а при фиксированном x форма A(x, y) есть полученная форма от y.

В комплексном векторном пространстве полуторалинейную функцию можно представить в виде билинейной формы , где aik=A(ei, ek).

Определение 6. Билинейная форма в комплексном пространстве называется эрмитово-симметрической или эрмитовой, если A(x, y)= для всех векторов x и y из этого пространства.

Определение 7. Эрмитовой квадратичной формой называется функция, полученная из эрмитово-симметрической формы A(x, y), если положить в ней y=x. Так как A(x, x)=, то эрмитова квадратичная форма принимает только вещественные значения.

Определение 8. Квадратичной формой на пространстве V (вещественном или комплексном) называется такое отображение (Р - поле вещественных или комплексных чисел), для которого существует билинейная (полуторалинейная в случае Р=С) форма В(x, y) со свойством A(x)=B(x, x) для любого вектора xV.

2. Эвклидовы и унитарные пространства

Определение 9. Симметрическая билинейная форма A(x, y) на вещественном пространстве (эрмитово-симметрическая форма на комплексном пространстве) называется положительно определенной, если A(x, x)>0 для любого, отличного от нуля вектора x из рассматриваемого пространства.

Определение 9. Квадратичная форма (эрмитова квадратичная форма) называется положительно определенной, если для любого вектора x0 она принимает положительное значение.

Определение 10. n-мерным эвклидовым (унитарным) пространством называется n-мерное вещественное (комплексное) векторное пространство с положительно определенным симметрическим (эрмитовым) скалярным произведением.

Все вводимые далее понятия пригодны как для эвклидовых, так и для унитарных пространств.

Определение 11. База e1, e2, …, en эвклидова (унитарного) пространства называется ортогональной, если (ei, ej)=0, ij, i, j=1, 2, …, n, и ортонормированной, если она ортогональна и длина всех векторов равны единице.

3. Изометрия эвклидовых и унитарных пространств

Определение 12. Взаимно однозначное отображение f модуля М на модуль М над одним и тем же кольцом K называется изоморфизмом, если выполняются следующие условия:

1. f(x, y)=f(x)+f(y)=x+y; x=f(x); y=f(y);

x, yM;

2. f(x)=f(x)=x; xK; xM; x=f(x)M.

Определение 13. Два векторных пространства W и W над полем Р называются изоморфными, если они изморфны как модули над кольцом, которым является поле Р.

Пусть теперь даны два векторных пространства W и W со скалярными произведениями A(x, y) и A(x, y) над полем Р.

Определение 14. Изометрией векторных пространств W и W называется любой их изморфизм, который сохраняет значения всех скалярных произведений, т. е.

A(x, y)= A(f(x), f(y))= A(x, y); x, yW;

f(x)=x; f(y)=y.

В эвклидовом пространстве из определения длины вектора и угла между двумя векторами следует, что при изометрии сохраняются длины векторов и углы между ними, т. е. сохраняются метрические соотношения, чем и объясняется название «изометрия». В унитарном пространстве при изометрии сохраняются длины векторов, ортогональные векторы переходят в ортогональные векторы.

2.3 Матрицы

1. Линейные отображения, операторы и матрицы

Определение 1. Отображение f: VW векторного пространства V в векторное пространство W над полем Р называется линейное отображение, если для всех v, v1, v2V, P выполняются условия:

f(v1+v2)=f(v1)+f(v2);

f(v)=f(v).

Если V=W, то линейное отображение называется линейным оператором или линейным преобразованием пространства V.

Пусть e1, e2, …, en - базис пространства V, а e1, e2, …, en - базис пространства W. Образы базисных векторов пространства V в базисе пространства W можно записать в виде

(i=1, 2, …, m) (1)

Коэффициенты в выражении (1) запишем в виде матрицы, которая называется матрицей линейного отображения f.

.

В случае линейных операторов, т. е. линейных отображений векторного пространства в себя, операторы удобно обозначать , а матрицу оператора в фиксированном базисе - в виде А.

