Наноразмерные катализаторы
Нанокатализ как быстро развивающейся область науки, которая включает использование наноматериалов в качестве катализаторов для различных процессов катализа. Особенности производства наноразмерных катализаторов со 100% селективностью и высокой активностью.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 06.01.2014 |
Размер файла | 23,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
"Наноразмерные катализаторы"
наноразмерный катализатор наука
Введение
Нанокатализ является быстро развивающейся областью науки, которая включает использование наноматериалов в качестве катализаторов для различных процессов катализа. Катализ является одним из старейших методов, использующий наночастицы. Алюминий, железо, диоксид титана, глина, кварц - все они применялись в качестве катализаторов наноразмерной формы на протяжении многих лет.
Несмотря на то, что результаты научных исследований внесли значительный вклад в наше понимание фундаментального катализа, большинство современных коммерческих катализаторов по-прежнему производятся по методу "перемешивание-встряхивание-запекание" смеси нескольких компонентов, поэтому образование наноразмерной структуры в этих катализаторах проблематично, что приводит к малой эффективности этих веществ. Благодаря своим комплексам физико-химических свойств в нанометровом диапазоне, любые характеристики большинства коммерческих катализаторов оказываются неудовлетворительными. Нанокатализаторы имеют очень большую площадь поверхности, которая положительно влияет на скорость реакции.
Основной целью нанокаталитических исследований является производство катализаторов с 100% селективностью, чрезвычайно высокой активностью, низким потребление энергии и долгим срок службы. Это может быть достигнуто только путем точного контроля размеров, формы, пространственного распределения, состава поверхности и электронной структуры, термической и химической стабильности отдельных нанокомпонентов.
1.Гомогенный и гетерогенный катализы
Исследования нанокатализа переживают бурный рост в течение последних десяти лет в гомогенном и гетерогенном направлениях. Так как наночастицы имеют большое отношение площади поверхности к объему, по сравнению с сыпучими материалами, они являются привлекательными кандидатами для использования в качестве катализаторов.
В гомогенном катализе катализаторы используются в той же среде как и остальные реагенты: для наночастиц это может быть раствор или суспензий наночастиц в растворителе. Особенно часто используются в качестве катализаторов наноразмерные частицы переходных металлов. Коллоидные растворы наночастиц должны быть стабилизированы в целях предотвращения агрегации, а также иметь возможность переработки. Такие катализаторы являются являются очень эффективными, потому что большое количество атомов находится на поверхности наночастиц. Методы, которые используется для синтеза наночастиц переходных металлов в коллоидных растворах, очень важны для каталитических процессов. В ходе синтеза необходимо контролировать размер и форму образующихся наночастиц переходных металлов. Метод химического восстановления солей переходных металлов является наиболее широко используемым методом получения коллоидных растворов нанокатализаторов в гомогенном катализе. Есть четыре синтетических метода для подготовки коллоидных растворов, которые не так часто используется:
· тепловые, фотохимические
· восстановление лиганда металлорганического соединения
· получение наночастиц в процессе «испарение - конденсация»
· электрохимическое восстановление солей переходных металлов
Стабилизация наночастиц в растворе необходима в целях предотвращения агломерации и агрегации. Для каталитических процессов, выбор стабилизатора играет важную роль в определении реакционной способности наноразмерных частиц. Хорошим стабилизатором является тот, который защищает наночастицы в ходе каталитического процесса, но не нейтрализует их поверхности, что может привести к потере каталитической активностью.
Другим вариантом, который часто считается более экологически чистым, является гетерогенный катализ. Он содержит катализатор, который находится в другой фазе относительно реагентов. Катализатор, как правило, находится в твердом виде или нанесён на твердую инертную матрицу, например в виде пасты. Такой метод позволяет обойти проблемы отходов и восстановления, т.к. твердый катализатор можно в большинстве случаев просто отфильтровать.
Много исследований было сделано, чтобы определить каталитический потенциал различных наночастиц, которые можно применить в гетерогенном катализе. Наиболее подходящими оказались наночастицы палладия, железа, золота, никеля и платины. Также рассматриваются варианты в диапазоне от кремния или алюминия до углеродных волокон.