2. Унитарные, ортогональные, эрмитовы операторы и матрицы

Определение 2. Линейные операторы эвклидова (унитарного) пространства, которые сохраняют скалярное произведение векторов этого пространства, называется ортогональными (унитарными) операторами.

Пусть e1, e2, …, en - ортонормированная база унитарного (эвклидова) пространства. Если - унитарный (ортогональный) оператор, то согласно его определению

(ei, ej)= (ei, ei)=1, i=1, 2, …, n;

(ei, ej)= (ei, ej)=0, iy. (2)

Это означает, что система векторов e1, e2, …, en сама составляет ортонормированную базу в соответствующем пространстве.

Пусть А - матрица унитарного (ортогонального) оператора. Тогда можно записать . Из выражения (2) следует, что в матрице А скалярные произведения векторов-столбцов на себя равны единице, а скалярное произведение различных векторов-стобцов равно нулю. Такая матрица называется унитарной (ортогональной). Унитарность (ортогональность) матрицы А означает, что сумма произведений элементов, стоящих в любом столбце этой матрицы, на сопряженные (на те же самые) к ним элементы равны единице, а сумма произведений элементов любого столбца на сопряженные к ним (на соответственные к ним) элементы другого столбца равна нулю.

Определение 3. Матрица А* называется эрмитово сопряженной (или просто сопряженной) по отношению к матрице А, если А*=, т. е. для того, чтобы из матрицы А получить эрмитово сопряженную матрицу, ее надо транспонировать и заменить элементы транспонированной матрицы комплексно-сопряженными элементами.

Определение 4. Матрица А называется самосопряженной или эрмитовой матрицей, если A=A*; в том же случае, если элементы матрицы вещественны, A*=At=A и матрица А называется симметрической матрицей.

Определение 5. Матрица А называется унитарной (ортогональной) матрицей, если A*=A-1 (если At=A-1). Операторы, соответствующие эрмитовым матрицам, будем называть эрмитовыми.

2.4 Представления групп

1. Определение представлений

Определение 1. Представлением группы, действующим в n-мерном векторном пространстве V, называется гомоморфизм этой группы в группу невырожденных линейных операторов пространства V.

Невырожденным называется такой оператор , который имеет обратный оператор , дающий по определению в произведении с единичный оператор : ==.

Определение 2. Матричным представлением группы G называется гомоморфизм этой группы в группу невырожденных комплексных или действительных матриц размера nn.

Определение 3. Подстановочным представлением группы G называется гомоморфизм этой группы в группу подстановок порядка n. Если гомоморфизм группы G в группу операторов, матриц или подстановок является изморфизмом, то он называется точным представлением.

Представление группы будем обозначать буквой Т. Пусть g1 и g2 - любые элементы группы G, а Т(g1) и Т(g2) - соответствующие этим элементам матрицы представления. Тогда согласно определению гомоморфизма группы

Т(g1, g2)= Т(g1) Т(g2). (4)

Определение 4. Два матричных представления Т1 и Т2 группы G в некоторую группу матриц называется эквивалентным, если существует невырожденная матрица такая, что для всех матриц Т1(g), Т2(g) представления будет иметь место равенство

Т2(g)=Ф-1 Т1(g)Ф, gG (5)

Эквивалентные представления не различаются.

2. Приводимые и неприводимые представления

Воспользуемся языком линейных операторов. Пусть дано некоторое представление Т группы G, действующее в векторном пространстве V. Каждому вектору vV оператор (g) сопоставляет вектор (v)=v1 этого же пространства. Пусть W - подпространство пространства V.

Определение 5. Подпространство W пространства V называется инвариантным подпространством действия , если, каковы бы ни были элементы gG и векторы wW, T(w)=w1, где w1W.

Определение 6. Представление T группы G, действующее в векторном пространстве V над полем Р, называется приводимым представлением, если в этом пространстве существуют неприводимые инвариантные относительно этого действия подпространства. Представление Т называется неприводимым, если единственные его инвариантные подпространства - О и само пространство V.

Интерпретируем это определение на языке матриц. Пусть представление Т группы G приводимо. Значит, в пространстве V представления может быть найдено нетривиальное инвариантное подпространство W. Пусть e1, e2, …, ek - базис пространства W. Дополним его до базиса е1, е2, …, еk, ek+1, …, en всего пространства V. Так как W инвариантно, то (еi), где i=1, 2, …, k лежат в W. Поэтому

i)=a1ie1+a2ie2+…+akiek, i=1, 2, …, k.

Но так как эти векторы лежат и в пространстве V, то можно также написать

i)=a1ie1+a2ie2+…+akiek+0ek+1+…+0en, i=1, 2, …, k.

Что же касается отдельных базисных векторов ek+1, ek+2, …, en, то, поскольку они не принадлежат W, их образы выражаются через базис наиболее общим способом и получаем следующую картину:

1)=a11e1+a21e2+…+ak1ek+0ek+1+…+0en

2)=a12e1+a22e2+…+ak2ek+0ek+1+…+0en

k)=a1ke1+a2ke2+…+akkek+0ek+1+…+0en

k+1)=a1,k+1e1+a2,k+1e2+…+ak,k+1ek+ ak+1,k+1ek+1+…+an,k+1en

n)=a1ne1+a2ne2+…+aknek+ ak+1,nek+1+…+annen.

Отсюда видно, что матрицы всех элементов группы G в предствлении Т будут одновременно иметь следующий вид:

(6)

Поэтому на языке матриц матричное представление называется приводимым, если все матрицы его могут быть записаны при определенном выборе базиса в виде (6). Если же ни при каком выборе базиса матрицы представления нельзя записать в указанном виде, представления называются неприводимыми.

3. Представления групп и модули

Рассмотрим конструкцию, позволяющую, зная представления групп, построить модуль М над кольцом K, связанный с этим представлением. Пусть теория представлений групп сформулирована на языке матриц и линейных операторов. Все матрицы данного порядка (линейные операторы в n-мерном пространстве) образуют относительно операций сложения и умножения матриц (линейных операторов) кольцо. Матрицы (линейные операторы) образуют алгебру в смысле следующего определения.

Определение 7. Алгеброй А над полем Р называется множество, в котором введены операции сложения и умножения элементов, а также операция умножения аА, Р, аА элементов поля Р на элементы из А, причем: 1) относительно операций сложения и умножения А является кольцом; 2) относительно операций сложения и умножения на элементы поля Р алгебра является векторным пространством; 3) операции умножения элементов кольца и умножения на элементы из поля связаны аксиомой

(ab)=(a)b=a(b); P; a, bA (7)

Матрицы, которые сопоставляются элементами группы в представлении Т, составляют лишь часть из множества всех матриц Мn, что следует хотя бы из того, что они невырождены. Однако, если Т(g1), Т(g2), …, T(gs), s=|G| - все матрицы представления группы G, то с ними можем связать алгебру, состоящую из всевозможных линейных комбинаций этих матриц вида

K=1 Т(g1)+2 Т(g2)+..+sT(gs); iR или С (8)

Пусть Р - поле комплексных или вещественных чисел. Рассмотрим формальные суммы вида

=1g1+2g2+…+ngn; iP; giG; i=1, 2, …, n; n=|G| (9)

Подчеркнем, что так как в группе G есть только одна операция - умножение, левую часть нельзя рассчитывать как результат сложения элементов правой части. Назовем две суммы и равными, если i=i. Введем операцию сложения формальных сумм по правилу:

+=(1+1)g1+(2+2)g2+…+(n+n)gn=; i=i+i.

Видим, что на множестве формальных сумм определена операция сложения, так как в результате операции снова получилась формальная сумма вида (9). Введем далее операцию умножения формальных сумм. Получим кольцо, которое называется групповым кольцом группы G над полем Р и обозначается в виде PG. Это кольцо можно превратить в алгебру. Для этого надо определить умножение P на PG. Умножение задается по формуле

. (10)

Относительно сложения и умножения по этой формуле PG представляет собой векторное пространство (аксиома (7)). Построенная алгебра называется групповой алгеброй группы G и обозначается, как и групповое кольцо, в виде PG.