Еще одна область гетерогенных нанокатализаторов которая была изучена - это твёрдые тела с наноструктурой или нанопористые тела. Подобные вещества могут быть изготовлены путем выращивания твердого материала вокруг молекулярного шаблона. Наноразмерные черты также могут быть выгравированы на поверхности катализатора с использованием стандартных методов литографии - это может улучшить степень контроля над потоком реагентов на поверхности катализатора, а также увеличить площадь поверхности.
2.Преимущества нанокатализа в химической промышленности
· Повышенная селективность и активность катализаторов, характеризуемая размерами пор и самих частиц
· Замена катализаторов из драгоценных металлов на наноразмерные катализаторы из более доступных материалов, что повышает химическую и реакционную способность и сокращает затраты
· Создание каталитических мембран с контролируемыми размером пор и характеристиками, которые могут удалить нежелательные молекулы из газов или жидкостей
В виду высокого потенциала использования подобных материалов и огромной выгоды, которая может быть получена за счёт их применения, наноструктурированные катализаторы стали предметом пристального внимания учёных в последнее время. Множество заявок и патентов на новые виды нанокатализаторов были реализованы, что приводит к переходу химической промышленности на качественно новый уровень.
3.Важнейшие направления применения нанокатализаторов
1. Газификация биомассы для получения синтез-газа и пиролиз биомассы для производства биомасла
Новый катализатор - наноразмерный NiO, нанесённый на матрицу г-Al2O3 толщиной 3 мм (Johnson Mathey Company) - снижает значительно содержание смол и увеличивает эффективность их удаления до 99%; значительное увеличение выхода газа; увеличение в составе синтез-газа легких фракций из H2 и CO, в то время как количество более тяжелых фракций СН4 и CO уменьшается, тем самым повышается качество синтез-газа.
2. Производство биодизеля из отходов растительного масла
Процесс: этерификация жирных кислот (СЖК) и переэтерификация триглицеридов в биодизельное топливо в одном реакторе. Катализатор: твёрдые кислоты Al0,9H0,3 PW12O40 в виде нанотрубок дают 96% биодизельного топлива из отходов растительного масла по сравнению с 42,6% с использованием обычного H3 PW12 O40 катализатора.
3. Поизводство «зелёного» дизельного топлива с использованием синтеза Фишера-Тропша (ФСТ)
Процесс: улучшение ФСТ технологии производства высокомолекулярного воска, с последующим гидрокрекингом, для получения жидкого топлива. Повышение эффективности использования остатков от угледобычи и реакторов с неподвижным слоем, используемых в ФСТ технологии.
Катализатор: наноразмерный порошок Fe и Co (10-50 нм) используются в качестве катализаторов для этого процесса в суспензионных реакторах. Его получают химическим осаждением паров с использованием термоплазмы (TPCVD) и методами распыления кластера.
4. Производство водорода путем паровой конверсии этанола на наноструктурированных катализаторах индия
Процесс: использование мезопористых В2O3 / KIT-6 катализаторов даёт высокое качество производства из этиловым спирта даже при низких температурах и получают низкую концентрацию примеси СО в сравнении с другими катализаторами.
Катализатор: Мезопористый В2O3 с размером частиц 2-3 нм и площадью поверхности 107 м 2 / г до 173 м 2 / г
5. Гидрообессеривание дизельного топлива
Процесс: гидрообессеривания дибензотиофена улучшилось на 20% с использованием SDM NiMo / Al-HMS нанокатализаторов при 330 ° C , по сравнению с предыдущими катализаторами.
Катализатор: синтез новых NiMo / Al шестиугольных, мезопористых, нанокомпозитных катализаторов происходит сверхкритическим методом осаждения.
6. Ядро и оболочка нанокатализаторов для топливных элементов
Процесс : реакции восстановления кислорода, которая происходит на катоде топливного элемента, производит в качестве единственного отхода воду, но именно на катоде теряется до 40 процентов производительности топливного элемента. А платина, на которой остановили свой выбор ученые, не только является дорогостоящим материалом, но и под действием химической реакции со временем разрушается. Конструкция ядро-оболочка из наночастиц призвана решить обе эти проблемы.
Из палладия (Pd) команда ученых создала ядро толщиной в пять нанометров и облекла его в оболочку, состоящую из сплава железа и платины (FePt) в соотношении 7 к 3 (т.е. в сплаве содержится всего 30 процентов платины). Весь фокус состоял с том, чтобы оболочка могла сохранять свою форму и имела в своем составе меньшее количество платины для эффективного осуществления реакции.