Если сопоставить каждому элементу gi в выражении (9) матрицу T(gi) этого элемента в представлении Т, то получим матрицу (8), которую обозначим буквой K, так как она является элементом группового кольца матриц K. Как следует из определения модуля, главное при построении модуля - ввести умножение векторов на элементы группового кольца. Пусть V - пространство представления Т группы G. Произвольный вектор v этого пространства зададим координатами. Если А - матрица линейного оператора , действующего в векторном пространстве, то можно получить вектор v1, в который переходит вектор v под действием оператора . Для этого надо просто умножить по правилу умножения матриц вектор v на матрицу А. Аналогично выполняется умножение вектора v на элемент группового кольца (и алгебры) PG:

v=vk=v1, PG, v1V, kK. (11)

Теперь, используя правило умножения (11) легко проверить условия определения модуля. Полученный модуль М называется модулем представления Т.

Если известен модуль М над групповой алгеброй PG, то можно получить представление, связанное с этим модулем. Так как группе G принадлежит единица I, то каждый элемент pP можно записать в виде p=pI. Отсюда следует, что модуль М является векторным пространством над полем Р. Поэтому каждому элементу PG можно сопоставить оператор (), действующий в векторном пространстве М по правилу

()(m)=m (12)

В частности, любому элементу gG можно сопоставить оператор (g), действующий по правилу (g)(m)=mg. Сопоставляя всем элементам группы G операторы (12), и получим представление Т, связанное с модулем М.

Учитывая отмеченное соответствие между модулями и представлениями, можно перевести на язык модулей основную терминологию теории представлений. Так, подмодулю М1 модуля М соответствует представление Т1, которое называется подпредставлением представления Т. Тривиальные подмодули модуля М - это сам модуль М и нулевой модмодуль О. Если все подмодули модуля М тривиальны, он называется неприводимым модулем, а соответствующее ему представление - неприводимым представлением. Если же модуль М имеет нетривиальный модмодуль, он называется приводимым модулем, ему соответствует приводимое представление.

4. Представление алгебр и модули

Обозначим через EndpV алгебру линейных операторов векторного пространства V над полем Р и пусть А - произвольная алгебра.

Определение 8. Представлением алгебры А называется сопоставление каждому элементу aA линейного оператора EndpV, причем должны выполняться следующие условия:

1, где - единичный оператор;

pap; pP; aA;

a+b+; a, bA; , EndpV;

ab; a, bA.

Определение 8 является иной формулировкой определения модуля над кольцом А, если кольцо является алгеброй над полем Р.

Определение 9. Модулем над алгеброй А называется абелева группа по сложению М, для которой определена операция умножения элементов из А на элементы из М: amM, aA, mM и при этом выполняются следующие условия:

(a+a)m=am+am;

(aa)m=a(am);

em=m;

a(m+m)=am+am;

(a)m=(am)=a(m), P.

Здесь дано определение левого модуля.

Теорема 1. Всякий левый (правый) модуль М над кольцом А, которым является алгебра, представляет собой также векторное пространство над полем Р, причем для всех aA, mM, P справедливы равенства

(ma)=(m)a=m(a); (am)=a(m)=(a)m.

2.5 Характеры представлений

1. Определение и свойства характеров

Определение 1. След матрицы А=(аij) размера nn есть сумма ее элементов, стоящих по главной диагонали:

TrA=a11+a22+…+ann (14)

Определение 2. След матрицы Т(g), представляющий элемент g в матричном представлении Т группы G, называется характеристикой элемента g в представлении Т и обозначается T(g).

Определение 3. Совокупность характеристик всех элементов g группы G, составленных для данного представления Т, называется характером представления Т и записывается как T. Если Т - матричное представление группы G над полем вещественных или комплексных чисел Р, то характеристика каждого элемента группы является вещественным или комплексным числом и, следовательно, характер есть отображение T группы G в поле Р, определяемое следующим образом:

T: GP: T(g)=TrT(g).

Свойство 1. Характеры эквивалентных представлений совпадают.

Свойство 2. Характер представления Т группы G постоянен на каждом классе сопряженных элементов: T(g-1hg)= T(h), g, hG.

Определение 4. Вектор x0 из векторного пространства V над числовым полем Р называется собственным вектором линейного оператора , действующего в этом пространстве, если он удовлетворяет соотношению x=x, где - число, которое называется собственным значением (характеристическим числом) линейного оператора.

Условие того, что вектор х - собственный вектор записывается в виде матричного уравнения

(А - I)х = 0, (15)

где х - вектор-столбец с неизвестными координатами x1, x2, …, xn. Условием существования ненулевого решения системы (15) является равенство нулю его определителя:

|A - I| = 0. (16)

Это уравнение степени n относительно называется характеристическим или вековым уравнением матрицы А линейного оператора, а его корни называются собственными значениями матрицы А, они являются собственными значениями оператора .

Свойство 3. Если 1, 2, …, n - собственные значения линейного оператора , то T(g)=TrT(g)= 1+2+ …+n.


Подобные документы

  • Сопоставление молекулы с группой симметрии. Установление полной симметрии молекулы и классификация атомов на эквивалентные. Матричное произведение исходных представлений. Соответствие преобразованию симметрии некоторой матрицы. Примеры набора матриц.

    реферат [41,1 K], добавлен 13.07.2009

  • Электронная модель молекулы. Теория отталкивания электронных пар валентной оболочки. Реакционная способность молекул. Классификация химических реакций. Степени свободы молекулы, их вращательное движение. Описание симметрии колебаний, их взаимодействие.

    презентация [230,6 K], добавлен 15.10.2013

  • Спектроскопия молекул в инфракрасном диапазоне. Особенности исследования щелочно-галоидных кристаллов и молекул в матричной изоляции. Специфический характер взаимодействия заряженных молекул между собой и с окружающими их ионами кристалла; спектр газа.

    практическая работа [348,7 K], добавлен 10.01.2016

  • Метод Бенсона при расчете и прогнозировании энтропии органического вещества. Симметрия, атомарные связи углеродных молекул и их классы. Параметры аддитивных схем и проблематика точности для различных свойств молекул алканов в методе Татевского.

    реферат [88,6 K], добавлен 17.01.2009

  • Способы расчетов молекулярной геометрии. Теория отталкивания локализованных электронных пар в валентной оболочке центрального атома. Объекты описания в теории ЛЭП. Примеры, иллюстрирующие прогнозы теории ЛЭП. Связь теории ЛЭП с теорией гибридизации.

    реферат [232,8 K], добавлен 01.02.2009

  • Современные представления о механизме активации простых молекул комплексами переходных металлов. Механизмы активации молекул различного типа кислотными катализаторами. Сущность активации. Реакционная способность. Расщепление субстрата на фрагменты.

    реферат [2,8 M], добавлен 26.01.2009

  • Особенности молекулярного, конвективного и турбулентного механизмов переноса молекул, массы и энергии. Расчет средней квадратичной скорости молекул и описание характера их движения, понятие масштаба турбулентности. Процедуры осреднения скорости молекул.

    реферат [4,6 M], добавлен 15.05.2011

  • Геометрія молекул як напрям в просторі їх валентних зв'язків. Положення теорії направлених валентностей, що витікає з квантово-механічного методу валентних зв'язків. Залежність конфігурації молекул від числа зв'язаних та неподілених електронних пар.

    реферат [1,2 M], добавлен 19.12.2010

  • Графическое представление молекул и их свойств - теория графов в химии. Методы расчета топологических индексов. Кодирование химической информации. Оценка реакционной способности молекул. Анализ связи между топологией молекулы и свойствами соединения.

    реферат [313,2 K], добавлен 09.12.2013

  • Правило октета, структуры Льюиса. Особенности геометрии молекул. Адиабатическое приближение, электронные состояния молекул. Анализ метода валентных связей, гибридизация. Метод молекулярных орбиталей. Характеристики химической связи: длина и энергия.

    лекция [705,2 K], добавлен 18.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.