После ряда лабораторных испытаний выяснилось, что новый катализатор генерирует в 12 раз больше тока, чем существующие катализаторы того же веса. Кроме того, на протяжении 10 000 циклов выработка оставалась практически неизменной - это по крайней мере в 10 раз больше, чем у действующих моделей катализаторов, которые начинают разрушаться уже после 1000 циклов.
Катализатор: Pd толщиной 5 мм в оболочке FePt.
Заключение
Катализаторы являются важнейшей частью современной химической промышленности и используются в огромном количестве химических процессов во всем мире. Учёные и исследователи постоянно стараются улучшить производительность и срок службы катализаторов, потому что развитие химического производства напрямую зависит от их качества.
Наноматериалы в катализе предлагают совершенно новый массив параметров, которые ученые могут изменять, чтобы найти идеальный катализатор. Поскольку это исследование продолжается, мы будем понимать все больше и больше о том, как ведут себя катализаторы на наноуровне, и мы будем в состоянии синтезировать химические вещества все более и более эффективно.
Список литературы
1."Nanocatalysis: More than speed" - Gellman & Shukla, Nature Materials, 2009
2."Catalysis: Induvidual nanoparticles in action" - B.C. Gates, Nature Nanotechnology, 2008
3."Green Chemistry by Nano-Catalysis" - Polshettiwar & Varma, Green Chem., 2010.
1. Размещено на Allbest.ru
Подобные документы
Изучение основных функций, свойств и принципа действия катализаторов. Значение катализаторов в переработке нефти и газа. Основные этапы нефтепереработки, особенности применения катализаторов. Основы приготовления твердых катализаторов переработки нефти.
реферат [1,0 M], добавлен 10.05.2010Значение и области применения катализаторов. Физико-химические и каталитические свойства и реакционная способность наноструктур. Методы синтеза наноструктурированных каталитических систем на основе полимеров. Кобальтовые катализаторы гидрирования.
курсовая работа [2,2 M], добавлен 29.05.2014Ферменты или энзимы как органические катализаторы белковой природы. Отличия ферментов от неорганических катализаторов. Образование фермент-субстратного комплекса. Гипотеза субстратной и реакционной специфичности реакций ферментативного катализа.
презентация [1,1 M], добавлен 25.11.2013Понятие биологических катализаторов, действие ферментов в живых системах и их классификация. Факторы, влияющие на активность биологических катализаторов. Вещества, называющиеся коферментами. Кинетика ферментативного катализа, уравнение Михаэлиса-Ментена.
презентация [943,7 K], добавлен 03.04.2014Современные методы исследования наноструктурированных катализаторов. Электронная микроскопия, рентгеновская спектроскопия и дифракция. Строение активных центров Со(Ni)MoS2 катализатора. Анализ генезиса катализаторов гидроочистки, их сульфидирование.
контрольная работа [4,7 M], добавлен 01.03.2015Возникновение и развитие катализа, его роль и значение, сферы использования. Факторы, определяющие скорость химического превращения. Методы определения активности катализаторов в определенном каталитическом процессе, их преимущества и недостатки.
реферат [1,6 M], добавлен 14.04.2011Общее понятие о катализаторах. Современные тенденции в разработке и использовании новых катализаторов гидрирования. Разновидности дегидрирующего действия катализаторов. Процесс дегидрирования и природа активной поверхности катализаторов дегидрирования.
курсовая работа [1,2 M], добавлен 21.10.2014В основе классификации катализаторов лежит определенная совокупность свойств или характеристик. Классификация по типу веществ, степени дискретности и коллективности действия, по специфике электронного строения. Использование в химических реакциях.
реферат [24,0 K], добавлен 26.01.2009Ферменты как биологические катализаторы. Отличие ферментов от обычных катализаторов и их использование в медицине. Понятие активного центра фермента. Ферменты поджелудочной железы и механизм их работы. Скорость ферментативной реакции и ингибиторы.
реферат [22,5 K], добавлен 30.03.2009Катализаторы-металлы, смешанные и полифункциональные катализаторы гетерогенного катализа. Требования к катализатору. Теории гетерогенного катализа. Мультиплексная и электронная теории. Теория активных ансамблей. Катализ в переработке природного газа.
курсовая работа [637,0 K], добавлен 06.05.2014